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Background: Manual extraction of information from electronic pathology (epath) reports to populate the
Surveillance, Epidemiology, and End Result (SEER) database is labor intensive. Systematizing the data extraction
automatically using machine-learning (ML) and natural language processing (NLP) is desirable to reduce the human
labor required to populate the SEER database and to improve the timeliness of the data. This enables scaling up
registry efficiency and collection of new data elements. To ensure the integrity, quality, and continuity of the SEER
data, the misclassification error of ML and NPL algorithms needs to be negligible. Current algorithms fail to achieve
the precision of human experts who can bring additional information in their assessments. Differences in registry
format and the desire to develop a common information extraction platform further complicate the ML/NLP tasks.
The purpose of our study is to develop triage rules to partially automate registry workflow to improve the precision of

Results: This paper presents a mathematical framework to improve the precision of a classifier beyond that of the
Bayes classifier by selectively classifying item that are most likely to be correct. This results in a triage rule that only
classifies a subset of the item. We characterize the optimal triage rule and demonstrate its usefulness in the problem
of classifying cancer site from electronic pathology reports to achieve a desired precision.

Conclusions: From the mathematical formalism, we propose a heuristic estimate for triage rule based on
post-processing the soft-max output from standard machine learning algorithms. We show, in test cases, that the

Introduction

The Surveillance, Epidemiology, and End Result (SEER)
collects and curates cancer patient data from electronic
pathology (e-path) reports. Those data are used for
population-based research on cancer trends to develop
cancer treatment and screening policy recommendations.
That information is extracted manually by experts, which
is labor intensive. This limits the geographical coverage of
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the database, currently, about 30% of all cancer cases in
the United States are included in the SEER database.
Automating the data extraction using Machine Learn-
ing (ML) and Natural Language Processing (NLP) tools
is desirable to reduce the human labor that is required
to populate the SEER database, thereby increasing the
geographical coverage of the database and improving the
timeliness of the data. To insure the integrity, quality and
general usefulness of that database, the classification algo-
rithm needs to have a misclassification error that is no
more than that of human experts. This is challenging
because these experts supplement the pathology reports
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with extra information not always available to the machine
learning tools. Thus, it is implausible that, even under the
best circumstances, the ML/NLP algorithms can achieve
the same small error rate achieved by human experts. Dif-
ferences in registry format and the desire to develop a
common information extraction platform further compli-
cate the ML/NLP tasks.

The ML/NLP task of extracting information from e-
path reports can be cast as a multi-class classification
problem. The misclassification error of any machine
learning classification algorithm is bounded from below
by the Bayes risk [1]. In some instances, that lower bound
may exceed the accuracy needed by the end user, thereby
making machine learning not useful.

The classification depends on both the content and the
context of pathology report. This leads to heterogene-
ity in the degree of difficulty for classifying electronic
pathology reports, with some pathology reports being
easy to classify while others being harder. If one can
identify which pathology reports are easy/hard to clas-
sify, i.e., have small/large expected misclassification error,
one may improve upon the Bayes error by only classi-
fying automatically the reports that have small expected
misclassification error, leaving to the experts the task of
classifying the more challenging ones.

We call triage machine learning algorithms that selec-
tively classify item. We show in this paper that optimal
triage classification rules achieve misclassification error
that are lower than the Bayes classifier, at the cost of
not classifying a fraction of the items. The lower mis-
classification rate arises because we do not get penalized
for refusing to classify, since these reports will be eval-
uated by experts. By strategically refusing not to classify
a large fraction of the items, we have the opportunity to
achieve arbitrarily small misclassification rate. But there
are resource constraints that limit the fraction of reports
we refuse to classify. For example, ignoring the issue of
building an appropriate infrastructure, if we wanted the
SEER database to cover 100% of population the USA with
the same manpower as now, we could refuse to evaluate at
most 30% of the reports.

In this paper, we present the mathematical foundation
for Computer Aided Triage (CAT) by showing how it
expands on existing concepts of statistical machine learn-
ing. The paper is structured as follows: we first formal-
ize the notation and define mathematically the e-triage
rule. We, then, prove that an e-triage rule has monotonic
decreasing classification error with increasing refusal frac-
tion ¢ and characterize the optimal “Bayes” e-triage rule,
and we relate it to the classical Bayes rule. In the next
Section, we apply heuristics derived from these results
to post-process deep learning classification of cancerous
tumor sites from electronic pathology reports to achieve a
desired level of confidence. In a fourth section, we provide
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another application of this methodology to risk manage-
ment. Finally, the interested reader will find the proofs in
the appendix.

Mathematical formulation

Preliminaries

In this paper, we make use of the following notation.
Denote by {(X1, Y1),..., Xy Yy)} n independent identi-
cally distributed random vectors with joint distribution

P[X =dx,Y = a;] = p(aj,x) dx = p (a;| x) f (x)dx.

The covariates X; € X C R? while the response variable
Y; e A={a,...,a) is one of m labels.

A classifier Y(x) is a function from the feature space
X onto the set of labels {ai,...,a,}. To any classifier
f’(x), we can associate a partition Ay, ..., A, of the fea-
ture space X, defined by Ay = {x eX: Y = ak}. The
partition of the Bayes classifier Y*(X), which minimizes
the misclassificatign error P [?(X) + Y] amount all mea-
surable functions Y (X), is given by

= {x:p(ak|x) Zp(azjlx), j;ék}, (1)
with the convention that if there exists two or more
indexes for which we have equality, x is assigned to set

with the lowest index to ensure that the sets A} partition
the feature space X. See [1] for example.

Optimal triage rule

While the Bayes error is a lower bound for the misclas-
sification error, the optimal triage rule will have a lower
misclassification error. Let us formally define the e-triage
rule.

Definition 1 A e-triage is a function T from the feature
space X into the extended set of labels {ay,...,ay,} U 0,
where the label () represents the “no classification” category,
and

PITX)=9]<e.

We can associate to a triage function ?(x) the sets
By = {xeX:?(x):ak}.

Unlike the sets A1,...,A,, defined for a classifier, the
sets By, . . ., By, do not form a partition of X. As a result, let
us define the decision set D = UleBk, and the rejection
set D¢ = {x: T'(x) = #}.

For a triage rule, the misclassification error is only eval-
uated on the decision set D. That is, a refusal to classify
does not get penalized. Formally, the loss function for a
triage rule T is

L(T) =P[Y # T(X),X € D]. 2)

Note that the loss L(T) can be made arbitrarily small
by making D small enough. To avoid this uninteresting
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answer, we constraint the size of the decision set D to
satisfy

P[X € D]> 1 —e.

Our first theorem characterizes the minimizer of (2),
thus providing an analogous result to Bayes rule in the
classical classification context.

Theorem 1 The triage function T* that minimizes
PlY # T(X),X € D] subject to P[X € D]> 1 —¢, fora
given 0 < ¢ < 1, is characterized by the sets

D* = {x:maxp(aj|x) >b} 3)
j
and
;:D*m{p(aklx)zmaXp(aj|x)}, (4)
J#k

where the parameter b is the smallest value such that

P[X e D*]>1—¢. (5)

Remark Observe that the sets D*(b) C D*(b') when
b > b/, or equivalently, when ¢ < ¢’. As a result, the loss
of the optimal triage rule L(7™) is a monotone decreasing
function in €.

It is insightful to specialize Theorem 1 to characterize
the optimal triage rule for binary labeled features.

Corollary 1 Suppose that Y € {0,1} takes on only two
values. Then the indecision region for the optimal triage

rule is
D = {x:l §p(1|x) §b},
b~ pQOlx)
where b is the largest value such that P[ X € D] > 1 — e.

(6)

A similar “indecision set’, based on the likelihood ratio,
arises in sequential learning [2].

Relationship to Bayes rule
It is instructive to relate the optimal triage rule to the
Bayes rule. To this end, denote by Y™* the Bayes rule.

Proposition 1 The optimal triage rule is related to the
Bayes classifier through the sets

* = D' NAL

The proof is immediate by comparing the sets (2) and
(4). This description allows us also write the triage rule 7*
in terms of the Bayes classifier Y*. To this end, define the
function

1 xeD*

ZW:{ng*’
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with the convention that a; x ¢ = (. The optimal triage
rule can then be written as

T = Z*Y™. (7)

This allows us to reinterpret Theorem 1: The optimal
triage rule is the Bayes rule on the restricted set where
largest conditional probability max; p(aj|x) > b. That is,
the optimal triage is Bayes rule provided that the con-
ditional probability of the winning class is large enough.
As a consequence, it is possible that a triage rule does
never classifies a particular class if the conditional proba-
bility p(ax|x) < b for all x. Identification of such classes is
instructive, as it identifies difficult classes. to classify.

Heuristic: using soft-max to build a triage rule
The previous section describes how the optimal triage
rule is a thresholding function of the (optimal) Bayes
rule. In this section, we propose the heuristic triage
estimator obtained by post-processing the soft-max pro-
duced by various machine learning algorithms. Looking
at Eq. (7), we propose to use a classifier that produces
a soft-max to define sets that mimmic the sets D* and
By. If the soft-max output from a ML algorithm is a
good estimate for some monotone increasing transfor-
mation of the actual conditional probabilities, then this
heuristic will produce good triage rules. Other estimation
strategies are possible, and will be explored in a future
manuscript.

Formally, let  denote a collection of real-valued score
functions /(a, x) of the class labels a € A and features
x € X. For any function & € H, the soft-max is defined by

eh (ax)

ZbeA eh(b ,

which can be used to define the classifier

qh (6{, x) =

Yix) = argm]?xh(ak,x)
= arg mlgth (ak,x) .

It is well understood while the soft-max can be inter-
preted as probabilities, they need not be the class condi-
tional probability p(ak|x), even for consistent classifiers.
However, the soft-max of a consistent classifier are such
that the sets

Cr = {x 2 qj, (axlx) = r};kacﬁ, (dj|x)} (8)

converge, as the sample size increases to infinity, to A;.
However, additional assumptions are needed to ensure
that there exists a constant &" such that the set

Dt = {x:m]?xq;l (ar|x) >b/}, 9)

asymptotically equals D* as the sample size tends to infin-
ity. To this end, consider the following definition:
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Definition 2 A soft-max estimate is said to be M-
consistent (or monotone consistent) for the conditional
class probability p (ay| x) if

9 (@ %) —>n—s00 ¢ (p (@r:%)), V), %, (10)

where ¢ is a monotone increasing function and the conver-
gence is in probability.

Under that assumption, it is possible to construct, via
post-precessing of the soft-max, consistent triage rule
from an M-consistent soft-max estimator.

Theorem 2 Let ?(x) is an M-consistent soft-max based
classifier. Then the associated triage rule defined by the sets
(8) and (9) is consistent and converges to the optimal triage
rule.

Example

A first example

As an illustrative example, we combine deep learning
and natural language processing algorithms to classify the
primary cancer site, as described by the ICD-O-3 classifi-
cation manual [3], of 22571 electronic pathology reports
from the Louisiana SEER catchment area. The fitted algo-
rithm return a soft-max value for 139 distinct primary
cancer site. With minimal optimization, the false posi-
tive rate for the classifier is 24.64%, which is significantly
higher than the advertised less than 5% classification
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error from manual classification. This presents us with
an opportunity to demonstrate the practical usefulness of
triage.

Figure 1 graphs the precision as a function of the per-
centage of pathology reports classified. First note that a
precision of 99% can be achieved by selectively classify-
ing about 20% of the pathology reports, and a perfor-
mance commensurate to manual classification (95%) is
achieved by selectively classifying half of the pathology
report. Second, we note that the precision is (essen-
tially) a decreasing function of the percentage classified.
This implies that the precision is a monotone increas-
ing function of max; p(a;|x), which is consistent with the
M-consistency assumption.

Ad hoc improvement strategy

The distribution of cancer sites in the registry are not
balanced. One might expect that cancer sites with more
example are more aptly classified. Examination of Fig. 2,
that shows the site-specific error rate as a function of
sample size, indicates that this is true in some general
sense. This suggests the following ad hoc modification to
the triage rules considered so far: decline to classify any
cancer site that has not sufficient examples to be well char-
acterized. Figure 3 displays the precision for three choices
of sample size: 100, 500 and 1000. The resulting triage
rules achieve better than 99% precision on by selectively
classifying 30% of the pathology reports, and if we only use
the most common cancer sites, sites that have more than
a 1000 example, the precision is above 99.5%.

precision
0.90 0.95 1.00
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20 40
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Fig. 1 Precision as a function fraction classified. By selectively classifying the 20% of pathology reports having highest max soft-max, one achieves
99% precision. Classifying pathology reports whose max soft-max exceed the median produces a triage rule that has commensurate precision to
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Fig. 2 Site specific error rate as a function of number of examples in the dataset. The error rate for the entire dataset is 24.64% and corresponds to

the dotted horizontal line

Conclusion

This paper shows that one can improve a classifiers per-
formance by selectively classifying items, and that the
optimal triage rule can be expressed in terms of the Bayes
rule. Such triage rule are useful when one seeks machine
learning algorithms that achieve a prescribed precision,
as is the case in automatic annotation of electronic
pathology reports.

Proofs

Proof of theorem 1

The misclassification error of a triage rule 7 is
P[T(X)#YNXeD] = PX € D] -P[T(X)

YNXeD]=PX e D] (11)

-> / planxdre.  (12)
k=1 D

BN,
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Fig. 3 Precision of triage of cancers that have low misclassification rate
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For a fixed decision set D, the misclassification error is
minimized by taking

By={xeD:p(ax) =p(a,x), j#k}. (13)

To ensure that By N B; = @ for k # j, we apply the con-
vention that if there exists two or more indices for which
we have equality, x is assigned to set with the lowest index.

To determine the decision set D that minimizes the
misclassification error subject to the constraint that
P[X € D] > 1— ¢, consider all triage rules that satisfy (13)

P[T(X) #YNX e D]=P[X € D]

m
- Z / p (ax, x) dx
k=1 ByND
m

> f(x) —maxp (aj,x)dx  (16)
j

k=1 BirND

:/f(x)—maxp (aj, x) dx
D j

(14)

(15)

(17)

Set
Y =f(x) — maxp (aj, %)

and proceed as in the Neyman-Pearson lemma [4] to
conclude that optimal decision set D is of the form

Y (x)
D=1—>-<by,
{f(x) = }

where the constant b is the smallest value for which the
constraint P[ X € D] > 1 — ¢ is satisfied. The conclusion
follows by expressing the ratio

(18)

¥ (x) p (a,x)
— =1- —_— 19
f@) ) 1)
= 1—maxp(a,-|x) (20)
]
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