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Abstract

Background: We examine the problem of clustering biomolecular simulations using deep learning techniques.
Since biomolecular simulation datasets are inherently high dimensional, it is often necessary to build low dimensional
representations that can be used to extract quantitative insights into the atomistic mechanisms that underlie complex
biological processes.

Results: We use a convolutional variational autoencoder (CVAE) to learn low dimensional, biophysically relevant
latent features from long time-scale protein folding simulations in an unsupervised manner. We demonstrate our
approach on three model protein folding systems, namely Fs-peptide (14 μs aggregate sampling), villin head piece
(single trajectory of 125 μs) and β-β-α (BBA) protein (223 + 102 μs sampling across two independent trajectories). In
these systems, we show that the CVAE latent features learned correspond to distinct conformational substates along
the protein folding pathways. The CVAE model predicts, on average, nearly 89% of all contacts within the folding
trajectories correctly, while being able to extract folded, unfolded and potentially misfolded states in an unsupervised
manner. Further, the CVAE model can be used to learn latent features of protein folding that can be applied to other
independent trajectories, making it particularly attractive for identifying intrinsic features that correspond to
conformational substates that share similar structural features.

Conclusions: Together, we show that the CVAE model can quantitatively describe complex biophysical processes
such as protein folding.
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Introduction
The phenomenal growth of computing capabilities have
accelerated our ability to precisely model and under-
stand complex bio-molecular events at the atomistic scale
[1–5]. Several recent studies have demonstrated how long
timescale molecular dynamics (MD) simulations can pro-
vide detailed insights into events driving several com-
plex biological phenomena such as protein folding, ligand
binding, and membrane transport, often complementing
experimental results. MD simulations are governed by a
potential energy function that includes both bonded and
non-bonded terms whose gradient defines a force-field
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applied to every atom in the bio-molecular system [6].
These simulations integrate Newton’s laws of motion for
every atom in the system using time-steps that typically
are of the order of a femtosecond (10−15s). Even small
simulation systems can potentially consist of thousands
of atoms; given that bio-molecular events of interest typ-
ically occur at micro- and milli-second timescales, the
increase in the size and complexity of these simulations is
quickly becoming a limiting factor for extracting quanti-
tative insights that are also biologically meaningful [7].

To overcome this challenge, a number of machine
learning (ML) techniques are being developed to extract
quantitative, biophysically relevant information from MD
simulations. In particular, machine learning tools are able
to quantify statistical insights into the time-dependent
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structural changes a biomolecule undergoes in sim-
ulations, identify events that characterize large-scale
conformational changes at multiple timescales, build low-
dimensional representations of simulation data captur-
ing biophysical/biochemical/biological information, use
these low-dimensional representations to infer kinetically
and energetically coherent conformational substates, and
obtain quantitative comparisons with experiments [8].

Since the dimensionality of MD simulations is large (3×N ,
where N is the number of atoms, or 2 × (φ, ψ , χ) dihe-
dral angles in the system of interest), ML techniques have
focused on building low-dimensional representations
of MD simulations. These dimensionality reduction
techniques have used linear (e.g., principal compo-
nent analysis [9], anharmonic conformational analysis
[10–12]), non-linear (e.g., isometric mapping/ isomap
[13], diffusion maps [14]) or hybrid approaches (e.g.,
locally linear embedding [15]) to characterize the
conformational landscape sampled within simulations.
Traditional ML approaches for analyzing long time-scale
simulations typically require well-designed and often
hand-crafted features. This in turn requires extensive
prior knowledge about the system that is being simu-
lated (for e.g., biophysically relevant reaction coordinates
such as contacts between a ligand and its receptor).
Often, use of certain ML techniques artificially restrict
the simulation data being examined (for e.g., isolating
only a subset of atoms from the simulations), or be pro-
hibitively expensive to pre-/post-process the data. Finally,
many of these approaches require pairwise comparison
of individual conformers within the simulation with a
similarity/dissimilarity measure that may be expensive to
compute.

Deep structured learning approaches, on the other
hand, overcome these challenges by automatically learn-
ing lower-level representations (or features) from the
input data and successively aggregating them such that
they can be used in a variety of supervised, semisuper-
vised and unsupervised machine learning tasks [16]. Deep
learning techniques have proven useful for a variety of
structural bioinformatics applications, including protein
structure prediction from biological sequences, and virtual
screening/drug discovery applications [17–19]. Doerr and
colleagues evaluated a variety of dimensionality reduc-
tion techniques for MD simulations and demonstrated
that a shallow auto encoder could be used to visual-
ize folding events within protein folding trajectories [20].
More recently, Pande and colleagues demonstrated how
a reduced dimensionality representation from simula-
tions built using tICA could be propagated using a time-
dependent variational auto-encoder [21].

In this paper, we develop a convolutional variational
auto-encoder (CVAE) that can automatically reduce the
high dimensionality of protein folding trajectories and

cluster conformations from MD simulations into a small
number of conformational states that share similar struc-
tural, and energetic characteristics. Using equilibrium
folding simulations of Fs peptide, villin headpiece, and
BBA, all model systems for protein folding, our CVAE
discovers latent features that captures folding intermedi-
ates, including misfolded states that can be challenging
to characterize. We further demonstrate that the learned
latent features from the CVAE can be ‘transferred’ across
simulations, making it relevant for succinctly summariz-
ing large-scale simulations and compare behaviors across
trajectories. Together, we show that deep learning tech-
niques can be used for unsupervised learning of biophys-
ically relevant latent features from long timescale MD
simulations.

Methods
Datasets and pre-processing
Given that deep learning techniques require large train-
ing data, we used three available datasets to demonstrate
our approach. The first dataset consists of 28 separate
MD simulations of the Fs peptide (Ace-A5(AAARA)3A-
NME; 21 residues), a model system for protein folding,
resulting in an aggregate sampling of 14 μs, consisting of
280,000 conformations. All simulations were performed
at 300K using implicit solvent GBSA-OBC potentials and
the AMBER-FF99SB-ILDN force field. This dataset was
obtained from the MSMBuilder software [22]. The second
dataset consists of (i) a single MD run of the Nle/Nle dou-
ble variant of the C-terminal fragment of the villin head
piece (referred to as VHP in this paper; Protein data bank
(PDB) ID 2F4K [23]) of 125 μs simulated at 360 K, and
third dataset is (ii) two long MD runs of the mixed β-β-
α fold, namely BBA (PDB ID: 1FME [24]; 28 residues) for
about 223 μs and 102 μs at 325 K [25], using Anton, a spe-
cial purpose supercomputer for MD simulations [26] and
the CHARMM22* force field and a modified TIP3P water
model compatible with CHARMM force field [27].

We processed each trajectory using the MDAnalysis
library [28, 29] to extract contact matrices between every
pair of Cα atoms; we consider an atom to be in contact
to another atom if it is separated by less than an 8 Å.
Note that contact matrix representation is independent of
rotation/translation (which is typically an artifact of MD
simulations).

Convolutional variational autoencoder (CVAE)
Autoencoders (AEs) are a deep learning architecture
designed to capture key representational information
for a dataset within a low-dimensional latent space in
an unsupervised fashion [30]. Autoencoders typically
have an hourglass shaped architecture in which data is
compressed into a low-dimensional latent space in the
early layers and then reconstructed back in later layers.
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Therefore, the latent space learns to capture the most
essential information required for reconstruction.

In variational autoencoders (VAEs), an additional opti-
mization constraint is that we require the latent space
to be normally distributed [31]. While regular autoen-
coders may effectively capture important information in
a reduced dimension, the latent embeddings may be
sparsely distributed; this typically means that key infor-
mation is spread across several clusters in the latent space,
and the empty space between clusters does not capture
any useful information–sampling from this empty space
typically creates nonsensical results. By forcing the latent
space to be normally distributed, we force the network
to fully utilize the latent space so that information is dis-
tributed more evenly; this allows us to sample from any
point in the latent space to generate new results that
reflect the patterns in the original dataset. We there-
fore chose to use a VAE instead of a regular AE, as
one of our long-term goals is to generate new poten-
tial structures based on the information learned within
our model.

Rather than using regular feedforward layers in our
VAE, we apply convolutional layers because they utilize
sliding filter maps that can better recognize local pat-
terns independent of its position in the data. In contact
map representations, the state of the protein depends
on the local interactions between a few atoms rather
than on the global position of all atoms in the protein.
Because these local interactions do not always appear in
the exact same place in the protein, convolutional lay-
ers are better suited to recognize these local patterns
independent of their position compared to feedforward
networks. The architecture for the convolutional autoen-
coder (CVAE) used in our experiments is illustrated
in Fig. 1.

Each CVAE was trained for a fixed number of epochs
that was determined by the convergence of loss and
variance-bias trade-off. The batch size was selected to
be relatively small (length of the training data/100) to
ensure reduced data in latent space do not collapse.
We divided each dataset into training/testing/validation
(80%/10%/10% of the simulation trajectories). Although
not a requirement for unsupervised learning techniques,
we used the validation data to characterize both the
clustering and reconstruction quality of the CVAE. For
example for the BBA system [32], we used a total of 1.1
million conformations of which 0.88 million conformers
were used for training, with the remaining 0.22 million
conformers equally split for testing and validation of the
CVAE on unseen data from the same trajectory. The sec-
ond trajectory from the BBA simulations was used only for
testing the CVAE based on the training from the first tra-
jectory. The various hyperparameter settings are shown in
Table 1.

Results
We posited that the CVAE (described in “Methods”
section) encoding would result in a model that can auto-
matically capture biophysically relevant features from the
simulation datasets. We used three model protein folding
systems, namely Fs-peptide, villin headpiece (VHP) and
BBA to demonstrate that the CVAE can learn a biophys-
ically relevant latent space that corresponds to folding
reaction coordinates, including fraction of native contacts
and root mean squared deviation (RMSD) to the native
state. To calculate the fraction of native contacts we use a
definition similar to Savol and Chennubhotla [33]. Native
contacts are based on a distance cut off of 8 Å or less
between between Cα atoms and at least 75% of confor-
mations remain within an RMSD cut-off of 1.1 Å of the
native structure. First, we evaluate the ability of CVAE to
learn a reduced dimensional space given the MD simu-
lation data. Second, we show that the CVAE latent space
corresponds to biophysically relevant features for each of
the folding simulations studied. Finally, we demonstrate
that the CVAE latent features can be transferred to other
simulations, making it generalizable to a particular protein
type.

Reconstruction quality of CVAE on protein folding
trajectories
In order to evaluate the CVAE reconstruction quality
from the protein folding trajectories, we first examined
the overall loss (L) of the CVAE over the training epochs
(Eq. 1).

L = Er + El (1)

Er = − 1
n

n∑

i=1
Xilog(f (zi)) (2)

El = KL(z||Normal(0, 1)) (3)

L is characterized as the sum of the reconstruction loss
Er (Eq. 2) and the latent loss El (Eq. 3). The reconstruc-
tion loss measures how well the CVAE can reconstruct the
original input contact matrices (consisting of n conforma-
tions from the trajectory) and is calculated as the cross
entropy loss between f (z), which indicates the recon-
structed probability of contact between two Cα atoms,
and the original X contact maps from the simulation,
which indicate the existence of contact between two Cα

atoms. The latent loss is a regularizing constraint that
forces the latent embeddings z to conform to a Gaussian
distribution; this is calculated as the Kullback-Leibler (KL)
divergence between the latent embeddings z and a Normal
distribution with mean 0 and standard deviation 1.

For the three protein folding trajectories in this study
(Fig. 2) a–c, we observed that the overall loss, L, stabilizes
over the training epochs, showing that it converges over
time. We observed that for each protein, the number of
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Fig. 1 Convolutional variational autoencoder architecture. The deep learning network processes MD simulation data into contact maps (2D images)
that are then successively fed into 4 convolutional layers. The outputs from the final convolutional layer is then fed into a fully connected (dense)
layer. This is then used to build the latent space in three dimensions, the output of which is the learned VAE embedding. In order to reconstruct the
contact maps, we then use 4 successive de-convolutional layers, symmetric to the 4 input convolutional layers

training epochs needed to reach convergence is different;
this is not surprising, given that the size of these pro-
teins are different and the trajectories have unique folding
pathways. Furthermore, we observed that the reconstruc-
tion loss (described in Eq. 1) is also different for each
protein system – indicating that the quality of CVAE
reconstruction is unique to each protein system.

We next examined whether the CVAE latent features
can faithfully reconstruct the original data. To evaluate
this, we used the reconstruction difference that simply
measures the difference between the reconstructed and
original contact matrices. Note that while the original
contact matrix is typically binary (indicating presence or
absence of a contact), the output from the CVAE is a
value between 0 and 1, which may be interpreted as a

Table 1 Hyperparameter settings used for CVAE training

Hyperparameter Lower
bound

Upper
bound

Optimal
Fs-Peptide

Optimal
BBA

Optimal
VHP

Num convolutional
layers

1 4 4 4 4

Num convolutional
filters

16 125 100 100 99

Convolutional filter
shape (m × m)

2 7 5 5 5

Num dense neurons 32 100 64 64 58

Latent dimension 2 16 10 10 9

Mean reconstruction
error

7.82 24.31 74.66

Mean reconstruction
error (latent dim 3)

23.24 53.48 113.07

likelihood of observing a contact between two Cα atoms.
We plotted a histogram of reconstruction from the test-
ing data, shown in Fig. 2d. The reconstruction difference
varies between -1 and +1, which indicates whether the
reconstructed data mispredicts the presence or absence
of a contact respectively. We choose a nominal threshold
of 10% of the original value to indicate misprediction. For
the Fs-peptide simulations, the CVAE is able to faithfully
reconstruct nearly 88% of all the observed contacts and
mispredicts only 12% of contacts (Fig. 2d). We note that
these contacts are at the interfaces of secondary structural
elements, between α-helices, or between α-helices and
β-strands. We can make similar observations for the other
protein systems; the average reconstruction error for VHP
is about 10.6% (Fig. 2e). For BBA (Fig. 2f ), the CVAE
reconstruction can recover nearly 88.5% of all contacts
correctly in the folding simulations.

We evaluated the performance of CVAE as a function of
several model hyperparameters using Bayesian optimiza-
tion [34–36]. The search bounds and optimal results for
the hyperparameters are summarized in Table 1. While
the optimal settings for the latent dimension for each
molecule was found to be near ten, we chose to use
models with latent dimensions of size three. Since it is
possible to verify visually that the autoencoder is mean-
ingfully capturing the folding process without sacrificing
much in terms of reconstruction error, we used a three
dimensional latent space for each of the protein systems.
To meaningfully visualize the CVAE latent representa-
tion, we chose the t-distributed stochastic neighborhood
embedding (t-SNE) [37] method. There are many choices
for visualizing the latent space, including techniques such
as mixture of Gaussians, k-means clustering – however,
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Fig. 2 Quantifying CVAE performance over MD simulations. We quantify the loss, L, described in the “Results” section over the number of training
epochs for each of the systems, namely a Fs-peptide, b VHP, and c BBA. As the number of epochs increases, the loss function decreases, indicating
convergence in the training process. We also quantify the quality of reconstruction based on the CVAE’s ability to predict contacts within the testing
dataset. For each of the simulations, namely d Fs-peptide, e VHP, and f BBA, we show the reconstruction difference between the actual and
predicted contact matrices from the testing data and histogram it to quantify how many contacts may be mispredicted by the model. See text for
additional details

for this paper, t-SNE provided a practical way to visualize
the CVAE latent space in a meaningful manner.

The mean reconstruction loss over various settings for
the latent dimension for each of the protein folding trajec-
tories can be seen in Fig. 3. When considering the latent
dimension, there exists a trade-off between the model’s
ability to compress information and its ability to mini-
mize reconstruction error. For example, we note that the
choice of the optimization technique used for the training
process affects the model performance. To illustrate this,
we examined four different optimizers: namely, RMSProp,
ADAM, ADAMax, and ADAgrad (Fig. 4). For each of

these techniques, we tracked the reconstruction loss (L)
with both the training and testing data. As illustrated in
Fig. 4, we found that the RMSprop optimizer (black line)
performs the best compared to the other three optimizers
with respect to the testing data. Further, we find that the
model’s performance can be affected by the interactions
between the choice of latent dimension and other model
hyperparameters.

CVAE reveals folding intermediates of Fs-peptide
Fs-peptide is often used as a model system to study pro-
tein folding processes; here the final state of the peptide

Fig. 3 Mean reconstruction error over various latent dimensions indicates as the latent dimension increases, the mean reconstruction error
decreases. This shows a trade-off between compression and model accuracy. a Fs-Peptide exhibits a linear decrease in reconstruction error as the
latent dimension increases. b VHP begins to show the limits of increasing the model’s latent dimension; the lowest recorded mean reconstruction
loss was found to be at latent dimension nine. c While the lowest reconstruction error for BBA was found to be with a latent dimension of size ten,
there is a wide amount of variation in the reconstruction loss for this latent dimension size. Various values of the reconstruction error at each latent
dimension shows there to be interactions between the various model hyperparameters
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Fig. 4 RMSprop optimizer provides the best reconstruction of the CVAE latent space for Fs-peptide simulations. We used four popular optimizers,
including ADAM, ADAMax, ADAgrad and RMSProp for understanding how well we can reconstruct the latent space representation of the
Fs-peptide simulations. For each optimizer, we show the reconstruction error, defined as the loss, L, for both the training/testing data over the
course of 150 epochs. Notably, RMSProp provides the best reconstruction (lower is better) as indicated in the plot

is characterized by a fully α-helical state. In this paper, we
examined whether our CVAE can recapitulate the diverse
α-helical intermediate states in an unsupervised manner.
Figure 5a shows the latent space learned by the CVAE.
Each conformation from the training data is represented
as a three-dimensional coordinate in the latent space.
To understand whether the latent space captured by the
CVAE describes the folding process, we colored each con-
former with the corresponding RMSD to the native state.
The RMSD to the native state is often used as a conforma-
tional coordinate to track protein folding trajectories [38].
We note that the input to the CVAE is only the raw contact
maps; however, the model is able to distinguish between
low and high RMSD conformers when projected onto the
latent space.

Within the latent space, we note the presence of dis-
tinct pockets with high RMSD values to the native state
(red colors), which converge eventually into folded state
(blue colors). The gradation of the colors along the arms
of the CVAE axes indicates that the latent space (z1 −z3) is
able to describe the folding process. It indicates multiple
pathways along which Fs-peptide folds into its final state.
Although the CVAE-determined latent space can capture
the presence of both folded/unfolded states (quantified
by the total number of contacts), it is still challenging to
interpret. Hence, we used t-SNE to visualize the results.
We painted each conformation in the t-SNE with the
RMSD values (Fig. 5b) and the fraction of native contacts
(Fig. 5c). The t-SNE approach allows us to identify distinct
conformational clusters observed from the simulations,
labeled (i) to (viii), in the folding trajectories. In particular,
we find the presence of partially folded α-helical bundles
as well as a fully formed α-helix, which represents the
folded state of the protein. Additionally, we also find that

the different folded states are separated and connected via
multiple intermediate states, all of which have relatively
lower number of total contacts. This indicates that for the
transitions between the folded microstates, the peptide
must undergo several unfolding events.

Interestingly, our approach also reveals the presence of
potentially misfolded states in these trajectories. In this
work, we consider a misfolded state to be a set of con-
formations that share higher fraction of native contacts,
but have a high RMSD from the native state ensemble
of the protein. For example, state (viii) in Fig. 5c shows
the presence of conformations that have higher fraction
of native contacts (close to 0.95), however, its secondary
structure content is significantly different from the native
state, highlighted as (vii) in Fig. 5c. The intermediate
states identified here have differences in their secondary
structural content, i.e., the number of α-helical turns as
depicted in states labeled (i), (ii), (iv), (vi) and (viii) along
with differences in the extent to which the N- and C-
terminal ends of the protein are folded (for e.g., state
labeled (ii) folds from the N-terminal end versus state
labeled (iii) folds from the C-terminal end).

We can also visualize the tSNE dimensions as the log-
arithm of the histograms as a simple estimate of the free
energy surface as depicted in Fig. 5d, where by confor-
mational states can be visualized. This representation is
only for visual purposes and as such can be used for
qualitative insights into the organization of the folding
energy landscape of Fs-peptide. The native state of the
protein, labeled (vii), consists of the fully folded pep-
tide, while many of the partially folded states and their
intermediates are distributed around the periphery of
this landscape. It is interesting to note that the con-
tours represent conformational states that correspond to
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Fig. 5 CVAE can identify intermediate, partially folded states from Fs-peptide simulations. a We project the conformations from the simulations onto
a latent space spanned by the three dimensions of the CVAE (z1 − z3). Each conformation is then painted with the corresponding RMSD to the
native state. As observed from the figure, there is a gradation from unfolded states (i.e., higher RMSD values) towards more folded states (lower
RMSD values). To allow easy interpretation, we use t-SNE to project the conformations. b t-SNE projection painted with RMSD values and c fraction
of native contacts shows clear separation between folded conformations, labeled (vii) along with partially folded states, namely (ii), (iii), (iv), and (vi),
along with unfolded states, labeled (v). It is notable that state (viii) has lower RMSD to the folded state (vii), where as shows very few of the native
contacts that are found in the folded state, implying that this state may be a misfolded state in the ensemble simulations. d A simple histogram
representation of the projected t-SNE space allows us to characterize the conformational states observed within the simulations. The labels provide
a relative description of the location of the various conformational states

folding coordinates and each of the states are marked
(using solid lines) as to where they belong on this
landscape.

CVAE reveals conformational states in the VHP folding
pathway
For the VHP simulations, we were able to identify a sim-
ilar distribution of folded/unfolded conformations along
its folding pathway (Fig. 6). Even though the reconstruc-
tion error plots from Fig. 3b indicate that the ideal number

of latent dimensions is 9, we examined whether a low
dimensional encoding with just three dimensions is able
to capture folding events within this trajectory. Simi-
lar to the analysis of the Fs-peptide folding trajectories,
the latent embedding of the CVAE reveals the presence
of folded and unfolded conformations that are sepa-
rated by a large number of intermediate states (Fig. 6a).
Since these simulations were carried out at a higher tem-
perature (360 K), these simulations indicate larger fluc-
tuations in the secondary structures of VHP. Further,
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Fig. 6 CVAE identifies partially folded states within the VHP simulations. a For the VHP simulations, we project the conformations onto the CVAE
space spanned by the three latent dimensions (z1 − z3). Each conformation is painted by the RMSD to the native state with the color scale depicting
the range of RMSD values between the folded and unfolded states. For the VHP simulations we consider any state with an RMSD of less than 5 Å as
essentially folded (since these simulations are carried out at a higher temperature). To enable a better characterization of the VHP folding landscape,
we project the conformations using t-SNE to identify conformational substates. Each conformation is painted with b the RMSD to the native state,
and c the fraction of native contacts. The separation between the folded, unfolded and intermediate states can be understood by examining the
conformational states labeled (i) - (v). d A simple histogram representation from the projected t-SNE space allows us to characterize the locations of
the conformational states observed from this simulation. The labels provide a relative location of the various conformational states

within the course of the simulations, a total of 34 fold-
ing events are summarized, which indicate a large number
of conformational states actually correspond to folded
conformations.

To enable interpretation of the VHP folding landscape,
we projected the CVAE latent dimensions using t-SNE
and observed that the folded states of VHP are separated
into three distinct ‘wells’ that correspond to the folding
events along this trajectory. The evidence for the folding
events emerges from painting the t-SNE landscape with
the fraction of native contacts (Fig. 6c). A large portion
of the trajectory is either unfolded (e.g., states labeled (ii),

(v) indicated as conformational ensembles along the tra-
jectory) or partially folded, i.e., showing the presence of
all the three helices, but with different number of helical
turns (e.g., states labeled (iii) and (vi) in Fig. 6). Finally,
the folded states labelled (i) and (iv) capture distinct ori-
entations of α-helices as observed from the figure. It is
interesting to note that the transition from one folded
state to the other involves partial unfolding (similar to Fs-
peptide). Further, we also note that the partially folded
state (iii) consists of many native contacts; however, this
state does not have all the three helices and may repre-
sent an unfolded intermediate state through which the
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transition to either of the two folded states may occur. The
simple histogram representation of the t-SNE coordinates
(Fig. 6d) provides an easy way to interpret the different
conformational states with respect to the folded states in
the trajectory (states (i) and (iv)).

CVAE analysis of BBA folding simulations can be
transferred to learn folding patterns across trajectories
We next examined whether the CVAE learned features
could be used to predict conformational states from a

completely different trajectory. To facilitate this analysis,
we used the BBA simulations (see “Methods” section) as
a prototype example. Our experimental set up included
training the CVAE on the first long time-scale trajectory
(223 μs) and predicting if it captures the folding events
from the second trajectory (102 μs). As depicted in Fig. 7a,
the three latent CVAE dimensions capture the presence
of multiple folded conformational states (labeled (i), (iii)
and (iv) in Fig. 7b using t-SNE). These states are sepa-
rated by an intermediate state labeled (ii) and an unfolded

Fig. 7 CVAE learned features predict folding intermediates across two independent folding simulations of BBA protein. a depicts the CVAE latent
space embedding on one 223 μs trajectory of BBA folding. Each conformation from the simulation is projected onto a three dimensional
embedding and painted with the fraction of native contacts. One can observe that folded and unfolded states are separated into distinct clusters. b
To elucidate the embedding from the CVAE, we project the conformations from the trajectory using t-SNE and identify conformational states
captured by the CVAE. States are captured as described in Fig. 5 and shown as a cartoon representation based on the cluster from which they
belong to. These conformational states depict various levels of BBA folding, labeled (i) through (vi). c Using the model learned on the longer
trajectory, we project the conformers from the second independent simulation of length 102 μs onto the same latent space. It is notable that the
folded states are similarly clustered together while the unfolded states are captured separately. d The latent representation from the CVAE can be
applied across different trajectories to summarize folded states. As shown in the cartoon representation, the conformational ensembles are
separated into distinct folded (labeled (ii)), partially folded (labeled (i) and (iii)) and fully unfolded states (labeled (iv) and (v))
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state labeled (vi). Finally, it is interesting to note that
latent space also characterizes a misfolded state, labeled
(v), which shows the presence of an extended β-strand.

Using the same model that was trained on the first
trajectory, we can project the conformations from the sec-
ond, shorter simulation onto the latent space learned to
test if the folded/unfolded states are separated. As shown
in Figs. 7c and 7d, the latent space from the second trajec-
tory clearly shows a separation between the folded states
labeled (ii) in Fig. 7d, partially folded states labeled (i) and
(iii) in Fig. 7d, and unfolded states labeled (iv) and (v)
in Fig. 7d. We also observed that the latent space recon-
struction difference is on par with the original model,
implying that the features learned by the CVAE can indeed
be transferred.

Discussion and conclusions
We have demonstrated how deep learning algorithms can
be used to analyze and interpret protein folding simula-
tions. We designed a CVAE that can encode the inherent
high dimensionality of the folding trajectories into a low
dimensional embedding that is biophysically relevant. We
demonstrated our approach on three prototypical sys-
tems, namely Fs-peptide, VHP and BBA, all of which
have been extensively characterized in previous studies.
In all the cases, we note that the learned CVAE embed-
dings captured the distinction between potentially folded,
partially folded, and misfolded states.

We used contact matrices determined form the sim-
ulations as inputs to the CVAE. Contact matrices are a
practical approach to represent simulation datasets, which
have been widely used to characterize protein folding
pathways [39, 40]. However, the resolution of information
captured using contact maps is fairly low and may not be
specific. Although the CVAE identified the presence of
folded/unfolded and misfolded states in the simulations,
there is significant scope for directly using coordinate
information (or other physical quantities such as dihedral
angles) from simulations for characterizing these path-
ways. However, using coordinate information requires
alignment of the trajectories to a reference conformation,
which can be often challenging when the simulations are
running. This is not true with internal coordinate repre-
sentations such as dihedral angles, and we will use these
techniques in the near future.

Complementary to the approaches taken by Doerr and
colleagues [20], we build an autoencoder; however aug-
menting it with a variational formulation allows us to
obtain interpretable features from the latent space. As
demonstrated in the three systems, the CVAE latent
spaces capture a succinct model of protein folding with
the ability to distinguish conformational substates that
share similar structural features. We have yet to evaluate
whether these substates share similar energetic profiles.

Further, our CVAE can be used to potentially augment
propagators in time [21] such that temporal correlations
are captured within these trajectories.

The selection of the hyperparameters, such as the
size/stride of convolutional filters and the dimensions
of the latent space to embed the simulations were
based on empirical evaluations. Ideally, the choice of
the latent space representation should be a parame-
ter that can be learned from the simulation data itself
(instead of being specified by the user). Further, these
latent dimensions should correspond to directions in the
landscape that enable the bio-molecular system to sam-
ple folded/misfolded states, which has been previously
demonstrated by pursuing higher order statistical depen-
dencies in atomic fluctuations in the simulations [7, 10].
We plan to extend our CVAE to automatically learn and
infer this latent dimensional space.

Further studies are essential in associating the bio-
physical relevance of the learned CVAE embeddings.
Specifically, we have not evaluated whether the CVAE
embeddings for these folding trajectories correspond to
biophysical reaction coordinates, i.e., whether the unique
directions proposed by the CVAE can ‘fold’ a protein
system. Temporal correlations are known to significantly
influence bio-molecular events [41]. Although we trained
our model to include temporal information (i.e., frames
for the training was based on successive conformations in
the trajectory), the embeddings learned do not necessarily
correspond to detectable bio-molecular events. For e.g., in
a protein folding trajectory, a typical event corresponds to
‘whether a β-strand was formed’ – our CVAE is currently
unable to identify timepoints where significant structural
or dynamical changes have occurred within trajectories.
Leveraging our previous experience in developing tech-
niques for event detection [12, 42], we will explore deep
learning models for bio-molecular event detection in the
near future.
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