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Background: Molecular profiles change in response to perturbations. These changes are coordinated into functional
modules via regulatory interactions. The genes and their products within a functional module are expected to be
differentially expressed in a manner coherent with their regulatory network. This perspective presents a promising
approach to increase precision in detecting differential signals as well as for describing differential regulatory signals
within the framework of a priori knowledge about the underlying network, and so from a mechanistic point of view.

Results: We present Coherent Network Expression (CoNE), an effective procedure for identifying differentially
activated functional modules in molecular interaction networks. Differential gene expression is chosen as example,
and differential signals coherent with the regulatory nature of the network are identified. We apply our procedure to
systematically simulated data, comparing its performance to alternative methods. We then take the example case of a
transcription regulatory network in the context of particle-induced pulmonary inflammation, recapitulating and
proposing additional candidates to previously obtained results. CONE is conveniently implemented in an R-package

Conclusion: Combining coherent interactions with error control on differential gene expression results in uniformly
greater specificity in inference than error control alone, ensuring that captured functional modules constitute real

Keywords: Activated subnetwork, Coherent differential expression, Differential regulation, Error control, Functional

Background

Molecular profiles reveal how for example gene expres-
sion changes over time and in response to perturbation
events, for example changes in environmental gradients.
These changes are coordinated via regulatory interac-
tions. Regulatory interactions form a network of poten-
tially active links between genes (Fig. la). Differentially
expressed genes are expected to have neighbours that
are differentially expressed (Fig. 1b iii), rather than scat-
tered about the network at random (Fig. 1b ii). We fur-
ther expect these neighbourhoods to be coherent with
the regulatory relationships. In this article we identify
differentially expressed subnetworks coherent with the
regulatory structure, achieved by integrating differen-
tial gene expression with the associated network. Gene
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expression is routinely measured at the level of expressed
RNA transcripts for each gene. Differentially expressed
(DE) genes are those genes exhibiting a change in mean
gene expression between conditions. However, genes do
not act in isolation. Rather, they act in biological net-
works consisting of interacting coordinated modules and
more loosely coupled super-modules [1]. Ravasz et al. [2]
first demonstrated this empirically in organisms spanning
the three domains of life, finding that their metabolic
networks are organized into highly connected modules,
which are then more loosely coupled in a hierarchical
fashion. The molecules within a functional module are
expected to be differentially regulated in a coherent man-
ner, i.e. respecting the regulatory network structure, in
response to changes in their environment. From a systems
level perspective, molecular entities, e.g. genes, always act
together in pathways and modules. The behaviour of these
interactions aid in the study of the functions of genes and
their products. For example, coordinated changes may be
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Fig. 1 Summary of Gene Expression Simulation. a Regulatory networks are randomly generated. Circles: molecular entities, e.g. genes; Lines:
principle molecular regulatory interactions (links). b Genes are randomly selected to exhibit differential gene expression according to whether
differential expression is i. null, ii. scattered, or iii. modular. € Mean log-expression is generated according to whether differential expression is i. null,

ii. scattered, or iii. modular

captured by gene co-expression patterns, which measure
correlations. Use of direct correlations results in many
false positives, and various methods exist to correct this
[3, 4]. More recent methods profit from prior topologi-
cal knowledge to constrain inference in network regula-
tion. Specifically, there is an emphasis on context-specific
network regulation [5—-8]. Numerous network-based reg-
ularization methods profiting from previous studies have
emerged to perform variable selection and to obtain bio-
logically meaningful predictors [9-11]. Ma et al. [12] per-
form gene set enrichment analyses using either complete
or incomplete topological information. These methods
assume that a functional pathway is differentially active
if most genes in this network structure are differentially
expressed.

In this article, we emphasize regulatory coherence. Reg-
ulatory coherence refers to gene expression patterns that

respect the regulatory nature of the network. A network
is described by a graph G = (V,E) for a set V of ver-
tices and a set E of edges between vertices. For a gene
regulatory network (GRN), the vertices represent genes
while the edges indicate interactions between genes, such
as activation and inhibition. We will refer to edges and
vertices as links and genes, respectively. Inducing and
inhibiting links are called regulatory links. Each gene reg-
ulates or is regulated by genes in its network topological
neighbourhood. We define coherent differential expres-
sion (CDE) as the tandem changes in gene expression
for a pair of genes in a link that is consistent with the
regulatory nature of the link. We distinguish between
inhibitory and non-inhibitory links. Non-inhibitory links
consist of inducing links, relationships without explicit
direction such as binding, or positive correlations where
the regulatory relationship is unknown. Tandem changes
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in gene expression for an inhibition link are coherent if,
as the expression of gene A increases, the expression of
gene B decreases. In contrast, CDE for non-inhibitory
links occurs when the expression of both genes increases
or decreases. Outside these two cases, differential expres-
sion is said to be incoherent. There are many reasons
an interaction could be incoherent. First and foremost,
coherent differential expression captures signals that
dominate the network; some interactions are dynamically
promoted while neighbouring interactions are dynami-
cally demoted. Additionally, incoherent DE could point
to issues within the underlying network model. For
example, if DE has occurred via some phenomenon
not represented in the network (e.g. we look only at a
GRN but some non-GRN event occurs), this informs us
that our model is too simple. Indeed, the incoherence
of an expected interaction can point to non-canonical
pathways.

With regulatory coherence, it becomes clear that a
GRN represents a collection of potential interactions,
which are realized in specific contexts and which can be
related to observed changes in expression. These real-
ized interactions form the coherent subnetwork. We
present Coherent Network Expression (CoNE), a proce-
dure for identifying coherent expression together with
error control. This combination is to increase precision
in identifying functional modules in molecular interac-
tion networks. We systematically evaluate CoNE through
comparison with other methods for identifying differen-
tial expression in networks, using simulations where the
ground truth is known. Once validated, we apply CoNE
to the problem of identifying differentially expressed sub-
networks in an in vitro pulmonary inflammation gene
expression study.

Methods
Coherent differential expression
In this section, we make our concept of coherence precise
and describe our procedure, Coherent Network Expres-
sion (CoNE), for identifying coherent subnetworks. Let
G be a network with gene set V(G) and link set E(G),
and let S € G be the coherent subnetwork correspond-
ing to differentially expressed genes. The genes in the
gene set V(S) are differentially expressed while all oth-
ers, V(G)\V(S), are not. The link set E(S) consists only
of those links respecting regulatory coherence. Note that
it is not necessary that all links between genes in V(S) be
included.

We assign link weights w according to the relationship
encoded in a link. For a link (j, k) € E(G) between genes j
and k, the link weight is defined as

w(i, k) = —1 if the relationship is inhibiting 1)

1 otherwise.
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Link coherence

We consider first the simple case where we have two
experimental conditions, and we are interested in the dif-
ferential behaviour between the two. For a gene j, let §;
be the differential expression between the two conditions.
Consider the link (j, k) € E(G) between genes j and k, with
relationship w(j, k). Then we say that link (, k) € E(G) is
coherent if

sign()) - sign(y) - w(j, k) = 1. )

That is, when the relationship is normally inducing, then
the differences §; and 8y must agree on sign. Similarly,
when the relationship is normally inhibiting, then the dif-
ferences &; and §; must bear opposite signs. Otherwise, we
say that the link is incoherent.

Consider now the general linear model

E(Y)) = uj + §W + BiZ, (3)

where 1 is the grand mean expression for gene j, §; is a
vector of factor parameters for treatment vector W, and g;
is a vector of parameters for additional covariates Z. We
can extend the definition of coherence to general linear
models, where we are interested in specific contrasts y of
the factors in W, while controlling for other variables Z.
For a gene j, let §;(y) be the parameter for the contrast y.
Then we say that the link (j, k) € E(G) is coherent with
respect to contrast y if

sign(8;(y)) - sign(éx () - w(j, k) = 1. (4)

Otherwise, the link is incoherent with respect to con-
trast y. This definition easily accomodates the output
from, for example, R packages 1smeans [13] for linear
and mixed effects models or 1imma [14] for empirical
Bayes estimation.

Coherent network expression (CoNE)

We combine error control with link coherence in CoNE
as follows (Fig. 2): 1. We obtain estimates for models (3)
across all genes. 2. For a contrast y, we obtain estimates
gj(y) for all genes j € V(G) in the network. 3. We classify
all links as coherent or incoherent and remove all inco-
herent links (Fig. 2a. Any genes that are isolated, i.e. with
vertex degree 0, are also removed. In this way we enrich
those genes in the coherent subnetwork. 4. We assess sig-
nificance of estimates gj(y) with false discovery rate (FDR)
control (Fig. 2b, removing all genes with estimated FDR
above the control threshold (Fig. 2c. We again remove all
isolated genes.

In this paper, we use LIMMA [14] to fit all linear models
and we adopt the Benjamini-Hochberg [15] false discov-
ery rate procedure for error control in all our analyses.

The initial inspiration for CoNE was the recent
FocusHeuristics [7], which seeks to focus on the coher-
ent subnetwork using three measures: mean absolute
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Fig. 2 Coherent Network Expression Procedure. Beginning with a base
regulatory network, a coherent links are identified and incoherent
links are removed as well as isolated genes, b significant differentially
expressed genes are identified, ¢ all genes with non-significant
differential expression and newly isolated genes are removed
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differential expression, differential link score, and inter-
action link score. The differential link score is a mea-
sure of the magnitude of the coherence between genes

in a link, defined as the difference (Xl1 +w(, k) - X ,1) -

(X]Q + w(j, k) -X,?) between cases 0 and 1. We have pre-

viously formalized hypothesis testing and error control
of the differential link score (unpublished [16]). However,
this approach suffers from two problems. The first is that
incoherent expression can be identified as significantly
coherent if the magnitudes of the differential expression
between two genes in a link are sufficiently different.
This is remedied by additionally ensuring coherence of
the link, as in this article. The second problem is more
fundamental, in that it penalizes those changes in gene
expression that are highly correlated, as the expression for
an inducing link illustrated in Fig. 3 demonstrates. In both
cases depicted, average change in gene expression for both
genes is 2, and hence their differential link score is 4. How-
ever, for Case (a), the differential link score is constant and
so the variance of the score is 0, while for Case (b) the vari-
ance is 1.58. Thus the score in Case (a) is (infinitely) more
significantly greater than zero than in Case (b). We see
no reason we should favour Case (a) over Case (b). CoNE
does not suffer from these problems.

Boundary of a subnetwork

Together with the notion of regulatory modules/-
subnetworks, it will be important to describe the bound-
ary 9§ of a subnetwork S in a network G. We define

>
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Fig. 3 Example Differential Expression for an Inducing Link. The mean
differential expression for genes j and k is 2 in both cases, and hence
the same differential link score. However, in Case a the differential link
score is constant (4) while in Case b the differential link score ranges
from 2 to 6. Thus their differential link scores have different variance (0
versus 1.58), and hence Case a has greater statistical significance,
whereas Case b exhibits the expected positive correlation for an
inducing link

this here. Let I be the collection of links in S that are
incoherent,

I ={(j,k) € E(S) : sign(§)) - sign(dp) - w(j, k) = —1},
(5)

and let B be the collection of links in G with one gene in
V(S) and the other in V(G)\V(S),

B=1{(,k) e EG): (je V(S)andk € V(G\V(S))
or(k € V(S)andj € V(G)\V(S)}.

(6)

Then the boundary 9S of the subnetwork S in G is
defined as 0S =1 U B.

Simulation and analysis of differential expression in
networks

We develop simulations to evaluate the ability of our
method to identify coherent interactions and DE mod-
ules. To model the dependence structure among genes,
gene expression data is simulated as log-normally dis-
tributed according to a Gaussian Graphical Model. For
each replicate, a random network G, covariance matrix
¥ consistent with G, and mean log-expression vectors °
and u! are generated. Log-expression is sampled from
models N(u¢, X), ¢ = 0, 1. For each replicate, we consider
sample sizes n = 8,16,32, and 64, with 50% of samples
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in each class c¢. There are 100 replicates for each net-
work type. The simulations are summarized in Fig. 1. We
provide details in the following.

Gaussian graphical models

In our approach to simulate a regulatory network G,
each node j € V(G) interacts with a subset of the net-
work, its neighbourhood N; = {k : (j,k) € E(G)}. Let
X; be the expression for a gene j. The expression X; is
anticipated by its neighbourhood: given the expression in
neighbourhood Nj, no further information is gained for
the prediction of X; by learning the expression of gene
I ¢ Nj, I # j. In other words, nodes j and [ are con-
ditionally independent given N;. The joint distribution
of gene expression may be factorized along the maximal
cliques of the graph, and hence motivates the application
of graphical models. We simulate differential gene expres-
sion using Gaussian graphical models (GGMs), which may
be specified by their mean vectors and inverse covari-
ance matrices [17]. Let ¥ 7! be an # x u real positive
definite matrix such that (E_l)jk = 0 whenever (j, k) ¢
E(G) for j # k. This implies that the partial correlation
between genes j and k is zero for all non-linked genes in
the network. Further let u be fixed in R”. Then the dis-
tribution NV'(u, ¥) describes a GGM with corresponding
network G.

Random graphs

In the simulations we use the following random networks:
Exponential Erdés-Rényi and Scale-free Barabasi-Albert
[18]. (i) For the exponential graphs, we supply the fol-
lowing parameters for the number of genes and links
(v, e): (500, 2000), and (2000, 8000). (ii) For the scale-free
graphs, we set the number of genes, power of preferential
attachment, and number of links to add at each time-
step (v, p, m) as (500, 1,2) and (2000, 1, 2). See R-package
igraph for details [19].

The (first) Erdés-Rényi model considers an initial set
of v genes, with e links chosen uniformly from the set of
all v(v — 1)/2 unique links between genes. Its topology
is said to be exponential due to the distribution of ver-
tex degree, which follows a Poisson distribution. On the
other hand, the Barabasi-Albert model belongs to the class
of scale-free graphs, so called because there is no ‘typi-
cal’ node degree, with the degree distribution following
an approximate power-law. Beginning with the biologi-
cally compelling assumption that as a network grows, new
nodes attach preferentially to nodes with higher degree,
[18] demonstrated that random graphs produced in this
way are scale-free. Even though most biological networks
appear to be scale-free, exponential graphs still arise
naturally. Barabasi and Oltvai [1] mention for instance
that Saccharomyces cerevisae and Escherichia coli exhibit
mixed exponential and scale-free features, noting that
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the incoming degree distribution for transcription regu-
latory networks is approximately exponential while the
degree distribution of transcription factor interactions is
scale-free.

Differential expression and localization patterns

We investigate both null and true differential expression
where genes are differentially expressed at random or
in modules. For the small graphs (v = 500), we sim-
ulate data where (i) there is no differential expression
(null), (ii) differential expression is distributed randomly
over the genes (low: 1% DE; high: 10% DE), (iii) differ-
ential expression is restricted to a connected subgraph
(low: 1% DE; high: 10% DE), (iv) differential expression
is restricted to three connected subgraphs (low: 3% DE;
high: 30% DE) with average size 5 (low) and 50 (high).
For the large graphs (v = 2000), we simulate data where
(i) there is no differential expression (null), (ii) differ-
ential expression is distributed randomly over the genes
(low: 1% DE; high: 10% DE), (iii) differential expression is
restricted to a connected subgraph (low: 1% DE; high: 10%
DE), (iv) differential expression is restricted to three con-
nected subgraphs (low: 1% DE; high: 10% DE) with average
size 20 (low) and 200 (high). Expression patterns are
depicted in Fig. 1b.

The generation of differential expression depends on
the expression pattern. We generate mean log-expression
vectors u° and u! for classes 0 and 1. The entries of
u® are sampled from a uniform distribution U(—d,d),
d = 4,816,32. For the null pattern, we assign 1’
to ul. For the scattered differential expression patterns,
we are not concerned with the regulatory relationships.
We choose entries of u! at random and add a ran-
dom value sampled from U(—d, d) to them, as described
in Algorithm 1. We remark that differential expression
for d = 4,8,16,32 corresponds to mean absolute
log-differential expression (|AE|) 2,4,8,16 across sim-
ulations, respectively. An average difference |AE| =
16 is extreme and unlikely to be seen in practice; as
such it represents an upper limit to the context of
gene expression.

Here the ‘\’ operator represents set difference, and U(S)
is the uniform distribution over a set S.

The generation of simulated coherent expression is
more involved. We must first generate a subnetwork, and
then generate gene expression in a way that ensures that
differential gene expression is coherent in the subnet-
work. To obtain a connected subnetwork for each module,
we select a gene at random, and then select genes from
the neighbourhood, growing the network iteratively as
described in Algorithm 2.

Here N(V, G) is the neighbourhood of the gene set V' in
network G and G|y is the induced subnetwork of G with
vertex set V. In the case of multiple modules, each module
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Algorithm 1: GENERATE SCATTERED DIFFERENTIAL
EXPRESSION G, J, u!
Input: network G, number DE genes /, mean
expression vector !
(1) v=9¢
(2) Forj=1,..,J:
(@) Sample v; ~ U(V(G)\V)
(b) V<« VU{y}
(3) Forj=1,.,J:
(@) Sample s, ~ U(—d,d)
(b)  my, <y, + 3y,
Output: mean expression vector ut

Algorithm 2: GENERATE CONNECTED SUBNET-
WORKG, J
Input: network G, number DE genes /
(1) Samplev; ~ U(V(G))
(2) V<« {n}
(3) Forj=2,..,J:
(@) Samplev; ~ UN(V,G))
(b) V<«Vu {vi}
(4) H < Gly
Output: subnetwork H

is created to be approximately the same size. Next, we gen-
erate mean log-expression vectors. This is done iteratively
through gene set V(H), so that differential expression for
gene v; is coherent with at least one of its neighbours vy,
k < j. This is described in Algorithm 3.

Algorithm 3: GENERATE COHERENT DIFFERENTIAL
EXPRESSIONH, u!

Input: subnetwork H with / genes, mean expression

ul

(1) V < V(H)

2 v<(@ --,)elR

(3) Sampleé,, ~ U(0,d)

4)  py, < py, + 8y,

(5) Forj=2,.,J:
(a) Identify vi such that

k=min{l <« <j—1:(,v) € E(H)}
(b)  Sample §,, ~ U(0,d)
© My, < g+ 8y Wi V) - Yk
d) ¥ <~ Y- wvg,v))

Output: mean expression vector /Ll

The vector of signs { contains the information on signs
of differential expression for each gene. This is initialized
as a vector of 1’s, and the sign for vertex j is adjusted
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as necessary so that its differential expression is coherent
with at least one of the vertices k < j. Explicitly, the prod-
uct ¥ - w(vg, vj) ensures that the change in expression for
gene v; is coherent with the change in expression for gene
Vk. At a minimum, there will be a simply connected sub-
network (i.e. a tree) connecting all DE genes. However, it
is possible that two disconnected genes within this tree
share a link within the larger network. If the link is promo-
tional and the genes are both up- or both down-regulated,
then this is coherent and the link is included in the coher-
ent subnetwork. Similarly, if the link is inhibitory and one
gene is up- while the other is down-regulated, then this
is also coherent and the link is included in the coherent
subnetwork.

Covariance structure

In our simulations, the covariance structure is informed
by the graph structure of the network, as well as
the nature of the link. In Eukaryotes, inducing links
account for approximately 75 to 80% of regulators
[20, 21]. McDonald et al. [20] report that the aver-
age proportion of activations for circadian networks
is 0.74 in Arabidopsis and Drosophila, while gener-
ally for Eukaryotic signalling networks the average
is 0.83. For each graph, we choose a random pro-
portion of inducing links uniformly over (0.72,0.85),
p ~ U(0.72,0.85). We assign each link a relationship wj;
of 1 (non-inhibitory) with probability p and -1 (inhibitory)
otherwise.

We construct a covariance matrix satisfying the con-
ditional dependence structure of the network by first
constructing the precision matrix P = [pji] from the
adjacency matrix A = [aj] and then inverting to
obtain the covariance matrix ¥ = P!, described in
Algorithm 4.

Algorithm 4: GENERATE COVARIANCE MATRIX (R)
Input: adjacency matrix A
(1) ayj < aik <« Ujk ™~ U(O.S, 1) Va;k 75 0
(2) aj < aj+1 Vajic # 0, (j, k) ¢ 05
(3) ajk < ajk - Wi - —1
4 P« A+l
(5) T <« p!
Output: covariance matrix ¥

In step (1), we assign random values to link weights
independently and identically distributed according to a
uniform distribution 1/(0.5,1). In step (2), we add 1 to
all non-boundary link weights, (j, k) ¢ 9S, ensuring that
the genes in modules are more strongly coupled to each
other than to the rest of the network. In step (3), we
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adjust all link weights by their relationship encoded in
Wik, and multiply this by -1 to account for the relationship
between partial correlation pj and the entries of the pre-
cision matrix pjk: pjk = —Pjk//PjjPkk- In step (4) we add a
positive shift AI to ensure positive definiteness and hence
ensure that we ultimately obtain a covariance matrix. The
scale parameter A = Aj; + Ay is calculated as follows.
—A\1 is the smallest eigenvalue of the matrix A from step
(3). It ensures positive semi-definiteness. We then calcu-
late Ay > O so that the resulting matrix has condition
number equal to the number of genes v in the network.
This ensures invertibility of the matrix. At this point, the
matrix is a proper precision matrix. Finally in step (5)
we obtain the covariance matrix. Thus by construction,
this matrix is consistent with the network G, as described
under “Gaussian graphical models” section.

Alternative methods

We compare CoNE to two alternatives, a standard net-
work independent method and a network-constrained
method. Both of these are implemented in R, a require-
ment placed in our search for methods.

LIMMA is a linear model based method that uses
moderated t-statistics to assess the significance of the
design as a predictor of gene expression [14]. LIMMA
is a network-naive method. We include it as a base-
line method in order to ascertain the improved infer-
ence resulting from incorporating network information.
In our simulation study, we use LIMMA as the standard
network-free method. We ascertain the significance of dif-
ferences between log gene expression §; with Benjamini-
Hochberg FDR (¢ = 0.05). We keep the subnetworks
corresponding to the genes identified as differentially
expressed.

BioNet incorporates a network in the analysis of gene
expression profiles for the detection of functional mod-
ules [22]. Thus BioNet represents a method with similar
goals to CoNE. Beginning with a set of p-values assigned
to each gene, a beta-uniform mixture model is fit, with
the 1-parameter beta distribution B(¢, 1), « > 0. Scores
for each subnetwork are computed based on this model
and an integer linear programming algorithm is used to
locate the maximum scoring subnetwork. For our simula-
tion study, we take the unadjusted p-values obtained for
LIMMA and feed them into the BioNet algorithm with
Benjamini-Hochberg FDR control (¢« = 0.05). BioNet
returns a connected subnetwork.

Evaluation of CoNE and alternatives on simulated data

Performance in simulations is evaluated via sensitivity
(SE), specificity (SP), and precision (P) of the procedures
to both genes and links. These are standard metrics, which
in our notation are given as follows. Let G be the sim-
ulated regulatory network, S be the simulated coherent
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subnetwork, and S the estimated coherent subnetwork.
Then

IV(S) NV(S) _IES) NE(S)

SEgenes= ’ SEjinks= ’
¢ Ve TETTE)]
SPyenes =1 [VOH\V(S)  SPp=1— |E(H\E(S)I ’
V@AV (S)I [E(G\E(S)]
O] _ [EGS)NEE®)
PRgenes = T AL links = — =~
V(S)I |E(S)]

where | - | counts the number of elements in a set.

In order to compactly evaluate the differences between
CoNE and alternatives with respect to SE and SP, we
fit generalized linear models to study the interactions
between simulation parameters and inference procedures.
Since the number of DE and non-DE genes is constant,
SE and SP can be modelled according to a binomial dis-
tribution. SE and SP are thus modelled logistically as the
interaction between inference method (M) and network
topology (T’ 0 for scale-free, 1 for exponential), network
size (N; 0 for 500 genes, 1 for 2000 genes), differen-
tial expression pattern (P), mean absolute log-differential
expression (|AE|), and sample size (n), where the linear
predictor 7 is given by

n =k +uM~+11T+viN+p1P+A;1 log(|AE|)+01 log(n)

+Mx (12T + vaN + p2P + Ay log(|AE|) + 03 log(n)).
(7)

The differential expression and sample size covari-
ates were log-transformed to create a uniform spacing
between consecutive parameters. This ensures that the
high differential expression and high sample size cases do
not have disproportionate leverage in the model. Since PR
depends on the number of genes/links sampled, PR was
modelled according to a negative binomial distribution,
constructing the linear predictor as for SE and SP.

Application

We consider an example gene expression experiment
investigating particle-induced inflammation in pul-
monary artery endothelial cells reported in Karoly et al.
[23], specifically the effect of exposure to airborne ultra-
fine particles (UFPs) — particles with diameter less than
100 nm. The authors hypothesize that UFPs contribute to
endothelial cell dysfunction by inducing transcriptional
activation of genes involved in coagulation and inflam-
matory responses. To test this, they perform a cell culture
study with one treatment group (exposure to 100g/mL
UFPs; n=4) and one control group (no UFP exposure;
n=4) and measure the effects via gene expression.

Gene expression
Affymetrix microarray CEL files are downloaded from
the Gene Expression Omnibus database [24], accession
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number GSE4567 [25]. Gene expression is corrected and
normalized via the R-package oligo [26] using the
default method and then log-transformed. Expression
data is annotated with gene symbols using the R-package
hgul33plus2.db [27]. Where gene symbols corre-
spond to multiple expression values, we take the mean of
the values within each sample.

Gene regulatory network

The human TRRUST V2 network [28], which is currently
the most comprehensive public database for human reg-
ulatory interactions, is used as the seed network. This
network consists of 800 transcription factors (TFs) and
2095 non-TFs, with 8444 regulatory links. We remove
loops and multiple links; since this is a directed network,
we treat links (j, k) and (k, ) as distinct. After restricting
the gene expression dataset and TRRUST network to their
common gene set, we obtain a GRN of 2731 nodes and
7966 links.

Differential expression

We infer the coherent subnetwork via CoNE with
Benjamini-Hochberg control (FDR « 0.05). We also
perform an updated analysis of the gene expression data
with LIMMA, following Karoly et al. [23] to identify sig-
nificant differentially expressed genes. We use updated
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annotation sources in order to ensure that differences
between their procedures and CoNE reflect the meth-
ods and not the annotation source. Additionally, we
perform a third analysis, following Karoly et al. [23]
but this time restricting the gene set to those com-
mon to the GRN. In this way we can evaluate the
marginal effect of using our procedure using a com-
mon set of genes. This provides some indication of
how our method will perform when the full GRN
becomes available.

KEGG pathway analysis

We perform gene set enrichment analyses of gene lists
obtained for both the LIMMA and forward procedures,
using the Human KEGG pathway database [29]. Gene
sets are determined to be significantly enriched follow-
ing Fisher’s exact test with Benjamini-Hochberg control
(o = 0.05).

Results

Simulations

CoNE is more specific and precise than LIMMA and
BioNet (see Fig. 4b, ¢, ¢, f), at the expense of being less sen-
sitive than LIMMA at the gene level and sometimes less
sensitive than BioNet (Fig. 4a, d). CoNE is however more
sensitive than LIMMA with respect to links.
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CoNE controls the false discovery rate. In fact, CoNE
controls error for genes better than either LIMMA or
BioNet when differential gene expression presents as
modules (Fig. 4c). CoNE does not control error for the
1%, scattered differential expression pattern because it
does not detect genes in that scenario; this is by design.
On the other hand, BioNet controls error poorly except
for the case when a high proportion of genes are dif-
ferentially expressed in modules. Further, CoNE controls
error for links, even though it only explicitly controls gene
error (Fig. 4f). Neither LIMMA nor BioNet control link
error. Precision with respect to network topology and net-
work size is reported in Table 1C. Method precision is
not greatly affected by network topology or network size
for any of the methods; this is as expected, since we are
controlling for the false discovery rate.

Sensitivity with respect to network topology and net-
work size is reported in Table 1A. CoNE is more sensitive
for genes for exponential networks versus scale-free net-
works, whereas the reverse holds for BioNet; LIMMA is
indifferent. BioNet is less sensitive for links for exponen-
tial networks whereas CoNE and LIMMA are indifferent.
All three methods are less sensitive with respect to genes
and links as network size increases; note however that
BioNet decreases more rapidly in sensitivity than either
CoNE or LIMMA.

Specificity with respect to network topology and net-
work size is reported in Table 1B. Specificity for both
genes and links increases as network size increases for
all three methods. Gene specificity is decreased for expo-
nential networks relative scale-free networks. On the
other hand, link specificity is increased for exponential
networks relative scale-free networks for LIMMA and
BioNet; CoNE is indifferent in this case.

The performance of the standard LIMMA procedure is
nearly independent of the differential expression pattern,

Table 1 Method Performance Estimates

A. Sensitivity Genes Links

LIMMA  BioNet CoNE LIMMA BioNet CoNE
Topology -0.002  -0303 0302 0011 -0.360  -0.009
Network Size -0.129  -0608 -0.177 -0.188  -0386 -0.186
B. Specificity Genes Links

LIMMA  BioNet CoNE LIMMA BioNet CoNE
Topology -0079 -0151  -0659 0.217 0.687  -0.0306
Network Size 0497 1.025 0.865 1.266 1.253 0.970
C. Precision Genes Links

LIMMA  BioNet CoNE LIMMA BioNet CoNE
Topology -0.000  -0.041 0.015 -0.020  -0.041 -0.003
Network Size 0.005 0.016 0058 0.057 0.038 0.028

Network Topology (0 for scale-free, 1 for exponential) and network size (0 for 500
genes, 1 for 2000 genes) parameter estimates for the simulations from modeling
method sensitivity and specificity by logistic regression and method precision by
negative binomial regression
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with strict error control over all patterns and topologies.
The performance of CoNE and BioNet are more nuanced.

We investigated a range of sample sizes (n = 8,16,
32,64) and mean log-differential expression magnitudes
(AE = 2,4,8,16). The methods with the greatest perfor-
mance for modular gene expression patterns in terms of
median sensitivity, specificity, and precision are displayed
in Fig. 5. It is clear that if gene sensitivity is the only mea-
sure of importance, LIMMA is the top performer across
sample sizes # and differential expression magnitudes AE.
On the other hand, if specificity or link sensitivity are
important, then CoNE or CoNE and BioNet are better
choices, respectively.

Application: particle-induced inflammation
For the CoNE analysis of our example gene expression
dataset, we obtained a coherent subnetwork with 80 genes
and 119 links, with one large connected component with
76 genes, and 2 components consisting of gene pairs. Of
the identified genes, 92.5% were up-regulated, indicating
that the dominant response from exposure to ultrafine
particles is activation. Of the identified links, 94% were
inducing, whereas in the full GRN 77% were inducing. 51
KEGG pathways were identified as significantly enriched,
of which 21 corresponded to non-infection, non-cancer,
immune-related pathways. These are presented in Table 2.
The updated LIMMA-based analysis of [23] again
yielded the Cytokone-cytokine receptor interaction, Wnt
signaling, and MAPK signaling pathways as before,
together with a number of other immune-related path-
ways. The analysis with the gene set restricted to those
in common with the GRN returns the Cytokone-cytokine
receptor interaction but not the other two pathways.
This potentially reflects the imperfect matching between
pathway databases and network knowledge. The list of sig-
nificantly enriched pathways for the restricted analysis is
presented in Table 2.

Discussion

Simulation

CoNE effectively identifies modules. CoNE has almost
zero false positives in the null differential expres-
sion scenario. This suggests that if two distinct mod-
ules were truly differentially expressed, CoNE could
not only identify them, but also separate them into
two distinct connected components. Indeed, results for
scattered and modular differential expression confirm
this. Whereas CoNE does not typically obtain large
connected components for scattered differential expres-
sion, but only a few small components of two or three
genes, CoNE correctly identifies modules in the mod-
ular differential expression scenario. Thus differentially
expressed modules identified by CoNE constitute actual
findings.
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BioNet’s variation in sensitivity, specificity, and preci-
sion is large in comparison to CoNE and LIMMA. Addi-
tionally, BioNet has some difficulties with large sample
sizes or large absolute mean differential expression, some-
times failing to identify any signals. There is perhaps
difficulty in fitting the beta-mixture distribution using
maximum-likelihood estimates when the signal is very
strong. When some p-values are numerically close to 1,
the log-likelihood for the beta distribution B(w, 1) is not
well-defined, while when some p-values are numerically
close to O, the log-likelihood for the beta distribution
B(1, B) (B > 0) is not well-defined [30].

Across all our simulations, we find that CoNE is less
sensitive to differential gene expression than LIMMA.
However, for these simulations we do not apply a ‘rel-
evance’ threshold, such as at least 2-fold change, to the

differential expression submitted for LIMMA analysis. It
is typical to use a threshold on the fold change to classify
differential expression as relevant. Thus truly differentially
expressed genes whose mean differential expression falls
below the threshold are necessarily excluded, reducing the
sensitivity of LIMMA in practice. It may be that CoNE
as applied is more sensitive than LIMMA as it is typi-
cally applied. In a sense, we have replaced the relevance
threshold with coherence status in defining relevance.

We chose to simulate differential expression via GGMs
in order to avoid conflating performance with emergent
behaviour in a system. We had to address the dual ques-
tions, “What level of complexity is sufficient” and “What
level of complexity is too much?” Using GGMs allows
us direct control over generating coherent differential
expression, so that we can determine whether the method
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Table 2 Ultrafine particle-exposure enriched pathways

Inflammation-related pathways CO% Ll %
Antifolate resistance 14 —
Chemokine signaling 10 —
Cellular senescence 10 —
Fluid shear stress and atherosclerosis 15 —
Non-alcoholic fatty liver disease 10 —
Th17 cell differentiation 10 —
AGE-RAGE signaling (in diabetes) 15 18
IL-17 signaling 25 29
NF-kappa B signaling 14 19
NOD-like receptor signaling 15 22
Oxytocin signaling 17 20
Rheumatoid arthritis 14 19
TNF signaling 24 31
Cytokine-cytokine receptor interaction — 14
Other immune-related pathways CO% LI %
B cell receptor signaling 5 —

Prolactin signaling pathway

1

9
T cell receptor signaling pathway 10 —
Th1 and Th2 cell differentiation 8 —
Cytosolic DNA-sensing 14 23
C-type lectin receptor signaling 17 25
Toll-like receptor signaling pathway 11 16
Leukocyte transendothelial migration — 19
Oxidative stress-related pathways CO% L%
FoxO signaling 12 —
HIF-1 signaling — 16

The non-infection, non-cancer, immune-related KEGG pathways identified as
enriched using Fisher's exact test with Benjamini-Hochberg control (& = 0.05).
Columns CO % and LI % denote the proportion of genes identified for each
pathway by CoNE and LIMMA approaches, respectively

is able to use coherent expression to detect functional
modules to greater precision over alternatives. We are able
to show that if there is coherent differential expression,
then indeed, our method is able to detect functional mod-
ules. We judge this sufficient. Had we simulated our data
in a more complex manner, for example using Markov
chains, it is not clear how to separate the differentially
expressed functional modules from the surrounding net-
work without severing all the connections. This would
destroy any covariation between the functional mod-
ule and the rest of the network. Further, it is not clear
how to simulate ‘null’ differential expression in the non-
differentially expressed subnetwork. Now that we have
shown that, yes, CoNE detects differentially expressed
functional modules, we can apply it to simulations of
dynamic systems, such as those generated via Markov
chains, to detect functional modules that arise as emer-
gent properties of the structure of the regulatory network.
That would be very interesting, but outside the scope of
the current article. Essentially, we have used GGMs to
avoid conflating performance with emergent behaviour in
a system.
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Particle-induced inflammation

CoNE identified 13 inflammation-related pathways, 1
oxidative stress-related pathway, and 7 other immune-
related pathways, while the restricted network-agnostic
procedure (LIMMA) identified 8 inflammation-related
pathways, 1 oxidative stress-related pathway, and 4 other
immune-related pathways. The identification of oxidative
stress pathways is consistent with the hypothesis that air-
borne particles induce inflammatory response through an
oxidative stress mechanism. Karoly et al. [23] hypothe-
sized an increase in inflammatory responses. That use
of CoNE identifies two-fold more inflammation-related
pathways, overlapping with most pathways identified for
the LIMMA-based analysis, indicates an increase in sen-
sitivity at the level of gene set enrichment. Using CoNE
allows us to identify these pathways because it is more
specific at the level of gene expression.

Karoly et al. [23] are particularly interested in tissue
factor (TF), noting that its gene expression (F3) is up-
regulated. In an additional experiment, they find that
increased TF protein induces increased release of the
cytokine IL-8 (gene CXL8). While the coherent sub-
network does not reveal a directed path F3 to CXLS,
we observe that EGR1, JUN, and NFKB1 appear to be
inducing F3. Genes EGR1, JUN, and NFKB1 have directed
paths leading to CXL8. The structure of this network sug-
gests a synergy between EGR1, JUN, and NFKBI resulting
in the increased expression of CXL8. This subnetwork is

Fig. 6 Subnetwork of coherent network in ultrafine particle-exposure
study (FDR @ = 0.01). The transcription regulatory subnetwork of
human pulmonary endothelial cells undergoing coherent differential
expression from exposure to ultrafine particles, restricted to eight
genes. All genes increased in expression
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presented in Fig. 6. A high resolution figure of the full
coherent subnetwork is presented in Fig. 7.

Conclusion

CoNE infers differentially activated modules in gene reg-
ulatory networks. While this work is developed in the
context of gene regulatory networks, the methodology
is sufficiently general for application to other molecular
networks.

None of the three methods CoNE, BioNet, or LIMMA
uniformly dominates any other across all measures. When
itis important that error be well-controlled, the CoNE and
LIMMA procedures are most appropriate. There are some
scenarios where BioNet outperforms the rest; however,
BioNet’s extreme variation in sensitivity is hard to pre-
dict. Further, it begins to perform poorly when the signal
to noise ratio is high, or when the sample size is high. We
recommend comparing network-constrained approaches
to a LIMMA baseline. The disparity between these can
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indicate whether we are observing a scattered or modu-
lar differential expression regime. Further, it can safeguard
against high variation in precision or sensitivity. Finally,
current network knowledge is incomplete, so that using
only network-dependent methods will miss potentially
important signals.

Different experimental settings are represented by com-
binations of sample size and differential expression mag-
nitude. In vitro cell line studies generally fall under the
low sample size, high magnitude setting, represented in
the upper left corners of the plots in Fig. 5. Since in vitro
experiments can be well-controlled, the signal-to-noise
ratio is high, which is here represented by high differen-
tial expression magnitude. On the other side, successful
in vivo studies in humans generally have many biological
replicates, which is necessary due to the uncontrollable
nature of study participants, resulting in lower signal-
to-noise ratio, represented in the lower right corners of
the plots in Fig. 5. The simulations have not provided an

Fig. 7 Coherent network in ultrafine particle-exposure study (FDR & = 0.05). The transcription regulatory subnetwork of human endothelial cells
undergoing differential expression from exposure to ultrafine particles. Gene expression both increased (circles) and decreased (squares). Inducing

and inhibiting links are represented as solid and dashed arrows, respectively
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unambiguous top performer. When detecting novel sig-
nals, we must trade between gene and link sensitivity, and
hence between LIMMA and CoNE. However, when our
goal is mechanistic understanding, a method with great
specificity is needed, and hence CoNE is recommended.
Network-constrained approaches to identifying reg-
ulated features are accompanied with the desire for
increased power and precision to detect the truly rele-
vant changes before an expansive, noisy background. We
observe in these simulations that CoNE is highly specific,
and has greater power for detecting links, while LIMMA
retains greatest power for detecting genes. However, the
network-constraints at the same time bias our possible
results. It may be that the non-coherent differential sig-
nals in the data point to interesting regulatory changes.
These could represent cases where the actual regulatory
structure has changed. Such an interpretation would rely
on the validity of the underlying network model, and so
it would be worthwhile to investigate how errors in the
underlying network could affect the analysis of functional
modules. This is however outside the scope of this arti-
cle. Thus, it is worthwhile to investigate both coherent and
non-coherent differential regulatory signals.
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