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Abstract

Background: Early and accurate identification of potential adverse drug reactions (ADRs) for combined medication
is vital for public health. Existing methods either rely on expensive wet-lab experiments or detecting existing
associations from related records. Thus, they inevitably suffer under-reporting, delays in reporting, and inability to
detect ADRs for new and rare drugs. The current application of machine learning methods is severely impeded by the
lack of proper drug representation and credible negative samples. Therefore, a method to represent drugs properly
and to select credible negative samples becomes vital in applying machine learning methods to this problem.

Results: In this work, we propose a machine learning method to predict ADRs of combined medication from
pharmacologic databases by building up highly-credible negative samples (HCNS-ADR). Specifically, we fuse
heterogeneous information from different databases and represent each drug as a multi-dimensional vector
according to its chemical substructures, target proteins, substituents, and related pathways first. Then, a drug-pair
vector is obtained by appending the vector of one drug to the other. Next, we construct a drug-disease-gene network
and devise a scoring method to measure the interaction probability of every drug pair via network analysis. Drug pairs
with lower interaction probability are preferentially selected as negative samples. Following that, the validated
positive samples and the selected credible negative samples are projected into a lower-dimensional space using the
principal component analysis. Finally, a classifier is built for each ADR using its positive and negative samples with
reduced dimensions. The performance of the proposed method is evaluated on simulative prediction for 1276 ADRs
and 1048 drugs, comparing using four machine learning algorithms and with two baseline approaches. Extensive
experiments show that the proposed way to represent drugs characterizes drugs accurately. With highly-credible
negative samples selected by HCNS-ADR, the four machine learning algorithms achieve significant performance
improvements. HCNS-ADR is also shown to be able to predict both known and novel drug-drug-ADR associations,
outperforming two other baseline approaches significantly.

Conclusions: The results demonstrate that integration of different drug properties to represent drugs are valuable
for ADR prediction of combined medication and the selection of highly-credible negative samples can significantly
improve the prediction performance.
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Background and motivation
Drug combined medication refers to the scenario where
two or more drugs are taken together or concomitantly
[1]. It is very common in therapy and clinical prac-
tice [2]. For example, it is estimated that up to 82%
Americans take one or more drugs, and 29% take more
than four drugs together [3]. Consider all drugs have a
small chance of side effects, taking different medications
combined inevitably increases the overall risk of adverse
drug reactions (ADRs) and introduces the additional dan-
ger of interactions between medicines. Drug-drug inter-
actions (DDIs) from combined medication have been
reported to account for 30% of all ADRs [4], resulting
in significant fatality and morbidity [5, 6]. Consequently,
early identification of potential ADRs for combined med-
ication is vital to improve drug safety and prevent
medication error.

ADRs of combined medication occur when individ-
ually safe drugs interact pharmacokinetically or phar-
macodynamically [7]. Currently, two major approaches
have been developed for detecting potential ADRs of
combined medication: pre-marketing review and post-
marketing surveillance. In the pre-marketing review
process, in vivo and in vitro assays are employed to
test new drugs with existing drugs to identify poten-
tial risks [8]. However, it is experimentally infeasible
to test every possible interaction between a new drug
and all existing drugs; let alone, some DDIs mani-
fest only after multiple periods of exposure [8, 9].
Therefore, post-marketing surveillance becomes impor-
tant. Most post-marketing surveillance studies focus on
predicting ADRs for a single drug or drug-drug inter-
actions only [10–12, 12–17]. However, post-marketing
ADR identification of combined medication has not been
adequately studied.

Current post-marketing surveillance primarily relies
on spontaneous reporting systems (SRSs). Harpaz et
al. applied association rule mining to detect ADRs
of multi-drugs from 162,744 FAERS (Food and Drug
Administration Adverse Event Reporting System) reports
[2]. They successfully obtained 1,167 multi-drug ADRs
associations, demonstrating the feasibility to detect ADRs
of multi-drugs from SRSs using conventional data min-
ing tools. Thakrar et al. investigated a multiplicative and
an additive statistical model to detect ADRs of drug pairs
from FAERS [18]. They validated the two models on
4 known and 4 unknown drug-drug-ADR associations
(DDAAs), showing that all 8 DDAAs were successfully
predicted by both models. Although SRSs are proved
to be a useful data source to detect DDAAs. However,
they suffer from common limitations such as high
under-reporting ratio, duplicate reports, and delays in
reporting, making them unable to detect ADRs of novel or
rare drugs.

With the increasing use of electronic health records
(EHRs) in hospital and for research, researchers have
also attempted to detect ADRs of combined medica-
tion from EHRs. For example, Banda et al. investigated
the feasibility of prioritizing DDAAs derived from EHRs
using four different information sources [7]. They first
filtered out known DDAAs found in public databases
such as Drugs.com [19] and DrugBank [20] from the
candidate DDAA list, and then derived a ranking score
measured from the remaining sources. Finally, candi-
date DDAAs with the highest scores were predicted as
identified associations and used for further validation.
Iyer et al. used standard methods that measure the dis-
proportionality of the mention of adverse reactions to
detect DDAAs from 50 million clinical notes [4]. They
showed that using clinical notes their method achieved
as good performance as established methods on SRSs
(i.e., FARES). In reality, EHRs often have restricted access,
because they are always privately owned by health organi-
zations (e.g., hospitals), available only to their cooperated
research groups.

On the other hand, social media provides a new chan-
nel for people to share experiences and seek for help
online. A recent survey shows that 72% of Internet users
went online to seek health information [3, 21]. Sev-
eral attempts have been made to detect DDAAs from
social media. For example, White et al. performed a
large-scale study on Web search logs to detect a spe-
cific DDAA, i.e., paroxetine-pravastatin-hyperglycemia
association [22]. Yang et al. proposed to discover drug-
drug interactions and DDAAs from MedHelp.org [23],
a popular online health community [3]. They first built
a heterogeneous healthcare network comprising enti-
ties (e.g., drugs, ADRs) extracted from the posts, and
then learned a logistic regression classifier using fea-
tures derived from nodes, links, and triads in the net-
work to predict the occurrences of DDAAs, which
achieved satisfactory results. However, social media text
is often very noisy, phrased using colloquial language,
and potentially contains inaccurate information, mak-
ing it extremely difficult to extract mentions of drugs
and ADRs and to establish their associations when con-
text information (i.e., patient condition) is missing. This
has significantly limited the accuracy and reliability of
DDAA detection.

To overcome aforementioned limitations, in this work,
we explore the use of multiple pharmacologic databases
as a new data source to identify ADRs of combined med-
ication. Compared with the above three data sources,
pharmacologic databases provide rich useful resources
for identifying ADRs of combined medication, owing to
the openness, high data quality, and coverage for both
novel and rare drugs. Nevertheless, the application of
machine learning methods on pharmacologic databases is
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severely impeded by the lack of proper drug representa-
tion and credible negative samples. This is attributed to
several reasons. First, each phamacologic database con-
tains different types of data and different aspects of infor-
mation in relation to drugs, diseases, and ADRs. Such
scattered information populates over different databases,
lacking an appropriate drug representation to estab-
lish the associations between drugs and ADRs. Sec-
ond, pharmacologic databases, like Twosides databases
[24], define a set of positive samples, namely known
drug-drug-ADR associations included in the database.
However, they often do not contain any explicit
set of negative samples—drug-drug-ADRs that have
no associations—and this poses a major difficulty
in the use of machine learning methods to learn
an optimal decision boundary. Therefore, there is a
strong need to generate credible negative samples
for accurately predicting potential ADRs of combined
medication.

In this paper, we propose a method called HCNS-ADR
to predict adverse drug reactions of combined med-
ication using credible negative samples selected from
pharmacologic databases. We formulate the detection
of DDAAs as a binary classification task, where the
drug pairs are taken as inputs and ADRs as labels. We
fuse heterogeneous information from multiple pharma-
cologic databases and represent each drug pair as a
multi-dimensional vector using their chemical structures,
target proteins, substituents, and enriched pathways. To
select negative samples, we construct a drug-disease-gene
tripartite network and design a scoring method to pri-
oritize interacting drugs through cross-disease analysis
on the network. Drug pairs with lower interaction prob-
abilities are preferentially selected as negative samples.
Following that, PCA (principal component analysis) [25]
is performed on the raw drug-pair vectors to reduce the
dimensionality. Finally, we build a supervised classifier for
each ADR and evaluate the predication performance with
the ADR’s validated positive samples and selected nega-
tive samples, demonstrating significant performance gains
over baseline methods.

Our work advances the current research as follows:
(i) We represent drugs as multi-dimensional vectors
according to their heterogeneous features, which makes
it possible to employ advanced machine learning meth-
ods for predictions; (ii) We design a scoring method
on a drug-disease-gene tripartite network to prioritize
interacting drugs, paving a way to select credible neg-
ative samples for DDAA prediction; (iii) Finally, we
learn a high-performance machine learning model for
DDAA prediction, providing a list of highly-credible
negative drug pairs which can assist the research
community in identifying new DDAAs (available in
Additional file 1).

Methods
Data resources
In this work, we focus on drugs from DrugBank [26], a
comprehensive drug database. The drug chemical struc-
tures, drug target proteins, and drug substituents are
extracted from DrugBank. Since the validated drug target
proteins in DrugBank are quite sparse, we also integrate
the target information from DrugCentral [27], an open-
access online drug compendium. The association data,
including drug-gene (Homo sapiens), drug-disease, drug-
pathway, and disease-gene associations are retrieved from
the CTD (comparative toxicogenomics database) [28].
The drug-drug-ADR associations are downloaded from
the Tatonetti Lab [29] (Twosides databases). The inte-
gration of the above data finally produces 1048 drugs,
1276 ADRs, and 1,155,754 DDAAs. Information of all
researched drugs and ADRs is available in Additional
file 2. The disease-gene associations and drug-drug-ADR
associations are included in Additional files 3 and 4
respectively. All the above data and the source codes are
included in Additional file 5.

Proposed method
We cast the prediction of drug-drug-ADR associations
into a binary classification task, where inputs are vec-
tors of drug pairs and labels are ADRs. We repre-
sent each drug as a multi-dimensional vector using
their heterogeneous features. To address the lack of
negative samples in the binary classification task, we
design a method to select credible negative samples
based on a drug-disease-gene tripartite network con-
structed in our study. The specific process is detailed
as pseudo codes in Algorithm 1 and the framework
is outlined in Fig. 1. The framework consists of three
components, namely drug representation, credible nega-
tive sample generation, and drug-drug-ADR association
prediction.

Drug representation
We represent each drug as a feature vector using its chem-
ical structures, target proteins, substituents, and enriched
pathways. Specifically, we use the PubChem fingerprint,
which corresponds to 881 substructures defined in the
PubChem database [30], to encode the drug chemical
structure. Each drug is represented as an 881-bit binary
profile, whose elements denote the absence/presence of
the corresponding PubChem substructure by 0/1. We
obtain 3255 unique drug target proteins by merging target
proteins of all drugs. Then each drug can be represented
as a 3255 dimensional vector whose elements encode for
the absence/presence of the corresponding target proteins
by 0/1. Analogously, each drug is represented as a 1075
and 1983 dimensional vector according to its substituents
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Algorithm 1 Predicting adverse drug reactions of combined medication by building up highly-credible negative samples
Input drug set Vr , disease set Vd, target gene set Vg , ADR set Va, drug chemical structure vectors fcs, drug target protein

vectors ftp, drug substituent vectors fsub, drug pathway vectors fpat , and negative sample ratio nsr.
1: for R ∈ Vr do
2: Rcs = fcs[ R];
3: Rtp = ftp[ R];
4: Rsub = fsub[ R];
5: Rpat = fpat[ R];
6: Rv =< Rcs, Rtp, Rsub, Rpat >;
7: end for
8: for i = 1 to (|Vr| − 1) do
9: for j = (i + 1) to |Vr| do

10: R1 = Vr[ i];
11: R2 = Vr[ j];
12: D1 = Vd[ R1];
13: D2 = Vd[ R2];
14: G1 = Vg[ R1];
15: G2 = Vg[ R2];
16: interg(R1, R2) = (G1 ∩ G2)/(G1 ∪ G2);
17: interd(R1, R2) = ((D1 ∩ D2)/(D1 ∪ D2)) ∗ ((D1 ∩ D2)/|Vd|);
18: Obtain the shared disease set Vsd between R1 and R2, let Gd

k denote the gene set of the kth shared disease dk ;
19: intergd(R1, R2) = (∪|Vsd|

k=1 ((G1 ∩ G2) ∩ Gd
k ))/(G1 ∪ G2);

20: interscore(R1, R2) = interg(R1, R2) + interd(R1, R2) + intergd(R1, R2)
21: end for
22: end for
23: Rank all drug pairs by their interaction scores (i.e., interscore) ascendingly, get the candidate negative drug-pair list

candidate_list;
24: for ADRi ∈ Va do
25: positive_set ← drug pairs known to cause ADRi;
26: negative_set ← first (nsr ∗ |positive_set|) drug pairs from the candidate_list (exclude drug pairs in positive_set);
27: Separate the positive_set and negative_set into training_set and test_set;
28: Obtain vectors of drug pairs from the training_set and test_set by appending vector of one drug to the other;
29: Fit PCA using the training_vectors;
30: Transform the training_vectors and test_vectors into lower dimensional vectors comp_training_vectors and

comp_test_vectors using the fitted PCA;
31: Train a binary classifier using comp_training_vectors;
32: Predict for the comp_test_vectors using the trained classifier;
33: end for
34: Evaluate the performance of all predictions;

Output Predicted drug-drug-ADR associations, prediction performances, and the candidate negative drug-pair list.

and enriched pathways. Finally, we represent each drug
as a single vector by concatenating its four separate
vectors. This produces a 7194 (881+3255+1075+1983)
dimensional vector for each drug.

Credible negative sample generation
In this work, we are interested in predicting adverse drug
reactions of combined medication (pair-wise drug medi-
cation in particular). These adverse drug reactions can not
be attributed to either drug alone, occurring only when
two drugs are taken together or concomitantly. Known
drug-drug-ADR associations can serve as positive samples

for prediction. However, there is a lack of explicit nega-
tive samples, namely drug-drug-ADRs that are confirmed
to have no associations, making it difficult to directly
apply machine learning methods to solve the prediction
problem.

Since ADRs of combined medication are caused
by pharmacokinetic or pharmacodynamic interactions
between drugs [7], it is reasonable to hypothesize a drug
pair with lower interaction probabilities are less likely
to cause any ADRs. Base on this hypothesis, we explore
to use drug pairs with lower interaction probabilities as
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Fig. 1 The framework of HCNS-ADR. It consists of three components: drug representation, credible negative sample generation, and drug-drug-ADR
association prediction

negative samples for building a classifier. We propose a
method to measure the interaction probability of a drug
pair according to the following observations: (i) inter-
acting drugs prefer to share the same target genes; (ii)
interacting drugs are more likely to associate with a same
set of diseases; (iii) the common target genes of two drugs
tend to be the common disease genes of their associated
diseases.

To explicitly quantify the interaction probability of a
drug pair, we first construct a drug-disease-gene (RDG)
tripartite network rdg = (

Vr ∪ Vd ∪ Vg , E
)
, where Vr , Vd,

Vg is a set of drugs, diseases, and genes, respectively; E
is the set of associations among them. Given a drug pair
R1 and R2 (R1, R2 ∈ Vr), we denote their gene sets as
G1 = {g11, g12, ..., g1i, g1x} and G2 = {

g21, g22, ..., g2j, g2y
}

,
respectively (g1i, g2j ∈ Vg ; (R1, g1i), (R2, g2j) ∈ E)). Analo-
gously, we represent the disease sets of R1 and R2 as D1 ={

d11, d12, ..., d1p, d1m
}

and D2 = {
d21, d22, ..., d2q, d2n

}

respectively (d1p, d2q ∈ Vg ; (D1, d1p), (D2, d2q) ∈ E)).

Then the associated genes of a disease ds can be denoted
as DGs = {g1, g2, ..., gk , ..., gl}.

We quantify (i) the function relationship between a
drug pair; (ii) the drug therapeutic relationship in dif-
ferent diseases; (iii) the relationship between the shared
genes of two drugs and the common disease genes of their
associated diseases:

• Drug function relationship. The function relationship
between drug R1 and drug R2 is measured as the
proportion of their shared target genes.

interg(R1, R2) = G1 ∩ G2
G1 ∪ G2

. (1)

• Drug therapeutic relationship in diseases. The idea is
that drugs have higher overlapping ratio in associated
diseases are more likely to interact. Besides, the more
diseases two drugs share, the more likely they will
interact. The overlapping ratio of associated diseases
is measured by dividing the shared disease number by
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the number of their union diseases. The shared
diseases are measured as the percentage of the shared
diseases comparing to all diseases in RDG. The two
factors are combined to measure drug therapeutic
relationship as follows:

interd(R1, R2) = D1 ∩ D2
D1 ∪ D2

∗ D1 ∩ D2
|Vd| . (2)

• Relationship between shared target genes of drug R1
and drug R2 and genes of their common diseases. The
idea is that interacted drugs always associate with
common disease genes which contribute to the
disease development.

intergd(R1, R2) = ∪t
k=1((G1 ∩ G2) ∩ DGk)

G1 ∩ G2
, (3)

where DGk is the gene set of the kth shared disease dk ,
and t is the total number of common diseases between R1
and R2.

By integrating the three utilities above, we define the
score for calculating the interaction probability of the drug
pair R1 and R2 as follows:

interscore(R1, R2) = interg(R1, R2)+
interd(R1, R2) + intergd(R1, R2).

(4)

We rank all candidate drug pairs (548,628) in an ascend-
ing order of their interaction scores (i.e., interscore). Drugs
from a drug pair with a lower position in the rank are
less likely to interact with each other. Therefore, we selec-
tively choose drug pairs with lower positions as negative
samples for DDAA prediction.

Drug-drug-ADR association prediction
We build a binary classifier for each ADR. Drug pairs
known to cause the ADR are used as positive samples
directly. A corresponding number of negative samples are
selected from the above ranked drug-pair list. The specific
number is determined by the negative sample ratio, which
will be discussed in the “Results and discussions” section.
Each drug pair is represented as a vector by concate-
nating two individual drug vectors. A drug-pair vector
has a high dimensionality of 14,388 (7194 + 7194), which
incurs a high computational cost to train a classifier. To
speed up training, we employ PCA to perform dimension
reduction on the drug-pair vectors. Specifically, all train-
ing drug-pair vectors are used to fit the PCA first. Then
the fitted PCA is used to transform the training and test
drug-pair vectors into lower-dimensional vectors. Finally,
the resulted vectors of drug pairs are used as inputs to
train and validate the binary classifier.

Results and discussions
Performance evaluation metrics
5-fold cross-validation is performed to evaluate the pre-
diction performance: (i) drug pairs in the gold standard
set are split into five equal-sized subsets; (ii) each sub-
set is used as the test set, and the remaining four subsets
are taken as the training set in turn to train the predic-
tive models; (3) the final performance is evaluated on all
results over 5-folds. The macro-averaging value of pre-
cision, recall, accuracy, F1-score, and AUC (area under
the receiver operating characteristic curve) are used as
evaluation metrics.

Parameter optimization
The key factors of HCNS-ADR are the negative sample
ratio (NSR) and the PCA component number (PCN).
Therefore, we first perform experiments to obtain the
best settings for NSR and PCN. We employed SVM
(support vector machine) in the Python sklearn package
with default settings as the classifier. We experiment with
the following settings: NSR ∈ {0.5, 1, 2, 3} and PCN ∈
{10, 20, 30, 40, 50, 80, 100, 150, 200, 300, 400, 500, 600, 700,
800, 900, 1000}.

Figure 2 illustrates the macro-averaging F1-scores for
different combinations of NSR and PCN. It can be
observed that, when PCN <= 300, the macro-F1
increases dramatically with PCN for NSR = 2 (green)
and NSR = 3 (yellow). By contrast, the macro-F1 of
NSR = 0.5 (blue) and NSR = 1 (red) increases very
slightly with PCN. And all macro-F1 values plateau when
the PCA component number is larger than 300. Similar
conclusions can be drawn from the macro-AUC results,
as shown in Additional file 6: Figure S1. Besides, NSR = 1
slightly outperforms NSR = 0.5, and both of them signif-
icantly outperform NSR = 2 and NSR = 3. Based on the
above observation and considering the time-cost (compu-
tational time increases with PCN), we set NSR = 1 and
PCN = 300 for HCNS-ADR in the following experiments.

Evaluation on classic classifiers
To demonstrate the superior performance of HCNS-ADR
and its efficacy of credible negative sample generation,
we first conduct experiments to compare four classic
classifiers learned based on randomly generated negative
samples (RGNS). The randomly generated samples are
produced by randomly sampling drug pairs which are not
in the positive samples. Except for the way to generate
negative samples, other details of RGNS are the same as
HCNS-ADR. To avoid bias, RGNS is repeated 5 times
and the average results are used for the final evaluation.
The four classic classifiers are KNN (k-nearest neighbors),
SVM, Random Forest and Logistic Regression. All classi-
fiers are run using Python 2.7.13 (sklearn) with the default
settings.
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Fig. 2 The macro-averaging F1-scores with different PCA component numbers and different negative sample ratios

Table 1 shows the evaluation indices of the above four
classifiers. We can see that all classifiers achieve signifi-
cant performance gains using negative samples generated
by HCNS-ADR in comparison to their RGNS counter-
parts using randomly generated samples. For example, as
compared to RNGS, HCNS-ADR achieves an improve-
ment of 5.07%, 3.70%, 6.49% and 19.75%, on macro-
averaging AUC, and 9.65%, 8.48%, 7.09% and 17.79% on
the macro-averaging F1, for SVM, Logistic Regression,
KNN, and Random Forest, respectively.

Comparison with baseline methods
Lots of methods have been developed to predict ADRs,
however, they are for single drug use only. To our knowl-
edge, HCNS-ADR is the first method proposed to predict

ADRs for combined medication. To further confirm the
superiority of HCNS-ADR, we compare it with two base-
line methods, namely random assignment and one-class
SVM.

Random Assignment (Random). To show how difficult
the prediction problem is, we use a random assignment
method as one baseline, where the label is randomly
assigned to a drug pair according to the probability of their
ratios. For instance, if the ratio of label “1” in the train-
ing set is 50%, we randomly assign “1” to 50% samples in
the test set. The other 50% samples in the test set are then
assigned with “0”. For this method, the prediction is made
at random.

One-class SVM (ocSVM). One-class SVM is a one-
class learning technique which is widely used in the

Table 1 Macro-averaging AUC, F1-score, precision, recall and accuracy of four typical classifiers based on negative samples selected by
HCNS-ADR and RGNS

Classifier Negative Samples Macro_AUC Macro_F1 Macro_Precision Macro_Recall Macro_Accuracy

SVM HCNS-ADR 0.994 0.973 0.985 0.963 0.975

SVM RGNS 0.946 0.887 0.896 0.888 0.893

Logistic regression HCNS-ADR 0.998 0.980 0.991 0.971 0.981

Logistic regression RGNS 0.963 0.903 0.898 0.913 0.905

KNN HCNS-ADR 0.983 0.920 0.972 0.883 0.936

KNN RGNS 0.923 0.859 0.850 0.877 0.862

Random forest HCNS-ADR 0.943 0.840 0.928 0.781 0.861

Random forest RGNS 0.787 0.713 0.753 0.700 0.717
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scenario where there are only positive samples, while neg-
ative samples are hard to acquire [31]. It has achieved
remarkable performance in a few fields, such as image
retrieval, and anomaly detection [32, 33]. One-class SVM
is trained with validated positive samples only. In this
work, we report evaluation results of ocSVM on two sets
of test data: one with negative samples selected randomly
(ocSVM_Random), and the other with negative samples
generated according to our screen list (ocSVM_Screen).
The negative sample ratios of both methods are set as 1.

To avoid bias, the method ocSVM_Random and Ran-
dom are repeated 5 times and the average results are
used for the final evaluation. The performances achieved
by these predictive methods are shown in Fig. 3. Clearly,
HCNS-ADR remarkably outperform the other three
methods on all evaluation indices. While ocSVM_Screen
and ocSVM_Random perform slightly better than the
random assignment method, they have comparable pre-
diction results on two test data. It suggests that, with
positive samples only, ocSVM is unable to learn an accu-
rate decision boundary for the drug-drug-ADRs associa-
tion prediction problem. This necessitates the generation
of credible negative samples by our proposed method to
achieve satisfactory prediction results.

Predicted adverse drug reactions for the drug pair
“Albuterol-Zolpidem”: a case study
After confirming the superior performance of our
method, we build 1,276 SVM classifiers using the corre-
sponding validated positive samples and selected negative

samples to predict potential ADRs for any drug-pairs. The
negative sample ratio is set as 1. Here, we report the pre-
diction results for the drug pair “Albuterol-Zolpidem” as a
case study.

Like other data mining results, it is unrealistic to expect
every highly ranked ADRs valuable to domain experts
[6]. Therefore, we shortlist the top 40 ADRs accord-
ing to their prediction scores, as shown in Fig. 4. The
UMLS names of ADRs are labeled on the circle, and their
ranks and confirmation types are labeled on the edges.
“#” denotes the relation is known in the Tatonetti Lab
dataset, “$” means the relation is the common ADRs of
the drug pair, and “?” indicates there are no evidences for
the relation.

It can be observed that 36 out of the top 40 ADRs are
known in the Tatonetti Lab dataset. The other 4 ADRs
are newly predicted ADRs for the combined medication
“Albuterol-Zolpidem”. We further confirm the newly pre-
dicted associations from other data sources; 3 out of them
are indeed confirmed as common ADRs of Albuterol and
Zolpidem. More specifically, fainting and spinning sen-
sation are found to be two common ADRs of Albuterol
and Zolpidem in Drugs.com [19], and agitation is found in
SIDER [34], a comprehensive drug side-effect database.

To further demonstrate HCNS-ADR’s ability to predict
new DDAAs, we also investigate the ADR ranked list from
top-41 to top-50. Among others, acute respiratory distress
syndrome, hive, arterial pressure NOS increased, loss of
consciousness, ascites and pulmonary arrest are newley
predicted ADRs of Albuterol and Zolpidem, requiring

Fig. 3 The macro-averaging precision, recall, F1 and accuracy of HCNS-ADR and other three comparison methods
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Fig. 4 The top 40 ADRs which are predicted to be associated with the drug pair “Albuterol-Zolpidem”. Labels on the edges illustrate the rank of
predicted association and the confirmation types. “#” denotes the relation is known in the Tatonetti Lab dataset, “$” means the relation is the
common ADRs of the drug pair, “?” indicates there are no evidence for the relation

further validation. These newly predicted associations
provide valuable information to domain experts. In sum-
mary, this case study confirms that HCNS-ADR is able
to predict both known and novel drug-drug-ADR associ-
ations.

Conclusions
In this work, we propose a machine learning method
to predict ADRs of combined medication from pharma-
cologic databases. To effectively apply machine learning
techniques to this prediction problem, we formulate it into
a binary classification task, where inputs are vectors of
drug pairs and labels are ADRs. We overcome two impedi-
ments for the application of machine learning techniques,
namely the lack of proper drug representation and cred-
ible negative samples. As each pharmacologic database
contains different types of data, we leverage heteroge-
neous information from multiple databases to form an
effective drug representation; each drug is represented as
a multi-dimensional vector using its chemical substruc-
tures, target proteins, substituents, and related pathways.
To generate negative samples, we hypothesize that a drug
pair with lower interaction probabilities are less likely

to cause any ADRs. Therefore, we measure the interac-
tion probability of each drug-pair via analyzing the con-
structed drug-disease-gene network, and preferentially
select drug pairs with lower interaction probabilities as
credible negative samples. After performing dimension
reduction, we build a classifier for each ADR using its
validated positive samples and selected negative samples.
The originality of the proposed method lies in formulating
DDAA prediction into a binary classification task, in char-
acterizing drugs using their multi-features, in selecting
credible negative samples through constructing a com-
prehensive drug-disease-gene network, and in building
predictive models for drug-drug-ADR associations pre-
diction. Both the evaluation on four classic classifiers
and comparison experiments with two baseline methods
demonstrate the superior performance of the proposed
method. Besides, the case study about the drug pair
“Albuterol-Zolpidem” confirms that HCNS-ADR is capa-
ble to predict both existing and novel drug-drug-ADR
associations.

HCNS-ADR is useful in various aspects. First, it can
guide the drug development, determine drug molecules
should be dropped or kept for further study, and
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largely reduce the time and financial cost. Besides,
early warnings about potential ADRs when drugs are
medicated together could be given to pharmacists,
doctors, and patients. In this work, only four drug
features are employed to represent the drugs. It is
worth pointing out that more drug features, e.g., drug
indications, can be integrated to characterize drugs.
Therefore, we will investigate the impact of different drug
features on the DDAA prediction in the near future.

Additional files

Additional file 1: This file contains the sorted drug-pair list prioritized by
the constructed drug-disease-gene networks.

• Table S1: Drug pairs are sorted in a descending order of their
interaction scores.

• Table S2: Drug pairs are sorted ascendingly according to their
interaction scores. (XLSX 25,647 kb)

Additional file 2: This file contains lists of researched drugs and ADRs.

• Table S3: List of 1048 drugs studied in this work. DrugBank ID, Mesh
ID, drug names, drug SMILES strings, drug target proteins,
substituents, enriched pathways, associated CTD diseases, and
associated CTD genes are included as well.

• Table S4: List of 1276 adverse drug reaction terms studied in this
work. UMLS ID, UMLS name and positive drug pair number are also
included. (XLSX 2644 kb)

Additional file 3: The disease-gene associations. This file contains the
researched diseases and their associated genes extracted from CTD. (CSV
7229 kb)

Additional file 4: 1,155,755 known drug-drug-ADR associations which are
extracted from the Tatonetti Lab. Drugs are labeled using their DrugBank
IDs, and ADRs are labeled with their UMLS IDs. (CSV 29,346 kb)

Additional file 5: Supplementary codes and data. The Python codes of
HCNS-ADR and the source data. (ZIP 10,129 kb)

Additional file 6: The supplementary figures for this work.

• Figure S1: The macro-averaging AUCs with different PCA component
number and different negative sample ratios. (PDF 29 kb)

Abbreviations
ADRs: Adverse drug reactions; AUC: Area under the receiver operating
characteristic curve; DDIs: Drug-drug interactions; DDAAs: Drug-drug-ADR
associations; EHRs: Electronic health records; FAERS: Food and drug
administration adverse event reporting system; KNN: K-nearest neighbor; NSR:
Negative sample ratio; ocSVM: One-class SVM; PCA: Principal component
analysis; PCN: PCA component number; PBs: Pharmacological databases; SRSs:
Spontaneous reporting systems; SVM: Support vector machine

Acknowledgements
None.

Funding
This study was supported by a grant from the China Scholarship Council
(Grant Number: 201503170244). Publication costs are funded by Faculty of
Engineering and Information Technology, University of Technology Sydney.

Availability of data and materials
The data used in this study all are available in the Additional files.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 19, 2018: Proceedings of the 29th International Conference on
Genome Informatics (GIW 2018): bioinformatics. The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-19-supplement-19.

Authors’ contributions
YZ and JL conceived the work. YZ and HP developed the method. YZ
implemented the algorithms. JL supervised the study. YZ, JY and JL wrote the
manuscript. All authors revised and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Advanced Analytics Institute, Faculty of Engineering and Information
Technology, University of Technology Sydney, 15 Broadway Ultimo, 2007
Sydney, Australia. 2Discipline of Business Analytics, The University of Sydney,
Darlington, 2006 Sydney, Australia.

Published: 31 December 2018

References
1. Crits-Christoph P, Newman MG, Rickels K, Gallop R, Gibbons MBC,

Hamilton JL, Ring-Kurtz S, Pastva AM. Combined medication and
cognitive therapy for generalized anxiety disorder. J Anxiety Disord.
2011;25(8):1087–94.

2. Harpaz R, Chase HS, Friedman C. Mining multi-item drug adverse effect
associations in spontaneous reporting systems. In: BMC Bioinformatics;
2010. p. 7. BioMed Central.

3. Yang H, Yang CC. Discovering drug-drug interactions and associated
adverse drug reactions with triad prediction in heterogeneous healthcare
networks. In: 2016 IEEE International Conference on Healthcare
Informatics (ICHI). Chicago: IEEE; 2016. p. 244–54.

4. Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH. Mining clinical
text for signals of adverse drug-drug interactions. J Am Med Inform Assoc.
2013;21(2):353–62.

5. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions
in hospitalized patients. JAMA. 2012;308(12):1246–53.

6. Zheng Y, Lan C, Peng H, Li J. Using constrained information entropy to
detect rare adverse drug reactions from medical forums. In: 2016 IEEE
38th Annual International Conference on Engineering in Medicine and
Biology Society (EMBC). Orlando: IEEE; 2016. p. 2460–3.

7. Banda JM, Callahan A, Winnenburg R, Strasberg HR, Cami A, Reis BY,
Vilar S, Hripcsak G, Dumontier M, Shah NH. Feasibility of prioritizing
drug–drug-event associations found in electronic health records. Drug
Saf. 2016;39(1):45–57.

8. Zhang L, Zhang YD, Zhao P, Huang S-M. Predicting drug–drug
interactions: an fda perspective. The AAPS J. 2009;11(2):300–6.

9. Triaridis S, Tsiropoulos G, Rachovitsas D, Psillas G, Vital V. Spontaneous
haematoma of the pharynx due to a rare drug interaction. Hippokratia.
2009;13(3):175.

10. Liu J, Zhao S, Zhang X. An ensemble method for extracting adverse drug
events from social media. Artif Intell Med. 2016;70:62–76.

11. Zhang W, Chen Y, Tu S, Liu F, Qu Q. Drug side effect prediction through
linear neighborhoods and multiple data source integration. In: IEEE
International Conference on Bioinformatics and Biomedicine (BIBM).
Shenzhen: IEEE; 2016. p. 427–34.

12. Yang CC, Jiang L, Yang H, Tang X. Detecting signals of adverse drug
reactions from health consumer contributed content in social media. In:

https://doi.org/10.1186/s12859-018-2520-8
https://doi.org/10.1186/s12859-018-2520-8
https://doi.org/10.1186/s12859-018-2520-8
https://doi.org/10.1186/s12859-018-2520-8
https://doi.org/10.1186/s12859-018-2520-8
https://doi.org/10.1186/s12859-018-2520-8
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-19
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-19


Zheng et al. BMC Bioinformatics 2018, 19(Suppl 19):517 Page 59 of 188

Proceedings of ACM SIGKDD Workshop on Health Informatics. Beijing:
ACM; 2012.

13. Liu X, Chen H. Azdrugminer: an information extraction system for mining
patient-reported adverse drug events in online patient forums. In: Smart
Health. Berlin: Springer; 2013. p. 134–50.

14. Zheng Y, Ghosh S, Li J. An optimized drug similarity framework for
side-effect prediction. Comput Cardiol. 2017;44:1.

15. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G.
Towards internet-age pharmacovigilance: extracting adverse drug
reactions from user posts to health-related social networks. In:
Proceedings of the 2010 Workshop on Biomedical Natural Language
Processing. Uppsala: Association for Computational Linguistics; 2010. p.
117–25.

16. Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on
the integration of chemical and biological spaces. J Chem Inf Model.
2012;52(12):3284–92.

17. Hammann F, Gutmann H, Vogt N, Helma C, Drewe J. Prediction of
adverse drug reactions using decision tree modeling. Clin Pharmacol
Ther. 2010;88(1):52–9.

18. Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of
drug–drug interactions in a spontaneous reports database. Br J Clin
Pharmacol. 2007;64(4):489–95.

19. Wikipedia contributors. Drugs.com —Wikipedia The Free Encyclopedia.
2018. https://en.wikipedia.org/w/index.php?title=Drugs.com&oldid=
839918274 Accessed 15 May 2018.

20. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A,
Arndt D, Wilson M, Neveu V, et al. Drugbank 4.0: shedding new light on
drug metabolism. Nucleic Acids Res. 2013;42(D1):1091–7.

21. White RW, Wang S, Pant A, Harpaz R, Shukla P, Sun W, DuMouchel W,
Horvitz E. Early identification of adverse drug reactions from search log
data. J Biomed Inform. 2016;59:42–8.

22. White RW, Tatonetti NP, Shah NH, Altman RB, Horvitz E. Web-scale
pharmacovigilance: listening to signals from the crowd. J Am Med Inform
Assoc. 2013;20(3):404–8.

23. MedHelp.org. Medical Information, forums and communities. https://
www.medhelp.org 2 May 2018.

24. Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm
for identifying hidden drug-drug interactions in adverse event reports.
J Am Med Inform Assoc. 2011;19(1):79–85.

25. Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):
2812–31.

26. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T,
Johnson D, Li C, Sayeeda Z, et al. Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic Acids Res. 2017;46(D1):1074–82.

27. Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, Nelson SJ,
Oprea TI. Drugcentral: online drug compendium. Nucleic Acids Res.
2017;45(Database issue):D932-9.

28. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R,
Wiegers J, Wiegers TC, Mattingly CJ. The comparative toxicogenomics
database: update 2017. Nucleic Acids Res. 2016;45(D1):972–8.

29. Tatonetti NP, Patrick PY, Daneshjou R, Altman RB. Data-driven prediction
of drug effects and interactions. Sci Transl Med. 2012;4(125):125–3112531.

30. Chen B, Wild D, Guha R. Pubchem as a source of polypharmacology.
J Chem Inf Model. 2009;49(9):2044–55.

31. Erfani SM, Rajasegarar S, Karunasekera S, Leckie C. High-dimensional and
large-scale anomaly detection using a linear one-class svm with deep
learning. Pattern Recog. 2016;58:121–34.

32. Chen Y, Zhou XS, Huang TS. One-class svm for learning in image
retrieval. In: 2001 International Conference on Image Processing, 2001.
Proceedings. Thessaloniki: IEEE; 2001. p. 34–7.

33. Li K-L, Huang H-K, Tian S-F, Xu W. Improving one-class svm for anomaly
detection. In: 2003 International Conference on Machine Learning and
Cybernetics. Xi’an: IEEE; 2003. p. 3077–81.

34. Kuhn M, Letunic I, Jensen LJ, Bork P. The sider database of drugs and
side effects. Nucleic Acids Res. 2015;44(D1):1075–9.

https://en.wikipedia.org/w/index.php?title=Drugs.com&oldid=839918274
https://en.wikipedia.org/w/index.php?title=Drugs.com&oldid=839918274
https://www.medhelp.org
https://www.medhelp.org

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background and motivation
	Methods
	Data resources
	Proposed method
	Drug representation
	Credible negative sample generation
	Drug-drug-ADR association prediction


	Results and discussions
	Performance evaluation metrics
	Parameter optimization
	Evaluation on classic classifiers
	Comparison with baseline methods
	Predicted adverse drug reactions for the drug pair ``Albuterol-Zolpidem'': a case study

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

