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Abstract

existing ones.

Background: Estimating heterogeneous treatment effect is a fundamental problem in biological and medical
applications. Recently, several recursive partitioning methods have been proposed to identify the subgroups that
respond differently towards a treatment, and they rely on a fitness criterion to minimize the error between the
estimated treatment effects and the unobservable ground truths.

Results: In this paper, we propose that a heterogeneity criterion, which maximizes the differences of treatment
effects among the subgroups, also needs to be considered. Moreover, we show that better performances can be
achieved when the fitness and the heterogeneous criteria are considered simultaneously. Selecting the optimal
splitting points then becomes a multi-objective problem; however, a solution that achieves optimal in both aspects
are often not available. To solve this problem, we propose a multi-objective splitting procedure to balance both
criteria. The proposed procedure is computationally efficient and fits naturally into the existing recursive partitioning
framework. Experimental results show that the proposed multi-objective approach performs consistently better than

Conclusion: Heterogeneity should be considered with fitness in heterogeneous treatment effect estimation, and the
proposed multi-objective splitting procedure achieves the best performance by balancing both criteria.

Keywords: Heterogeneous treatment effect, Breast cancer, Radiotherapy

Background

Treatment effect estimation is a fundamental problem in
scientific research. Biologists use it to study the regulatory
relationships between numerous genes [1], and medical
researchers rely on it to determine whether a treatment is
effective for the patients [2].

Traditionally, the treatment effect is estimated as an
average value for the entire population. However, under-
standing the heterogeneity of treatment effects are impor-
tant for many applications. For example, although radio-
therapy is an effective treatment for cancer patients in
general, some of the patients do not benefit from it
because of their different gene expression patterns [3].
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It is desirable to apply principled data mining methods
to inference the heterogeneity in the treatment effects [4].
Tree-based recursive partitioning methods [5], originally
proposed for regression and classification, are perfect
candidates for modeling treatment effect heterogeneity.
Unlike methods which have strong predictive power but
are difficult to interpret, tree-based methods often excel
on both frontiers. Their output, tree models, can be
easily interpreted by human experts, which is of an
important consideration in both biological and medical
applications.

A fundamental impediment must be cleared before
recursive partitioning methods can be applied to esti-
mate heterogeneous treatment effects. In regression and
classification, the target variables are available in the train-
ing data. Unfortunately, such information is almost never
available in treatment effect estimation because a sample
can either be treated or not treated. In other words, only
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one of the two potential outcomes is observable but both
outcomes are needed for the estimation [6].

Recently, a number of recursive partitioning meth-
ods have been proposed to solve the problem by
utilizing the fitness criterion [7-9]. Specifically, these
methods employ a surrogate loss function to min-
imize the error between the estimated treatment
effects and the unobservable ground truth treatment
effects.

Understanding the heterogeneity of treatment effect
has important real-world implications. For example, con-
sider two models describing the radiotherapy treatment
effect for breast cancer patients (Fig. 1). The first model
divides the patients into two sub-populations according
to the expression level of gene;, and the second model
places the split at geney. If the errors of both models
are within an acceptable level, the second model should
be preferred because it shed more lights on how the
treatment effects vary among different subpopulations of
the patients.

Heterogeneity should be considered explicitly during
the recursive partitioning process. As illustrated in Fig. 2,
although the first model has slightly lower estimated error
than the second one, it provides less insight on treatment
effect heterogeneity than the second model. In this exam-
ple, existing methods will prefer the first model and fail to
revealing the heterogeneity because the heterogeneity is
not considered.

Without explicitly maximizing heterogeneity, a crite-
rion may favor splits resulting in homogeneous nodes.
Producing homogeneous nodes is problematic for appli-
cations where the number of samples are limited, which
is almost ubiquitous in bioinformatics problems. A split
with homogeneous nodes will halve the sample size with-
out providing insight to the treatment effect heterogene-
ity, and the reliability of treatment effect estimation for the
subsequent splits will decrease. A closely related method,
namely the Causal Tree (CT) [7], does not explicitly max-
imize the heterogeneity and often produce split leading to
homogeneous nodes.
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Moreover, heterogeneity and fitness need to be
considered simultaneously during the splitting procedure.
If the splitting is based solely on the heterogeneity
criterion, the algorithm will be prone to favor models with
spuriously high treatment effect differences but unaccept-
ably estimation errors. Finding the optimal splits should
be considered as a multiple-objective problem: the first
objective is to maximize the fitness (minimize the esti-
mated errors of treatment effect) and the second objective
is to maximize the heterogeneity.

In this paper, we first propose the Maximizing Het-
erogeneity (MH) splitting criterion for heterogeneous
treatment effect estimation under the recursive parti-
tioning framework. Then we propose the multi-objective
(MO) splitting procedure to consider both the hetero-
geneities and the fitnesses when building a recursive
partitioning model. When solutions which maximize het-
erogeneity and fitness simultaneously are not achievable,
MO aims to strike a balance between both criteria by
allowing a certain degree of slack into their dominance
relationships.

We compare the proposed methods with existing meth-
ods using both simulated and real-world datasets. Experi-
ment results demonstrate that while MH performs better
than existing ones in many cases, it is prone to error when
the differences in treatment effects become small among
subgroups. When fitness and heterogeneity are balanced,
MO performs consistently better than all compared
methods.

Methods

Preliminaries

In this section, we introduce necessary definitions and
results for heterogeneous treatment effect estimation.

Let W; € {0,1} denote the treatment assignment, Y;
denote the observed outcome, and x; = {xil,...,xip}
denote the pre-treatment covariates. The data consists of
i.id. samples (Y;, W;, x;), for i = 1,..., N. For the sake of
simplicity, the subscript i will be omitted when the context
is clear.

Gene; <0

Gene; >0

Parent node

Gene, <0 Gene, >0

Treatment effect = 3| |Treatment effect = 2

Treatment effect = 3 Treatment effect = 0

heterogeneity

Fig. 1 lllustration of two models for estimating heterogeneous treatment effect. The first model preferred fitness while the second one prioritized
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Fig. 2 Estimated treatment effects for models in Fig. 1. When the sub-populations are split at geney, the estimated error is slightly larger than
.However, the heterogeneity of treatment effects is ignored in this criterion

Let YW) denote the potential outcome if an individual
has received the treatment W, then the observed outcome
Y canbe describedas Y = WYD +(1—-Ww)Y©, Although
each sample is associated with two potential outcomes
YD and YO, only one of them can be realized as the
observed outcome Y.

The average treatment effect (ATE) is defined as the
expected outcome if the entire population were treated
minus the outcome if they were not treated [6]:

c=E[r® - yo), 0

Since only one of the two potential outcomes can be
observed, Equation 1 is counterfactual and cannot be esti-
mated straightforwardly. When the treatment assignment
is completely random, i.e., (Y ©, Y(l)) A W), the aver-
age treatment effect can be estimated as t = E(Y|W =
1) — E(Y|W = 0).

However, the treatment assignment is often not ran-
domized. In such cases, the unconfoundedness assump-
tion [6] is needed in order to estimate treatment effect in
these circumstances:

Assumption1 W 1L (Y@, y®)x

With the assumption, an unbiased ATE estimation can
be achieved with the help of propensity score [10]. The
propensity score is defined as e(x) = Pr(W = 1|x), the
probability of treatment assignment conditioning on the
covariates.

The propensity score can then be estimated with a vari-
ety of methods. Some popular choices include logistic
regression, random forests, and boosting [11].

When treatment effects are heterogeneous across the
population, estimating the conditional average treatment
effect (CATE) [6] in various subpopulations defined by the

possible values of the covariates x often provides more
insight than estimating the ATE on the entire population.
Specifically, CATE is defined as:

tx) =E[Y(1) — Y(0)x].

Recursive partitioning provides an ideal way for esti-
mating CATE. Starting from the root node containing the
entire population, a tree model is constructed by recur-
sively splitting the node into two disjoint child nodes. By
the end of the procedure, the subpopulations with het-
erogeneous treatment effects are naturally presented in
the leaves of the model. For each leaf node, 7(x) can be
estimated by calculating the ATE using only the samples
within the node as follows:

A=Wp-Y;
Z e(xz Z (1—e(x))

T(x) = ” — (2)
i 1- _A=Wi
ZN 70 Z T—etx)

X;€

where the treatment propensity e(x;) is either known
from experimental design or estimated from observa-
tional data.

The core component of a recursive partitioning model
is the splitting criterion. At each split, the splitting crite-
rion relies on a scoring function to evaluate the qualities
of all potential splitting points. The recursive partitioning
model then makes the split at the splitting point with the
highest score.

The fitness criterion, one of the most widely adopted
splitting criteria, aims to maximize the fitness of the
model by minimizing the mean squared error(MSE).
However, since the true treatment effects are not observ-
able, the MSE cannot be estimated straightforwardly. In
[7, 9], the authors observed that under Assumption 1, it
can be obtained that
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E[zli € N1 = E[T(x|x € N)] (3)

Relying on Eq. 3, [7] has proposed to utilize an alternative
scoring function to estimate the error as:

it = I’ZL-‘EL2+I’1R"EI%, 4)

where 77 and 1 are the estimated treatment effects, nj
and #np are the numbers of samples in the left and right
child node.

The proposed multi-objective splitting criterion

A problem of the fitness criterion C is that the expec-
tation equation in 3 is only valid when the sample size is
sufficiently large. Unfortunately, in recursive partitioning
the sample size of a node becomes more and more smaller
than the sample size of the original dataset N as the tree
grows. To make things worse, this problem is amplified
in biological and medical researches, where N is already
small relative to the number of variables.

From the examples in Figs. 1 and 2, it is conceivable
that explicitly considering heterogeneity is beneficial for
recursive partitioning model construction.

Therefore, we propose that a heterogeneity criterion,
which maximizes the differences in treatment effects of
the child nodes, also needs to be considered for recur-
sive partitioning. Specifically, the proposed heterogeneity
criterion favors the split with the largest treatment effect
heterogeneity in the subpopulations of the child nodes:

chete = (8, — r)" (5)
In Fig. 2, a recursive partitioning method utilizing C*¢

will choose geney over geme;. Because when splitting at
geney, since it results in larger heterogeneity in treat-
ment effects than splitting at gene;. In the following
sections, we will refer the criterion in Eq. 5 as Maximizing
Heterogeneity (MH).

As will be demonstrated in the next section, relying only
on the MH criterion achieves better performances than
using the fitness criterion in many cases. But still, there
are circumstances where the MH criterion would achieve
worse performances than the fitness criterion.

This is caused by the fact that the MH criterion does
not place any consideration on the fitness of the model.
In other words, the MH criterion would select a splitting
point with high heterogeneity even if it also has high mean
squared error.

Consider the example in Fig. 2, suppose there exists
another covariate genes and splitting at gemes achieves
higher heterogeneity than splitting at genes, but also has
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higher mean squared error, then an algorithm relying
only on the MH criterion will split at genes despite the
unacceptably high MSE.

Therefore, an ideal splitting point should achieve the
highest quality in terms of both the fitness criterion
Cf* and the heterogeneity criterion C**, Unfortunately,
such solutions are often not available in real-world
applications.

To solve this problem, we further propose splitting cri-
terion based on multi-objective optimization to search for
the most suitable splitting point. Specifically, the multi-
objective criterion does not seek splitting points with the
highest heterogeneity or fitness, but prefers one with a
balanced fitness and heterogeneity scores.

Lets; = <C{i i Clhet‘3> denote a fitness and heterogene-
ity scores pair for the i-th possible splitting point, and
let S be the set containing the score corresponding to all
the potential split points. The goal then becomes find-
ing the optimal s; from S. To achieve this, a dominance
relationship over the set S needs to be defined.

Pareto dominance is a popular choice when it comes
to multi-objective optimization [12]. A score vector is
said to Pareto-dominate another one if and only if all its
components are not smaller than the others, and at least
one of its component is larger than that of the others.
Then the Pareto set is an unique set which contains all
the vectors that are not Pareto-dominated by any other
vectors.

Despite its popularity, the original Pareto dominance
concept is not suitable for our problem for two reasons.
Firstly, Pareto set often contains substantial size of ele-
ments; therefore, not only are they often prohibitive to
optimize, but also creates difficulties for how to choose
from. Secondly, the definition of Pareto dominance does
not allow the “trade-off between” among scores.

We propose an extension of the Pareto dominance
relationship to achieve our objective, the e-dominance
relationship [13].

Definition 1 (¢-dominance) Score pair s; € S is said
to e-dominate s; € S for some € = (€1,¢€3), denoted as
i >¢ 8j, if and only if:

(1+e) ' > ¥, (1 + ) e > e,

The e-dominance enables the capability of specifying a
magnitude of difference for the different criteria (Fig. 3).
Intuitively, in order for score pair s; to not be e-dominated
by s;, both of s;’s components must be at least larger than
sj by a margin specified by ¢.

With Definition 1, the e-optimal set S* of S is defined
as the subset S where all elements in S is e-dominated by
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Fig. 3 Comparison of Pareto-dominance and e-dominance
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at least one element of S*, and all elements in S* are in the
Pareto-set of S:

Definition 2 (¢-optimal set) Let S C R? be a set of score
vectors. Then the e-splitting set S* is defined as follows:

1 Any scores € S is e-dominated by at least one score
sfeSh e

Vs e S:3s" € S* suchthat s* >¢s,

2 Every score s* € §* are not Pareto-dominated by any
scores € S, i.e.

Vs* € S*:BseS suchthat s> s

Comparison of Pareto-set and e¢-optimal set are
illustrated in Fig. 4, the top left panel depicts the elements
in S and its corresponding Pareto-set, and other pan-
els describe the e-optimal set with various €. Compared
to the Pareto-set, e-optimal set contains significantly
smaller number of elements. When ¢ is sufficiently small,
the e-optimal set is equivalent to the Pareto-optimal
set [14].

With Definitions 1 and 2, we now discuss how
to maintain the ¢-optimal set while scanning
through all the potential split points without too
much extra computational costs. This is achieved

by dividing the two dimension search space into

£ s log ¢/t log Chete d 1
squares oI Si1ze og(IteD) |’ | Tog(d+en) , an only

keeps one element which are not e-dominated by
others within the box. We present the details in
Algorithm 1.

Algorithm 1 has two important properties. Firstly it is
guaranteed to converge to the e-optimal set. Secondly, it
is guaranteed that the algorithm only needs to deal with
a small number of score pairs. Formally, we summarize
these properties in the following theorem.

Algorithm 1: Maintaining an e-optimal set

input : Current e-dominance set Sj, score pair p
output :Updated e-dominance set S*
parameter: ¢ = (&1, &7)

1 if D # () then

2 | S* < S5Up}\D;

elseif 3p’ s.t.p > p'and box(p', &) = box(p, ¢)

then
| S <SR\ P

else if Ip’ s.t.p' > porbox(p/, &) = box(p, ¢) then
| $* < S5U{ph

else
| S* <S5

end

10 Function box (p, ¢):
log Cfit logchete |
0g(1+61)J’ |—log(1+62)J)’

w

L=T- - B - S

11 ‘ return (|

12 end

Theorem Let S be the set of all score pairs for all possible
splitting points. Then the output of Algorithm 1, S* is an
e-optimal set of S with bounded size:

5| = 0.48
log (1+¢&1)log(1+ &)

Proof Sketch On the coarse level, the search space
is discretized into two-dimensional squares of size

it hete
(Lloﬁﬁifel)J , Ll(l)()gg(lc+€2)J>, where each vector uniquely

belongs to one of the squares. Applying the ¢ dominance
relation on these spaces, the algorithm always maintains
a set of non-dominated squares, thus guaranteeing the -
optimal property. On the fine level at most one element
is kept as a representative vector in each square. Within
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a square, the representative vector can only be replaced
another one if it is e-dominated, thus guaranteeing
convergence. O

An important benefit of this result is that the size of
set S* is small and irrelevant of the total number of score
pairs. For example, if €; and €; are set to be 0.2, then the
upper bound of S* is 75. Since Algorithm 2 needs to run
at each splitting point, its time complexity is crucial to the
overall running time of the MO. Fortunately, since the size
of the candidate set is bounded, the time complexity of the
search procedure is not affected by the number of possible
split points.

Although the e-optimal set is guaranteed to be of a
small size, we still need to select one splitting point
from its elements. According to our experiment, choosing
the one with maximum C* achieves the best perfor-
mance. Because the true treatment effect is unobservable,
the cross-validation procedure also cannot be conducted
straightforwardly as standard regression methods. In this
work, we follow the method proposed in [7] for cross-
validation.

Finally, we summarize the multi-objective tree construc-
tion procedure in Algorithm 2. The structure of split-
ting procedure remains similar to the CART [5] method.
However, instead of only evaluate the fitness, the multi-
objective criterion computes both the ¢/ score and the
proposed Cp score at the same time. Then it updates the
g-optimal set and continues the usual splitting routine.

Results

In this section we compare the performances of different
splitting criteria in the recursive partitioning treatment
effect estimation methods: Regression Tree (RT) [5],
Transformed Outcome Tree (TOT) [6], Causal Tree (CT)
[7], T-Statistic Tree (TS) [8], the proposed Maximizing
Heterogeneity criterion (MH) and Multi-Objective
criterion (MO).

Synthetic data

Because the underlying treatment effects are generally
inaccessible in most real-world data, we first evaluate the
performance using synthetic data with the known ground
truth.
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Algorithm 2: Tree construction procedure

input
output

: N training samples (x;, W;, Y;)
: Recursive partitioning of the feature
space I1
parameter: €, maximum tree depth m
1 initialize the set of complete nodes as empty set;
2 while not all terminal nodes are in the set of
completed nodes do

3 | "< {kh
4 for each terminal node not in the set of completed
nodes do
5 for each feature l = 1 to p do
6 for each splitting point = do
7 Compute ¢y = (Cir, Chiete)s
8 Update S* using Algorithm 1 and ¢,;
9 end
10 end
11 if exists cin S* s.t. ¢ >, ¢ then
12 Choose an splitting point ¢, from S*;
13 Update tree according to ¢y ;
14 else
15 Add the node to the set of completed
nodes.
16 end
17 end
18 end

We generate a group of 4 synthetic datasets to compare
the performance of the proposed MH and MO criteria
against existing algorithms. To ensure a fair comparison,
the simulations are designed in a similar way of those used
in [7, 8].

In all simulations, we satisfy Assumption 1 and the
propensity score is set as P = 0.5. The data generation
mechanism is specified by the following functions:

1
m(x) = SE [Y<°> +YOX = x] ,
t(x) =E [Y(D —YOx = x] .

m(x) is responsible for the mean effect which is not
affected by the treatment, and 7 (x) is responsible for the
treatment effect. Then, the data is described as ¥ =
m(x)+o-(2w—1)-7(x) +0 where « is a parameter which
controls the magnitude of the treatment effect, and o is
the random noise from a normal distribution.

In the first design, o is set to 0.5, m(x) and 7 (x) include
interactions among two variables:

1 1
my(x) = o +x2, T1(X%) = S¥
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In the second design, there are 20 variables where 12
of them are noise variables which are not related to the
outcome. Specifically, @p = 1 and the functions are
defined as:

1 4 8
my(x) = = domA Y ww
k=5

k=1

4
T (x) = Z 1{xx > O} - oy,
k=1
where 1{x > 0} is the indicator function.

In the third design, the main and treatment functions
are as similar as the second design except that the number
of noise variables is increased to 50, and the value of o3 is
setto 1.

4 8 4
1
ma(@) = 5 kY xgT@) =) x> 0} - xp,
k=1

k=1 k=5

The last design simulates non-linear treatment effect.
The total number of variables is 20, and the main and
treatment effect functions are defined as:

4 8
1
my(x) = 3 Zxk + Zxk»
k= k=5

1
4 8
T4 (x) = Zsin (%) + in_g.
k=1 k=5

Two performance measurements are used to evaluate
the compared methods. The first one is the root mean
square error (RMSE) defined as:

Ntest

Z (‘f (XL') — l'l')z.

Ntest i1

RMSE(%) =

The second criterion is the weighted root mean square
error (WRMSE), where the weight is 0.1 if the estimated
and the true treatment effects are of the same signs and 1
if they are of the opposite signs. Specifically,

Ntest

Yo (-’
st P w (T (X) TL) ’

WRMSE(%) =

where w=1if (x)T(x) < 0, and w=0.1 for 7(x)7 (x) > O.

The wRMSE measurement is particularly important in
human-related studies. For example, although the cost
of predicting cats as dogs is similar as the opposite in
image classification tasks, the fault of predicting a poten-
tial malign tumor as benign cost significantly more than
the opposite.

To ensure that different splitting criteria are the only
factors that affect the performances, all methods are com-
pared at the same number of splits instead of using cross-
validation for choosing the optimal tree depth. Because
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the compared methods begin to over-fit the data after
their depths grow too deep, we only show the results up to
the depth of 15 for each method. All results reported are
the average value calculated over 100 simulation runs.

Figure 5 shows the experimental results in terms of
RMSE scores. The columns of the figure correspond to
the results of different simulation designs, and rows corre-
spond to the results of different samples sizes (n = 1000,
n = 5000 and # = 50000).

MH performs better than existing methods during the
first few splits of the tree model. For example, in Set-
ting 2, 3, and 4, the RMSE values of MH are lower
than all existing methods at all splits. This aligns with
previous observation that MH can swiftly identify the
heterogeneities in treatment effects because it maximizes
heterogeneity explicitly. In addition, the performance dif-
ferences between MH and existing methods are larger in
Setting 2 and 3 than those of Setting 1. This is possi-
bly because that heterogeneities in treatment effects are
more significant in Setting 2 and 3 than that of Setting 1
(0rp, 3 = 0.5 and 1 =1).

However, the performances of MH decrease as the tree
grows deep. This is because that the heterogeneities in
treatment effects become smaller as the tree grows, and
MH can In Setting 1 with n = 1000, although performs
well during the first 5 splits, its RMSE values increase
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quickly as the tree grows deep. After the 7th split, it
performs worse than TOT.

With heterogeneity and fitness both taken into consider-
ation, MO performs consistently better than all compared
methods. As can be seen from the figure, MO has the
lowest RMSE values in all of the different combinations
of simulation settings and sample sizes. When the sample
sizes are small, the advantages of MO is the most evident.
When n = 1000, it is clear that MO is the most resistant
to over-fitting.

The differences in performances become less signifi-
cant as the sample sizes grow. With sufficient amount of
samples, the expectation equation used in RT becomes
reliable, and the chance that spurious heterogeneities mis-
lead the MH criterion decreases. As the sample size
increases, the differences between compared methods
becomes smaller. At » = 5000, TOT,TS, and CT choose
exactly the same splits on all 4 settings. In the last row of
the figure, the RMSE curves overlap with each other.

In most cases, the performances of existing CATE esti-
mations methods (CT, TS, TOT) are better than the stan-
dard regression tree (RT). However, the performances of
TS are worse than RT when the number of variables is
large and the sample size is not sufficient, i.e., in Setting 3
when # = 1000 and # = 5000. This is because TS utilizes
statistical tests to decide the split, which suffer from loss of

Setting 1, n = 1000 Setting 2, n = 1000 Setting 3, n = 1000 Setting 4, n = 1000
15 2.75
w w0 w 2.50
H 2.5 222
0.9 2.00
0.6 — T - . 2.0 1.75 . i i
5 10 15 20 4 8 12
Number of splits Number of splits Number of splits Number of splits
Criterion 8T TR 1% Criterion-RT- TR 1R Criterion BT . [RT- [RJATS Criterion-RT TR TR
Setting 1, n = 5000 Setting 2, n = 5000 Setting 3, n = 5000 Setting 4, n = 5000
3.0
1.50 30 v
§ 1.25 g a5 §
o 1.00 [ x 20
0.75 2.0
1.5
3 8 12
Number of splits Number of splits Number of splits Number of splits
Criterion-RT TR TR Criterion-RT- TR TR Criterion-RT TR TR Criterion BT [T - [RTATS
Setting 1, n = 50000 Setting 2, n = 50000 Setting 3, n = 50000 Setting 4, n = 50000
8.0
1.50 30 6 75
§ 1.25 z 25 § s § 7.0
& 1.00 = x & 65
075 20 4 6.0
0.50 T ; . T T T T T r 5.5 T T .
4 8 12 4 8 12 4 8 12 4 8 12
Number of splits Number of splits Number of splits Number of splits
Criterion-RT TR TR Criterion-RT- TR 1R Criterion-RT TR 1R Criterion-RT TR TR
Fig. 5 RMSE results on simulation datasets. Row: different sample sizes. Column: different experiment designs
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power when the dimensionality grows large. In addition,
the situation worsens as the sample size decreases along
the tree growth.

Figure 6 shows the wRMSE results of each method.
Although the trends of performances are similar to those
of RMSE, it does reveal interesting insights.

Looking at the wRMSE results with n» = 1000, the
Achilles’ hell of MH is more exposed. MH performs better
than existing methods during the first few splits, but its
performances degenerate rapidly as the trees grow deeper.
After more than 10 splits, the wRMSE measurements of
MH are worse than those of TOT, CT and even RT. Again,
these results confirm with the observation that MH is
adept at identifying heterogeneities, but it is also prone to
error caused by spuriously treatment effects.

It is also worth noticing that in some cases, existing
methods have slightly lower wWRMSE values than MH and
MO during the first few splits. This is related to the strat-
egy of selecting a split point from the e-optimal set. As
discussed in the “Methods” section, when there are mul-
tiple elements in the e-optimal set, the split with the
highest C¢* score is chosen from the set. However, if
the splitting point with the highest C/# score is selected,
the performances of MO will improve in these circum-
stances, but it will perform worse in other situations.
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This indicates an adaptive strategy for selecting splitting
point from the e-optimal set can further improve the
performance.

The computational efficiency of MH is the same as
existing methods. During the searching procedure, MH
simply replaces the computation of fitness criterion by
the heterogeneity criterion. For MO, the multi-objective
search procedure introduces additional computation cost;
however, because the Theorem guarantees that the upper
bound of the cardinality of $* is a small constant, the run-
ning time of MO is within the same magnitude of other
methods. Figure 7 shows the running time of all compared
methods using Setting 3 with two sample sizes n = 5000
and n = 50000. The results here are the average execu-
tion time of 100 runs using a PC with a 3.4GHz single core
CPU and 16GB of RAM. The time complexity of MH is
similar to those of CT and TOT.

Different choices of ¢; and g5 values have influence on
the performance of MO. It is worth noting that although
the possible range of ¢ is from 0 to 1, small ¢ values
should almost always be chosen since the effect of ¢ is
proportional to the amount of slack in the e-dominance
relationship. Figure 8 illustrates how the parameter affects
the performances in Setting 2 at sample size n = 5000.
In the left panel of Fig. 8, the value of ¢; is fixed at 0.05
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Fig. 6 wRMSE results on simulation datasets. Row: different sample sizes. Column: different experiment designs
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Setting 3, n = 5000

Time (s)

RT TOT TS CT MH MO

Fig. 7 Running time comparison

Setting 3, n = 50000

1501

-
RT TOT TS CT MH MO

and the value of ¢; varies; in the right panel the value of
&1 is fixed and the value of & varies. The experimental
results indicate that the algorithm generally achieves good
performance when the ¢ ranges from 0.05 to 0.2.

Heterogeneous treatment effects of radiotherapy in breast
cancer patient

Understanding treatment effect heterogeneity has an
important impact on the life quality of cancer patients.
More than 50% of the breast cancer patients have received
the radiotherapy treatment, equating to over half a mil-
lion patients worldwide each year. Although radiotherapy
is effective for many patients, not all of them benefit from
the treatment [15].

We apply previously mentioned methods to study the
treatment effect heterogeneity of radiotherapy on breast
cancer patients. The data is obtained from the Cancer
Genome Atlas (TCGA) [16]. The radiotherapy status is
used the as the treatment indicator, the gene expression
profiles are used as covariates, and the relapse-free sur-
vival status is used as the outcome.

Comparison of CATE estimation algorithms on real-
world data is not straightforward because the ground
truth treatment effects are not observable and the sample
sizes are not large enough to divide the original data into
training and testing sets.

An independent collection of 3951 breast cancer
patients [17] is used for performance evaluation by exam-
ining how well the genes selected by each method can

differentiate the survival probability between the radio-
therapy treated and the untreated patients.

In Table 1 we compare the methods using the p-
values calculated with log-rank test [18] and the combined
p-values calculated with the Fisher’s method [19]. Smaller
p-values indicates that the selected genes are more
closely related to the survival probability of breast cancer
patient. Considering the limited sample size, we restrict
the maximum tree size to 4 terminal nodes for each
method.

Overall all genes selected by the compared methods
are related to the heterogeneity of radiotherapy treat-
ment effects since all the p-values are smaller than the
significance threshold (p = 0.05) in every case. How-
ever, as shown in the table, every gene selected by MO
achieves the smallest p-value in all compared methods. It
is clear that the genes chosen by MO are clearly the most
significantly related to the survival outcomes of breast
cancer patients.

An interesting observation is that four of the six meth-
ods have chosen FOXF1 as the first gene to split, indicat-
ing that FOXF1 is closely related to breast cancer and the
effectiveness of radiotherapy. In biology research, FOXF1
has been recently identified as important cancer-related
gene [20]. Our findings could suggest a new direction for
exploring its genetic function and contribution in cancer
development.

Overall, the above results suggest that heterogeneous
treatment effect estimation methods can be quite helpful
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Table 1 p-values comparison on an independent breast cancer

cohort

Method 15t Split 27 Split 39 Split Combined
RT 7x107%° 3x107* 0.007 7x10712
T 1x10710 5x107* 0017 1x10718
TSTATS 1x10710 54x107% 0017 1.1x10718
TOT 6.7x107% 25x10™* 0017 9.1x10~%
MH 110716 19%1077 0.003 9.0x1072
MO 1x10716 14%1071° 0.001 35x107%

The columns correspond to the p-values calculated using the gene selected at the
first, second, the third splitting point and finally all the genes in the tree model

in identifying the responsible genes for the differentiated
response to a cancer treatment. The genes discovered
by the proposed MO criterion has higher consistency in
the independent test data than those discovered by other
methods.

The treatment effect heterogeneities discovered by MO
is illustrated in Fig. 9, where each panel shows the survival
curves comparison between patients with radiotherapy
treatment and those without the treatment for each of
the terminal nodes. For those patients that are catego-
rized into the first and the second subgroups, their esti-
mated treatment effects of radiotherapy are 0.22 and 0.20,
respectively. As evidenced by the p-values, the survival
probability of the treated patients is significantly higher
than the untreated ones. In other words, patients with
low FOXF1 gene expression, and those with high FOXF1
and SOHLH2 expression but low KCNN2 expression,
have benefited significantly from radiotherapy treatment.
However, those patients in the third and the last sub-
groups do not benefit from radiotherapy. Interestingly,
according to their negative estimated treatment effects,
the prognosis of their disease are likely to worsen follow-
ing the radiotherapy treatment.

Related works

RT [5]. Standard regression tree can be modified to esti-
mate heterogeneous treatment effects [7]. Specifically, the
tree is constructed using the CART algorithm, and the
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treatment effect 7;(x) is estimated according to Eq. 2 using
the samples within the same leaf.

Transformed outcome tree [6]. Transformed Outcome
Tree (TOT) is based on the insight that existing regres-
sion tree methods can be used to estimate treatment effect
by utilizing a transformed version of the outcome variable
YiTOT =Y;-(W;—m)/(m-(1—m)) as the regression target.
Because E[ Yl.TOT|x] = 7(x), standard regression tree can
be applied to the transformed outcome where the estima-
tion of the sample average of YiTOT within each leaf can be
interpreted as the estimation of the treatment effects.

Causal tree [7]. Causal Tree (CT) seeks the splitting
point using the fitness criterion, but it does not consider
the heterogeneity. In addition, they propose to divide the
training samples into two disjoint parts to avoid bias in the
treatment effect estimation, where the first part is used for
selecting split and the second part is used to estimate the
treatment effects in the model.

Squared t-Statistic tree [8]. squared T-Statistic tree
(TS) seeks the split with the largest value for the square of
the t-statistic for testing the null hypothesis that the aver-
age treatment effect is the same in the two potential leaves.
The criterion is defined as:

(tr — w@)?

CTS _ R G VA
- )
of/nL + of/nr

where o2 is the variance of treated and untreated samples
within a node.

CPete criterion is different from the TS criterion. Because
the sample size grows smaller as the tree grows, the statis-
tical test used in [8] suffers from loss of power. Unless the
subgroup treatment effects are quite large, this method
often fails to detect the effects in subgroups [21]. In
the experiments it has been demonstrated that the per-
formance of TS degenerates significantly as the number
of variables increases, whereas the performances of MH
remain unaffected.

Conclusion

In this paper, we demonstrate that the heterogeneity of
treatment effects should be explicitly considered in the
splitting procedure.

FOXF1 < -0.77

FOXF1>=-0.77, KCNN2<0.64,
SOHLH2>=0.21
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We proposed two splitting criteria, MH and MO. MH
explicitly considers the heterogeneity of treatment effects,
and MO is a multi-objective criterion which balances
heterogeneity and fitness at the same time.

Experiment results indicate that MH achieves better
performances than existing methods when the differences
between treatment effects in underlying subgroups are
large, but is prone to error when the differences grow
small. When fitness and heterogeneity are both taken con-
sideration, the MO criterion performs consistently better
than all studied methods.
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