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Abstract

Background: Many evidences have demonstrated that circRNAs (circular RNA) play important roles in controlling
gene expression of human, mouse and nematode. More importantly, circRNAs are also involved in many diseases
through fine tuning of post-transcriptional gene expression by sequestering the miRNAs which associate with
diseases. Therefore, identifying the circRNA-disease associations is very appealing to comprehensively understand the
mechanism, treatment and diagnose of diseases, yet challenging. As the complex mechanism between circRNAs and
diseases, wet-lab experiments are expensive and time-consuming to discover novel circRNA-disease associations.
Therefore, it is of dire need to employ the computational methods to discover novel circRNA-disease associations.

Result: In this study, we develop a method (DWNN-RLS) to predict circRNA-disease associations based on
Regularized Least Squares of Kronecker product kernel. The similarity of circRNAs is computed from the Gaussian
Interaction Profile(GIP) based on known circRNA-disease associations. In addition, the similarity of diseases is
integrated by the mean of GIP similarity and sematic similarity which is computed by the direct acyclic graph (DAG)
representation of diseases. The kernels of circRNA-disease pairs are constructed from the Kronecker product of the
kernels of circRNAs and diseases. DWNN (decreasing weight k-nearest neighbor) method is adopted to calculate the
initial relational score for new circRNAs and diseases. The Kronecker product kernel based regularised least squares
approach is used to predict new circRNA-disease associations. We adopt 5-fold cross validation (5CV), 10-fold cross
validation (10CV) and leave one out cross validation (LOOCV) to assess the prediction performance of our method,
and compare it with other six competing methods (RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP).

Conlusion: The experiment results show that DWNN-RLS reaches the AUC values of 0.8854, 0.9205 and 0.9701 in
5CV, 10CV and LOOCYV, respectively, which illustrates that DWNN-RLS is superior to the competing methods RLS-avg,
RLS-Kron, NetlLapRLS, KATZ, NBI, WP. In addition, case studies also show that DWNN-RLS is an effective method to
predict new circRNA-disease associations.
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Background

Circular RNAs (circRNAs) are a class of endogenous non-
coding RNAs with distinct properties and diverse cellular
functions, unlike the linear RNAs with 5 and 3’ ter-
mini which reflect start and stop of the RNA polymerase
on the DNA template, and are generated by back splic-
ing (3’-5’) or lariat introns [1-4]. The circRNAs are not
easy to be degraded by exoribonucleases because they
lack free ends [5, 6]. As forming a circRNA is usually
considered a rare event in cells, it was suggested that
they may be considered errors of normal splicing process
[4, 7]. Therefore, despite their existence in both unicellu-
lar and multicellular organisms, they have been previously
even disregarded as transcriptional noise or artifacts [8].
Nevertheless, with the advances of high-throughput deep
sequencing and functional genomics, the knowledge of
circRNAs has recently been learned substantially [9, 10].

To date, circRNAs have been found in various tissues
and cell lines of plants, animals and so on [4, 11, 12]. Some
circRNAs can be translated in some tissues or translated
into a protein under splicing-dependent, cap-independent
manner or other certain conditions [13]. Furthermore,
circRNAs are expected to have other functions indepen-
dent of their host genes because they have much longer
half-life than other linear RNA transcripts [10]. Many cir-
cRNAs can regulate gene expression because they have
strong potential to act as miRNA sponges or decoys [14].
In addition, some circRNAs can also function as protein
sponges or decoys, and the best example is that protein
MBL is prevented to bind to other targets when being
tethered to a circRNA [15]. CircRNA circFoxo3 can also
act as a protein scaffold, which binds to sites for mouse
MDM2 and p53 [16]. Unlike the above functions of cir-
cRNAs are based on the fact that they are located to the
cytoplasm, some circRNAs such as exon-intron circRNAs
are retained in the nucleus and they may promote with
transcription [17].

Through the understanding of functions of circRNAs,
many evidences have shown that circRNAs play an impor-
tant role in occurrence of human complex diseases, such
as cancer [18]. CircRNA ciRS-7 has significant impli-
cations for diseases through efficiently regulating the
activity of miRNA miR-7 [19]. Likewise, by sponging
the miR-7, miR-17 and miR-214, cir-ITCH can increase
the level of ITCH which further inhibits the Wnt pathway
that is frequently aberrant in cancers [20, 21]. SRY can
affect the proliferation, migration and invasion of cholan-
giocarcinoma cells, which is the sponge of miR-138 and
can strongly suppress its level [22, 23]. CircRNA-MYLK
level is elevated and correlated with BC (bladder carci-
noma) progression and plays an oncogenic role in BC in
vitro and vivo [24]. Circ-Foxo3 was minimally expressed
in patient tumor samples and in a panel of cancer cells
and its expression was found to be significantly increased
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during the cancer cell apoptosis [16, 25]. Circular RNA
MTOL1 can suppress hepatocellular carcinoma progres-
sion by acting as the sponge of miR-9 [26]. In addition,
the aberrant expression of circCCDC66 also is associated
with a late-stage diagnosis and metastases [27].

In recent years, some databases about circRNAs have
been developed to further study the function mechanism
of circRNAs. CircBase is the first database about circR-
NAs, which merges and unifies data sets of circRNAs and
provides the interface to access, download, and browse the
evidence supporting their expression within the genomic
context [28]. CircRNADD is a comprehensively annotated
human circular RNAs database, which containes 32,914
human exonic circRNAs from diversified sources and pro-
vides the genomic information, exon splicing, genome
sequence, internal ribosome entry site (IRES), open read-
ing frame (ORF) and references of these circRNAs [29].
PlantcircBase is a database of plant circRNAs, which
also provided other functions such as visualization of the
structures of circRNA based on their genomic position
[12]. Likewise, PlantCircNet also is a database of plant cir-
cRNAs, which has the main feature of plantCircNet to
provide visualized plant circRNA-miRNA-mRNA regula-
tory networks and can identify metabolic effects of circR-
NAs [30]. ExoRBase is a web-accessible database, which
provides the circRNA, IncRNA and mRNA information
by RNA-seq data analyses of human blood exosomes [31].
CircNet provides tissue-specific circRNA expression pro-
files and circRNA-miRNA-gene regulatory networks by
utilizing sequencing datasets to systematically identify the
expression of circRNAs in RNA-seq samples [32]. TSTD
also provides the tissue-specific circRNAs and further
characterizes the functions of these circRNAs [33]. The
cancer somatic mutations that alter miRNA targeting and
functioning are provided by SomamiR 2.0 database which
also collects the associations between miRNA and other
competing endogenous RNAs such as mRNAs, circRNAs
and IncRNAs [34]. The CSCD is also a cancer-specific
circRNAs database which identifies the cancer-specific
circRNAs by analyzed the RNA-seq samples and further
predicts the miRNA response element sites and RNA
binding protein sites of each circRNA [35]. Circ2Traits
is the circRNA-disease associations database, which is
constructed by circRNA-miRNA associations, miRNA-
disease associations and disease-SNPS associations [18].
To our knowledge, CircR2Disease is the first manually
curated database about circRNA-disease associations by
reviewing existing literatures and provides the important
foundation to study the associations of circRNAs and
diseases [36].

In general, we have obtained some significant progresses
in understanding features and functions of circRNAs. In
addition, some databases about circRNAs have also been
constructed. However, current studies of circRNA-disease
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associations mainly focus on biomedical experimenta-
tions that are notoriously expensive and time-consuming.
Therefore, there is a very urgent need to predict circRNA-
disease associations by computational methods. To our
knowledge, the development of computational approach
is very limited because the databases of circRNA-disease
associations are incomplete. However, circR2Disease pro-
vides the chance to effectively predict novel circRNA-
disease associations through developing computational
methods.

In this study, we develop a novel method (call DWNN-
RLS) to predict new circRNA-disease associations. Firstly,
DWNN-RLS computes the Gaussian interaction profile
(GIP) kernel similarities of circRNAs and diseases based
on the known circRNA-disease associations. By consid-
ering their direct acyclic graph(DAG) representation, the
sematic similarity of diseases is also calculated. We fur-
ther obtain the final similarity of diseases with the mean of
GIP similarity and sematic similarity. Then the association
possibility scores of circRNA-disease pairs are predicted
by Kronecker product kernel based Regularized Least
Squares approach. The kernels of circRNA-disease pairs
are calculated by the Kronecker product of kernels of cir-
cRNAs and diseases. Furthermore, the decreasing weight
k-nearest neighbor (DWNN) method is used to calculate
the initial relational scores of new circRNAs and new dis-
eases. In order to assess the prediction performance of
DWNN-RLS and compare with other competing meth-
ods, we conduct 5-fold cross validation (5CV), 10-fold
cross validation (10CV) and leave-one-out cross valida-
tion (LOOCYV). The experiment results demonstrate that
DWNN-RLS outperforms other six competing methods
(RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP) in
terms of AUC (area under the ROC curve) values. Specif-
ically, the AUC values of DWNN-RLS in 5CV, 10CV and
LOOCYV reach 0.8854, 0.9205 and 0.9701, respectively,
which are superior to the second best results (KATZ:
0.8224 and 0.8343, RLS-avg: 0.9169). Furthermore, the
prediction ability of DWNN-RLS also is illustrated by the
case studies.

Methods

Materials

In this study, we download the known circRNA-disease
associations data from the CircR2Disease database (http://
bioinfo.snnu.edu.cn/CircR2Disease/). These circRNA-
disease associations were curated circRNA-disease
associations from the existing literature prior to 31 March
2018. After removing the duplicated data, we obtain the
benchmark dataset that includes 725 circRNA-disease
associations, 676 circRNAs and 100 diseases. In addi-
tion, the Mesh database [37] (https://www.nlm.nih.gov/
bsd/disted/meshtutorial/themeshdatabase/) is used to
compute the sematic similarity of diseases.
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Similarity of circRNAs

As the successful application of GIP kernel similarity
in other relative areas [38-42], we also use it to calcu-
late the similarities of circRNAs. The GIP kernel was
computed from the known circRNA-disease associations.
Let C = {cl,cz, vy cNC} be the set of N, circRNAs and
D= {dl, do, ...,de} be the set of N; diseases. Let matrix
Y e RNe*Na represents known circRNA-disease associa-
tions, in which the value of y;; is 1 if circRNA i and disease
j exists a known association, otherwise 0. Then the GIP
similarity of circRNA ¢; and circRNA ¢; can be computed
as follows:

Se (cir) = Ge (e ) = exp (= vellye, —yg117) (1)

1 &
ve=1/ (NZquuZ), )
¢ i=1
where y,, = {yil,yig,...,yiNd} and Yo = {yjl,yﬂ,...,y/Nd}
are the association profiles of circRNA ¢; and circRNA
¢j, respectively. Since the GIP kernel is computed by a
decaying function of the distance between the vectors, this
function is of the form of a bell-shaped curve. In addi-
tion, since a larger value of y, yields a narrower bell while
a smaller value of y, yields a wider bell, the parameter
y. can be used to regulate the bandwidth of kernel. In
this study, parameter y, is computed as the reciprocal of
average number of associations per circRNA.

Similarity of diseases
Firstly, we also compute the GIP similarity of disease d;
and disease d; as follows:

Ga (disy) = exp (~vallya, — 741 3

1
va=1/ = lyal*|, (4)
N 2

where y,;, = {yu,yz,', ...,yNCi} T is the association profiles of

disease d; while y;, = {ylj,yzj, ...,yNCj}T is the association
profiles of disease d;. In addition, the parameter y, is used
to regulate the bandwidth of kernel.

Secondly, we use the Mesh descriptions of dis-
eases to compute the sematic similarity. Specifically,
for disease A which can be represented by a DAG
(DAG4,DAG4 = T4, E4) in mesh database. Set Ty
includes the parent diseases nodes of A and itself while set
E4 includes the direct edges between disease nodes within
T4. The similarity of diseases A and B can be calculated as
follows:

> (SVa(®) + SVe@®)
teToNTp

Dsemsim(A¢B) = Sem(A) n Sem(B) ’ (5)
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where SV4(£)(SVg(t)) is the sematic value between dis-
ease A(B) and t which is the all common ancestors of
diseases A and B. In addition, Sem(A) and Sem(B) are
the sematic values of diseases A and B, respectively. For
disease A, the Sem(A) and SV4(¢) can be calculated as
follows:

Sem(A) = ) SVa(b), (6)

teTy

Lt=A
SVat)= (7)

AV, t =the smallest w layer ancestor node of A

where A is the layer contribution factor between disease
node and its direct ancestor disease nodes in DAG. The
value of A is set to 0.5 in this study [37].

After computing the GIP similarity and sematic similar-
ity of diseases, we integrate the final similarity of diseases
with their mean as follows:

_ Ga + Dsemsim

S
d 2

, 8)
DWNN for new circRNAs and diseases
The good performance of prediction method largely
depends on the quality of known circRNA-disease asso-
ciations. In fact, new circRNAs (or new diseases) have no
any association with diseases (or circRNAs). In this study,
we use the DMNN to compute the initial association score
based on similarities of circRNAs and diseases. Specifi-
cally, the initial association score between new circRNA ¢;
and disease dj can be calculated as follows:
> Glyy
ci,dj) = —=—=-,¢; € N(c; 9
J ( i 1) 3 Glcl 1 (c) )

where N(c;) is the set of k; nearest neighbors of new
circRNA ¢;. The parameter ki, is calculated as follows:

— simset(c;);

1
max(k), if ] _el,l<l<

ke = ==K 19

i

0, otherwise

where simset(c;); is the 1-th similarity value of the ranked
vector based on similarity between circRNA ¢; and other
circRNAs from high to low. Furthermore, the parameter
€ is used to control the range of €’ that is used to select k
nearest neighbors for each new circRNA and disease. In
this study, the value of € is set to 1, so the value of €’ is 1
and all neighbors are used to calculate initial association
score.

Similarly, we also compute the initial association scores
of new disease d; and circRNA ¢; as follows:

jl
Y. G
y(end)) = "5, dy e N(d))
2 Gy

(11)
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where N(d}) is the set of kdi nearest neighbors of new
disease d;. The parameter kg, is also calculated as follows:

— simset(d;);

1
max(k)xl,f ! 561,1<l<

kg = ==Ky

7
0, otherwise
where simset(d;), is the I-th similarity value of the ranked
vector based on similarity between disease d; and other
diseases from high to low. Parameter € is also used to
control the range for selecting neighbors.

Kronecker product kernel based regularized least
squares(RLS-Kron)

In this study, we use RLS-Kron method to predict new
circRNA-disease associations [38, 39, 43]. Based on the
kernel K , the predicted circRNA-disease associations
matrix has a simple closed-form solution as follows:

vec (YT) = K(K + o) vec (YT> 13)

in which the parameter o is a regularizations parameter
and is set to 0.2 in this study. Kron-RLS has no any predic-
tion ability when o is set to 0. The kernel K is calculated
from the Kronecker product K. ® K of the circRNA kernel
and disease kernel, which is defined as follows:

K ((cirdj) » (curdy)) = Ke(di, di)Ka (), 1) (14)

where matrices K, and K, are the similarity matrices of
circRNAs and diseases, respectively. In addition, in order
to calculate the predicted matrix, Kron-RLS needs to
compute the inverse of an N.N; x N;N; matrix. Therefore,
we also use an effective method based on matrix eigen-
value decomposition. According to the matrix theory, the
eigenvalues (vectors) of a kronecker product are the Kro-
necker product of eigenvalues (vectors). Specifically, the
kernal can be calculated as follows:

=K ®Ky;=V AV
K=K, ®K, r (15)

where A = Ac® Agand V = V. ® Vv are all derived from
the eigenvalues decompositions of the two kernel matrices
K. and K,;. As K, and K; are real symmetric matrices, their
specific eigenvalues decompositions process are defined
as follows:

K. = VAT (16)

Ky =Vargvh (17)

where V. and V4 are orthogonal matrices whose columns
are the eigenvectors of K, and K, respectively. A. and
A4 are diagonal matrices whose diagonal entries are the
eigenvalues of K, and K, respectively. Therefore, the final
predicted circRNA-disease associations matrix ¥ can be
calculated as follows:

Y=v.z'Vvl (18)
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vec(Z) = (Ae ® Ag)(Ae ® Ag + o) Tvec (\/;YT\/C)
(19)

Results

Performance evaluation

In this study, we conduct 5CV, 10CV and LOOCY to eval-
uate the performance of DWNN-RLS for predicting new
circRNA-disease associations. AUC (area under the ROC
curve) value is used as the evaluation metric.

We perform 10 repetitions of 10CV and 5CV. That
is, under 10CV, the known circRNA-disease associations
data are divided into 10 folds, and each fold takes in turn
as the test set and the rest as the train set at each time.
Similarly, the data set are randomly divided into 5 folds
and each fold takes in turn as the test data and the rest
as the train set on each time. In LOOCYV, each known
circRNA-disease association is in turn chosen as the test
set while the rest known circRNA -disease associations
as the train set. The larger AUC values show the better
prediction ability of the method, while if AUC value is
less than or equal to 0.5, the prediction method has no
prediction ability.

Comparison with other methods

As there is no competing computational method for pre-
dicting circRNA-disease associations in the literature, to
assess the performance of our method, we also compare
DWNN-RLS against other six effective methods in other
relevant prediction issues. These methods include RLS-
avg [38], RLS-Kron [38], NetLapRLS [44], KATZ [45, 46],
NBI [47] and WP [47, 48]. We briefly review them here.
RLS-avg use the average of the output values which are
computed from two kernels, respectively. RLS-Kron com-
pute the prediction scores by Kronecker product kernel
based on regularised least squares approach. NetLapRLS
is used to predict circRNA-disease associations by exploit-
ing information on similarities of links and nodes. KATZ
is a network-based method which considers the num-
ber of walks between network nodes and lengths in a
heterogeneous network to predict associations. NBI is
also a network-based method to infer new associations,
which only uses cricRNA-disease bipartite network topol-
ogy similarity. WP and DBSI are recommendation models
which directly use the similarities of circRNAs and dis-
eases.

Figure 1 shows the AUC curves of seven prediction
methods on CircR2Disease data set in terms of 5CV. The
AUC value of DWWN-RLS is the highest among the seven
methods, indicating that the prediction performance of
DWWN-RLS is better than other methods.

Figure 2 shows the AUC curves of seven prediction
methods in terms of 10CV on CircR2Disease dataset.
The AUC value of DWWN-RLS reaches 0.9205, which is
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Fig. 1 The AUC curves of seven methods in the 5CV

better than other methods (RLS-avg: 0.7477, RLS-Kron:
0.8103, NetLapRLS: 0.6744, KATZ: 0.8343, NBI: 0.6648,
WP:0.6198).

Figure 3 shows the prediction comparison result
between DWWN-RLS and other six methods in terms
of LOOCYV on CircR2Disease data set. We can see from
the Fig.3 that the prediction performance of DWWN-RLS
(0.9701) is superior to other methods in terms of AUC
values (RLS-avg: 0.9169, RLS-Kron: 0.9088, NetLapRLS:
0.6905, KATZ: 0.8432, NBI: 0.699, WP: 0.6362).

Note that the advantage of prediction performance is
more obvious in 10CV and LOOCYV than 5CV, indicat-
ing that DWWN-RLS can achieve good result based on
more known circRNA-disease associations. In addition,
the sematic similarity of diseases can improve the predic-
tion performance of DWWN-RLS. When only the GIP

10-fold
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Fig. 2 The AUC curves of seven methods in the 10CV
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Fig. 3 The AUC curves of seven methods in the LOOCV

similarity is used, the AUCs of DWNN-RLS are 0.8368,
0.8819 and 0.9423 in 5CV, 10CV and LOOCY, respec-
tively. When the GIP similarity combined with the dis-
ease sematic similarity, DWNN-RLS obtains the increased
AUCs of 0.8854, 0.9205 and 0.9701 in 5CV, 10CV and
LOOCV. By comparing with RLS-Kron method, the
DMNN method also can improve the prediction perfor-
mance. Comparing with KATZ, NBI and WP methods,
we think that DWNN-RLS is a machining learning model
and has the objective function and solution process that is
beneficial to obtain better prediction performance.

Parameter analysis for € and o

To further understand the robustness of DWWN-RLS
method, we analyze the influence of parameters € and
o on the prediction performance in 10CV. The parame-
ter € is used to control the range for selecting k nearest
neighbors of cicrRNAs and diseases. The parameter o
is the regularization parameter of DWWN-RLS method.
The value of € is set to be 1.0 when analyzing parame-
ter o. Furthermore, we also set the default value of o to
be 0.2 when analyzing parameter €. With parameter o of
0.2, Table 1 demonstrates the prediction performance of
DWWN-RLS method in 10CV when € ranges from 0.1
to 1.0 with 0.1 increments. The prediction performance
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of DWWN-RLS method is best when € is set to be 1.0,
indicating that all neighbors of circRNAs and diseases are
involved in calculating their initial associations scores.

Furthermore, Table 2 describes the prediction perfor-
mances of DWWN-RLS with different values of o when €
is set to be 1.0. We can see from Table 2 that DWWN-RLS
obtains the best prediction performance when o is set to
be 0.2. Therefore, in this study, we set the default value of
o tobe 0.2

Case studies

After confirming the prediction performance and robust-
ness of DWWN-RLS method in 10CV, 5CV and LOOCYV,
we further analyze the prediction ability of DWWN-
RLS in discovering new circRNA-disease associations. In
predicting new circRNA-disease associations, all known
circRNA-disease associations on CircR2Disease dataset
are chosen as the train set and all other circRNA-disease
pairs are the candidate circRNA-disease associations. We
adapt DWWN-RLS to compute the prediction scores for
these candidate circRNA-disease pairs. Here, we analyze
the prediction results of Atherosclerotic vascular disease
and Breast cancer.

Atherosclerotic vascular disease is responsible for the
majority of cases of CVD (Cardiovascular disease) in
both developing and developed countries, which encom-
passes coronary heart disease, cerebrovascular disease,
and peripheral arterial disease, and which also result
the CVD, the leading cause of death and disability all
over the world [49, 50]. Table 3 shows that 2 of top
10 predicted associations are confirmed in the previ-
ous literature. Elevated cANRIL expression could lead
to worse EC (endothelial cells) inflammation, exacerbat-
ing AS (atherosclerosis) [51]. CANRIL is transcribed at
a locus of atherosclerotic cardiovascular disease on chro-
mosome 9p21, and induces nucleolar stress and apop-
tosis, and inhibits the proliferation in smooth muscle
cells and macrophages [52]. The cZNF292 also associates
with atherosclerotic cardiovascular disease by stimulating
angiogenesis through vascular sprouting and cell prolifer-
ation [53].

There is approximately 1 in 12 women developing breast
cancer in Western Europe and the United States, and
which is characterized by a distinct metastatic pattern

Table 1 The 10CV prediction performance of various parameter values of € ranging from 0.1 to 1.0 with 0.1 increments, the best result

is in bold face

€ 0.1 0.2 0.3 04 0.5

AUC 0.7927+£0.0048 0.7927+£0.0035 0.79224£0.0042 0.7902+0.0034 0.7920+0.0035

€ 0.6 0.7 0.8 09 1.0

AUC 0.7922+0.0042 0.7889+0.0032 0.7903£0.0047 0.7897+0.0044 0.9205+0.0022
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Table 2 The 10CV prediction performance of various parameter values of o ranging from 0.1 to 1.0 with 0.1 increments, the best result

is in bold face

o 0.1 0.2 0.3 04 0.5

AUC 0.9200£0.0024 0.9205+0.0022 0.918240.0023 0.915440.0018 0.913640.0021
o 0.6 0.7 0.8 0.9 1.0

AUC 0.9110£0.0025 0.9078+0.0033 0.9042£0.0020 0.9041£0.0020 0.9010£0.0025
involving the regional lymph nodes, bone marrow, lung  Discussion

and liver [54, 55]. Table 4 shows the validation results
of top 10 new circRNA-disease associations predicted by
DWNN-RLS. There is 3 out of top 10 predicted associa-
tions that can be validated in previous studies. CircRNAs
circGFRA1 and GFRA1 act as ceRNAs in triple nega-
tive breast cancer by regulating miR-34a [56]. The human
breast cancer cell line MDA-MB-231 are stably trans-
fected with circ-Foxo3, the ectopic expression of the Foxo3
circular RNA could suppress tumor growth, cancer cell
proliferation and survival [25]. CDRlas contains more
than 70 selectively conserved target sites of miR-7 which
can directly downregulate oncogenes in cancers such as
breast cancer [57].

Above case studies demonstrate that there are a num-
ber of prediction results that have not been confirmed
by previous literature. To our knowledge, a possible rea-
son is that the database Circ2Disease are still limited
and the new studies have not been published yet. In
summary, these predicted circRNA-disease associations
deserve being studied and considered in the future.

Table 3 The validation results of predicted top 10 new
circRNA-disease associations of Atherosclerotic vascular disease

Disease CircRNA Rank Source

Atherosclerotic cANRIL 1

vascular disease

PMID:28683453,

PMID:28946214

hsa_circ_0003575 2 Unknown
circSMARCA5/ 3 Unknown
hsa_circ_0001445

hsa_circ_0000284/ 4 Unknown
circHIPK3

hsa_circ_0004383/ 5 PMID:27836747
cZNF292

circRNA-chr19 6 Unknown
CircDOCK1/ 7 Unknown
hsa_circ_100721

mmu-circRNA- 8 Unknown
015947

hsa-circRNA 2149 9 Unknown
circRar1l 10 Unknown

With the advances of RNA-Seq, high-throughput
sequencing and other techniques, we have achieved some
important progresses in understanding characteristics
and functions of cricRNAs. CricRNAs may play key roles
in diseases as miRNA sponges or decoys, protein sponges
or decoys and regulation gene transcription. Therefore,
systematically understanding association between cir-
cRNAs and diseases has become an important issue of
bioinformatics research, which is beneficial to disease
diagnose and treatment. Although some databases about
circRNA have been established in recent years, these
databases rarely focused on the associations between
circRNAs and diseases. The computation methods for
predicting circRNA-disease associations are also lack-
ing because of these limitations. To our knowledge,
CircR2Disease is the first database about circRNA-disease
associations, which provides the chance to develop
effective methods to identify novel associations between
circRNAs and diseases.

Conclusion
DWNN-RLS method is developed to predict new associ-
ations between circRNAs and diseases on CircR2Disease
dataset. Firstly, DWNN-RLS computes the GIP simi-
larities of circRNAs and diseases based on the known
circRNA-disease associations. Secondly, we further com-
pute the sematic similarity of disease and compute the
final similarity of diseases with the mean of GIP similar-
ity and sematic similarity. Finally, the Kron-RLS is used
to predict novel circRNA-disease associations based on
their similarities. 10CV, 5CV and LOOCYV are used to
evaluate the prediction performance of DWNN-RLS. In
addition, we use the DWNN to calculate the initial asso-
ciations scores for new circRNAs and diseases. We also
compare our method with other six methods. In terms
of 10CV, 5CV and LOOCYV, DWNN-RLS all achieves the
best prediction performance. In addition, we also show
that DWNN-RLS method may achieves better predic-
tion performance with the more known circRNA-disease
associations. Case studies further illustrate the prediction
performance of DWNN-RLS.

However, there still exist some limitations in DWNN-
RLS. We all know that cricRNAs can function as miRNA
sponges or decoys, protein sponges or decoys. In this
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Table 4 The validation results of predicted top 10 new
circRNA-disease associations of Breast cancer

Disease CircRNA Rank Source
Breast circGFRA1/ 1 PMID:29037220
cancer hsa_circ_005239
circUBAP2 2 Unknown
circ-Foxo3/ 3 PMID:26657152
hsa_circ_0006404
Cir-ITCH/ 4 Unknown
hsa_circ_0001141/
hsa_circ_001763
hsa_circ_0001649 5 Unknown
CDR1as/ciRS-7/ 6 PMID:28049499
hsa_circ_0001946
hsa_circ_0043256 7 Unknown
hsa_circ_0016760 8 Unknown
hsa_circ_0007385 9 Unknown
hsa_circ_0014130 10 Unknown

study, we only use the GIP similarity of circRNAs. In
the future, the similarity computation of circRNAs could
consider more relevant biological network information,
such as cricRNA-miRNA associations and sequence infor-
mation. Similarly, the disease functional information also
should be considered [58—60]. Other latest matrix factor-
ization methods such as NRLMF [61], SRMF [62], DRRS
[63] should be considered to predict cricRNA-disease
association when we integrate more biological network
information such as circRNA-miRNA associations, cir-
cRNA sequence information and disease functional infor-
mation. Therefore, to further improve the prediction per-
formance, we would develop a more effective approach to
discover new circRNA-disease associations by reasonably
integrating more biological network information.
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