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Abstract

Background: The detection and interpretation of CNVs are of clinical importance in genetic testing. Several
databases and web services are already being used by clinical geneticists to interpret the medical relevance
of identified CNVs in patients. However, geneticists or physicians would like to obtain the original literature
context for more detailed information, especially for rare CNVs that were not included in databases.

Results: The resulting CNVdigest database includes 440,485 sentences for CNV-disease relationship. A total
number of 1582 CNVs and 2425 diseases are involved. Sentences describing CNV-disease correlations are
indexed in CNVdigest, with CNV mentions and disease mentions annotated.

Conclusions: In this paper, we use a systematic text mining method to construct a database for the
relationship between CNVs and diseases. Based on that, we also developed a concise front-end to facilitate
the analysis of CNV/disease association, providing a user-friendly web interface for convenient queries. The
resulting system is publically available at http://cnv.gtxlab.com/.

Keywords: Copy number variant (CNV), Disease, Named entities recognition, Relation extraction, Parallel
computing

Background
A human copy number variant (CNV) is a DNA seg-
ment greater than one kilo base (kb) differing from two
copies. CNVs could cause diseases by gene dosage, gene
disruption, gene fusion, or position effects. The detec-
tion of CNVs and interpretation of their medical signifi-
cance are a routine in several genetic tests. [1, 2]. Many
online databases and web search services for CNVs in
normal and/or disease populations have been developed
to facilitate the interpretation of CNVs in clinical set-
tings, such as Database of Genomic Variants (DGV),

The International Standards for Cytogenomic Arrays
(ISCA) Consortium, DECIPHER and ClinGen. Despite
cytogeneticists or physicians could use these databases
to interpret the clinical test results, they still need to al-
ways search and read the original literature for rare
CNVs from PubMed. Empowered by text mining tech-
niques, CNV-GT provides a convenient interface for
fast and automated queries about reported CNVs in
PubMed articles, as well as diseases contexts and im-
portant literature information. The original context
which states the CNV/disease relationship is displayed
and highlighted.

Related work
In recent years, biomedical knowledge has been growing
rapidly, most of which are presented in the form of cu-
rated databases and scientific literature.
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Curated databases are one type of tools for researchers
or health professionals to obtain needed knowledge. For
example, ClinGen (https://www.clinicalgenome.org/),
Database of Genomic Variants (DGV: http://dgv.tcag.ca/
dgv/app/home), and DECIPHER (https://decipher.san-
ger.ac.uk/) are the most comprehensive databases to
aggregate information about the relationship between
genomic variations and human health conditions.
Based on the earlier International Standards for
Cytogenomic Arrays Consortium (ISCA), ClinGen [3]
was initiated as a National Institute of Health funded
program. Now it includes CNV data from microarray
testing and data on sequence variants from clinical
molecular testing. In contrast to ClinGen, DGV only
collects structural variations identified in healthy con-
trol samples [4]. Different from ClinGen and DGV,
the DECIPHER database collects data from patients
(> 20,000) who have given consent for broad data-
sharing and shares these data with the clinical com-
munity to interpret the relationship between genomic
variations and health conditions [5]. In practice, the
coverage of curated databases is limited, as curation
is a laborious and time-consuming process. Therefore,
we often need to resort to literature to search for
supporting evidences.
Scientific literature, one of the most important

sources of biomedical knowledge, is accumulating ex-
plosively. For instance, there are over 28 million
MEDLINE abstracts and 4.9 million PMC full-texts
available. Such a massive amount of information is
mostly presented as unstructured texts, which makes
it difficult for any expert to digest that huge amount
of knowledge within a reasonable period of time. Au-
tomated/semi-automated tools are essential for enab-
ling efficient accesses to structured and searchable
biomedical knowledge.
Text mining methods enable automated and system-

atic analyses of literature [6, 7]. Many techniques
were developed to assist information retrieval, infor-
mation extraction, database development and hypoth-
esis generation [8]. The major aim of text mining is
to identify potentially useful information in the litera-
ture and present it in a structured way. Text mining
has demonstrated its potential in boosting biocuration
and biomedical knowledge collection [9–12]. We have
seen successful applications on named entity recogni-
tion (NER) for genes/proteins [13, 14], diseases [15],
species [16], mutations [17], chemicals [18], etc. In
this paper, two types of concepts needing NER and
normalization are diseases and CNVs. For diseases,
advanced tools like DNorm [15] and TaggerOne [19]
are available for NER and normalization. Particularly,
DNorm is a state-of-the-art general purpose toolkit
for NER and normalization, with a NER f-score of

0.782 and a normalization f-score of 0.809. For CNVs,
however, no dedicated NER tool exists to date.
Currently, the methods for extracting relationships

can fall into several categories: co-occurrence [20]
methods, pattern or rule based methods, and machine
learning methods, or hybrid methods are also
available.
The co-occurrence method [21] means that if two en-

tities appear in the same paragraph of text, the two en-
tities are considered related. This method is fast and
simple, but achieves a high recall rate at the expense of
accuracy and does not provide detailed relationship attri-
butes between entities.
The rule-based method [22–24] is mainly to use the

information contained in the lexical and grammatical
phenomena to predict the relationship. Typical charac-
teristic information includes verbs, nouns, prepositions,
and the like. Rule-based method accuracy is generally
high, and it is often possible to obtain detailed relation-
ship attributes between entities. However, the formula-
tion and generation of rules often rely on a large
number of annotation collections and rich experience of
human experts.
The method based on machine learning [25–27]

mainly uses a certain number of labeled documents
as training data sets to extract features of words or
sentences, classifies them by machine learning
models, and determines the relationship categories
between two target entities (or No relationship).
However, the acquisition of marker data for establish-
ing ML models requires many human experts to par-
ticipate in labeling, which consumes labor and
financial resources.
For CNVs and diseases relationship, Qiu et al. pub-

lished the Copy Number Variation in Disease (CNVD)
database [28]. Although the paper has “text mining-
based” in its title, CNVD were actually built by manually
extracting information from 6301 published papers.
CNVD includes associated diseases, genes, chromo-
some segments, and the descriptions of CNVs by
linking information from the NCBI Gene and Gene
Ontology databases. To date, no automated text min-
ing tool was published on revealing the CNV-disease
relationship.
It is time consuming to process a large number of

articles with one single machine or a small cluster of
servers. Therefore, it is necessary to harness the
power of high performance computing. For instance,
in BioContext [29], Gerner et al. employed 100 con-
current processes and managed to finish the process-
ing of the full MEDLINE and PMC Open-Access
dataset within 3 months. Wu et al. carried out parallel
text mining using Tianhe-2 supercomputer with a
scalable pipeline [30]. to a higher F-score.
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Methods
Data sources
The webserver backend is populated with data from
multiple sources. Standard disease names and the cor-
responding MeSH IDs or OMIM IDs are obtained
from the CTD database [31]. CNV related articles are
retrieved from a local copy of the NCBI MEDLINE
2018 baseline based on a list of PubMed IDs, which
are obtained by posting a carefully composed query
of CNV to PubMed online. The local literature data-
base is constructed by parsing the MEDLINE 2018
baseline XML files.

Text mining procedure
Three text mining steps are carried out on each article
within the corpus, including pre-processing, named en-
tities recognition (NER), and relation extraction (RE).
Figure 1 shows the whole workflow of text mining
process. Details of each step are explained as follows:

Pre-processing
The relationship between CNVs and diseases within one
single sentence are considered in our work. Therefore,
in the pre-processing stage, unstructured texts are firstly
split into separated sentences via NLTK. Then
part-of-speech tagging is performed on each sentence,
followed by syntactical parsing to produce a grammatical
representation of each sentence [7]. An example of sen-
tence splitting is shown in the Fig. 1b.

Named entities recognition (NER)

Recognizing disease mentions in titles and abstracts
Disease mentions are located and normalized by a
state-of-the-art tool for disease name extracting, the
DNorm system [15], which is implemented using ma-
chine learning approach. As shown in Fig. 1c, normal-
ized disease mentions are annotated with MeSH IDs and
OMIM IDs (the dictionary is obtained from MEDIC).
Based on pairwise learning to rank, DNorm creates a
mathematically principled framework for learning simi-
larities between disease mentions and concept names. If
a word group matches, it is mapped to the appropriate
MEDIC concept names.

Recognizing CNV mentions in titles and abstracts
The CNVs consist of autosomal mutations and sex
chromosome variations. There are two types of auto-
somal variants: (1) deletion or amplification of the long
arm or broken arm region of chromosomes 1 to 22, such
as 22q11.2. (2) multiples of chromosome 1 to 22, such
as trisomy 21. The major variation in sex chromosome
variation is the double of the X chromosome. For ex-
ample, XXY and XXX. As there are some specific rules

to the CNV names, we design several patterns to capture
them by using regular expressions. Similarly, the polarity
descriptions (duplication/deletion) can also be detected
by regular expressions. The specific designed patterns
are as follow:
(([1–9]\d?|[xyXY])[pqPQ] [1–9]\d?([\-\~]?[pqPQ]? [1–

9]\d?){0,}(\. [1–9]\d{0,1})*)
([tT]risomy\s?([1–9, 0–9]?|x)*)’, r’\s[xX][xX][xX]\s.
r’\s[xX][xX][yY]\s.
The example of CNV recognition is shown in (Fig. 1d).

Relation extraction (RE)
After named entities recognition, an operation of pos-
ition comparing between sentences and entities is per-
formed to generate the instances that consists of two
candidate entities within one single sentence, as shown
in Fig. 1e.
For each instance, we use a highly flexible and exten-

sible framework, named PKDE4J [22], to identify the re-
lation between the targeted CNV and disease. Based on
the dependency parsing for the sentence, the PKDE4J
defines a set rules about collocations, logical semantic
relationships and dependency path to extract the trigger
word. For instance, as shown in Fig. 1f, the example of
relation extraction result shows that the trigger word be-
tween “DiGeorge” and “22q11” in the sentence is “asso-
ciated”. Thus, the variation of 22q11 is predicted to be a
cause of DiGeorge syndrome.

Parallel processing
Text mining is a computational intensive task. Over
440,000 abstracts are included in our system. To per-
form text mining efficiently on such a large corpus, we
employed parallel processing on the Tianhe supercom-
puter [30] in a similar way as it was done in Short-Board
load balancing algorithm [31]. The basic idea is to split
the input into small subsets and process each subset in
parallel. A total number of 100 compute nodes were
launched, with articles being distributed to each node in
a load-balanced manner, that is, the work load of each
compute node should be approximately the same. The
work load for each node is estimated by the summed
length of all allocated articles. There is only one exclu-
sive process on each node as the Dnorm system requires
over 40GB per process, while the main memory size of a
node is 64GB. It took approximately half an hour to
complete the whole processing procedure. More nodes
can be introduced to make the processing time even
shorter. The parallel text mining framework imple-
mented in this work will be used for future large-scale
literature mining for disease-oriented studies. Figure 2
describe the details about the Implementation of parallel
processing.
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To demonstrate how parallel processing on the
Tianhe-2 supercomputer can boost the efficiency of text
mining, we evaluated the processing time of 100 files
each containing 50 sentences in the process of Relation

Extraction. The processing procedure took 4750.4 s
using one single node, while on the contrary, it only
took 49.74 s by using 100 nodes in concurrent. There-
fore, on this example data set, the speed-up is 95.5x by

Fig. 1 The workflow of text mining. a Initial abstracts file (b) The result of using NLTK to split abstracts into clauses (c) The result of
using DNorm to recognize disease entities. d The result of using CNV-Rec to recognize CNV entities. e match the location of CNV and
disease in sentences. f The result of using PKDE4J to extract the relation between CNV- disease. *NLTK:Natural language toolkit, a set of
Natural Language Processing tools based on python. It can be used for text categorization, symbolization, root extraction, labeling,
parsing, semantic reasoning, or packaging into an industrial-grade natural language processing library. *Dnorm:a toolkit of disease name
normalization with pairwise learning to rank. *PKDE4J: a toolkit of relation extraction with rules. *CNV-Rec: a regular expressions-based
method of CNV recognitionEmbedding feature layer
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using 100 nodes (almost linear). The whole CNV litera-
ture set could take over three days to finish the process-
ing via a rough estimation. This time can be reduced to
be less than one hour if we employ enough nodes on
Tianhe-2.
Processing the entire CNV literature collection, with-

ing 100 nodes, completed in 3458 s.

Post-processing (data cleaning and statistics)
To get maximal statistical power, all cohort data are de-
sired, as duplicate values and incorrect values degrade
association studies.
We de-duplicate our data after each step of the

process to reduce repetitive operations and prevent stat-
istical errors.
The problem of databases containing incorrect values

is common in biomedical text mining. This issue arises
from various reasons; In named entities recognition, it
may be the polysemy. For example, Plasma can represent
the fluid composition of blood, and can also represent a
key technology in KDE4. In relation extraction, the com-
plex and diverse of semantic structure and the lacking of
professional background knowledge databases cause we
cannot find the trigger word to classify the relation be-
tween CNV and disease. Therefore,we delete the wrong
named entities recognition and change a part of wrong
relation extraction results manually. Simultaneously, we
provide a feedback mechanism. After a user visits, he (or
she) can give feedback on the wrong results and we will
make timely changes.

Finally, we statistical results. By searching for diseases,
count the number of sentences searched and see the
number of each type CNVs mentioned in each sentence.
According to the order of occurrence of CNVs, the
twenty CNVs that are most relevant to the disease are
recommended. This operation is also applied to CNVs
to obtain the most relevant list of CNV diseases.

Web implementation
A web front end is implemented in AJAX for dynamic
data loading and Canvas for animations. A back-end ser-
ver is implemented in the Django framework to provide
RESTful APIs, which provides data access and opera-
tions to the front end.
The whole system is implemented in an architec-

tural pattern commonly used for developing user in-
terfaces that called Model–view–controller (MVC).
The web front end employs AJAX for dynamic data
loading and Canvas for animations. It is written in
CoffeeScript/Less. The architecture of the webserver
utilizes the Python-based Django framework to pro-
vide RESTful APIs, which provides data access and
operations to the front-end AJAX code. Databases are
implemented in MySQL. Back-end deployment uses
Docker + Cirus + gunicorn to ensure the stability and
maintainability of our service. The system architecture
is illustrated in Fig. 3.
The whole system is based on the text mining of a se-

lected literature subset, with several NLP components
involved. Results from text mining are injected into a
database for efficient queries, handled by a backend

Fig. 2 Implementation of parallel processing
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server, which also accepts user inputs received at the
web frontend.

Queries and results presentation
The web server provides three different query perspec-
tives to users: 1) input a CNV to find the most relevant
diseases as described in literature; 2) input a disease
name or select one disease from a given list (indexed by
disease MeSH terms) to find related CNVs; 3) input a
PubMed article ID (PMID) or a list of PMIDs to find
CNV-diseases correlation in those articles. The results
include a statistical summary and details of evidences
from literature. The summary consists of a pie-chart and
a ranking list. For a given CNV, for instance 22q11.2, the
top 20 diseases are presented in the pie chart, and a

ranking list is also displayed, ordered by the number of
PubMed articles with descriptions of diseases correlated
to 22q11.2 (Fig. 4). Evidence sentences are listed below
the summary. Multiple evidence sentences within the
same article are grouped and the key concepts (CNVs,
duplication/deletion, disease names) are highlighted with
different colors (Fig. 5). The whole annotated abstract
for a PubMed article can be viewed via the ‘Show’ link
or can be downloaded via the ‘Download’ link.

Results
The CNVdigest database includes 440,485 sentences for
CNV-disease relationship. A total number of 1582 CNVs
and 2425 diseases are involved. We tested the utility of
CNVdigest by posting CNVs and diseases queries to our

Fig. 3 Architecture of CNVdigest

Fig. 4 Example searching result of cytoband “22q11.2” in CNVdigest. The disease and numbers of paper found in NCBI were displayed with a pie-
chart (left) and a list (right)
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system. For instance, a CNV query “22q11.2” highlights
its correlation with DiGeorge Syndrome. Interestingly,
when searching “autism” and “schizophrenia”, we found
the top ranking CNVs were similar, including 22q11.2,
15q11.2, 15q13.3, 1q21.1, 16p11.2, 3q29, 16p13.1,
16p13.11 and 17p12. Indeed, recent literature confirmed
our finding that “autism” and “schizophrenia” are highly
related. The finding from our database also suggested
that both diseases shared a common genetic basis, which
could be an interesting topic in neuroscience field.

Finding diseases related to specified CNVs
Firstly, the utility of CNVdigest was exemplified by in-
quiring CNV “22q11.2”. (Fig. 4 and Fig. 5). 22q11.2 dele-
tion is normally considered to be the cause of DiGeorge
Syndrome, also known as velocardiofacial syndrome
(VCFS) or CATCH 22 [25]. The key features include
cardiac abnormality, abnormal facies, thymic aplasia,
cleft palate, and hypocalcemia [3]. By searching 22q11.2
in cnv.gtxlab.com, a pie-chart and a list of disorders
were returned. To our surprise, DiGeorge Syndrome is
the second most-mentioned disease in previous litera-
ture, while schizophrenia being the 1st in the rank.
Though inconsistent name usage (e.g. DGS, VCFS, etc.)
of DiGeorge Syndrome was part of the reason of de-
clined rank. The relation between 22q11.2 and schizophre-
nia is still worth noting. Actually, if we dig deeper, OMIM
page of DiGeorge Syndrome (#188400) indeed suggest the
relation by mentioning “schizophrenia”multiple times.

Finding CNVs related to specified diseases
We demonstrate the utility of CNVdigest by searching
“autism” and “schizophrenia”. (Fig. 6) These two disor-
ders account for a big portion of CNV testing because of
their high prevalence in the population. Interestingly,
when we input “autism” and “schizophrenia” respectively
in CNVdigest (cnv.gtxlab.com), nine of the top ten
returned cytobands were the same: 22q11.2, 15q11.2,
15q13.3, 1q21.1, 16p11.2, 3q29,16p13.1,16p13.11 and
17p12. (Table 1). Previous literature already discussed
the association between autism and schizophrenia [26,

27]. With CNVdigestwe further confirmed the linkage of
autism and schizophrenia by showing their association
with a set of common chromosomal abnormalities.
As autism and schizophrenia are both cognitive disor-

ders, which might be attributed to defects in neuron de-
velopment due to the CNV caused genetic variations, to
further analyze the common CNVs, the genes in the af-
fected regions, and the pathways containing the genes
will facilitate our understanding of the pathogenic mech-
anisms of both diseases. The common CNVs also pro-
vide a candidate list for neuronal geneticists to study the
neuron development and cognition formation; this list
also provides a red-flag to clinic geneticists for a better
differential diagnosis.

Discussion
With the widely-spread use of array-based comparative
genomic hybridization and next generation sequencing
(NGS) copy number variant calling, the identification of
CNVs became easier and easier. The ACMG Practice
Guidelines recommended aCGH as the first-tier test for
patients with developmental delay and intellectual disabil-
ity, congenital anomalies, and dysmorphic features.
Several online databases to catalogue and search for CNVs
in normal and/or disease populations were developed to
facilitate the CNVs interpretation in a clinical setting.
Database[32, 33] of Genomic Variants (DGV) (http://

dgv.tcag.ca/dgv/app/home) provides a comprehensive
summary of CNVs from the general population. The
Clinic Genome Resource (ClinGen) [3] (www.clinical-
genome.org/) provides an authoritative central resource
that defines the clinical relevance of genes and variants
for use in precision medicine and research, where clini-
cians and researchers can share knowledge to expedite
the understanding of CNV in patients with a variety of
diseases.
DECIPHER stands for Database of Chromosomal Imbal-

ance and Phenotype in Humans using Ensembl Resources
(https://decipher.sanger.ac.uk/syndromes#overview). It is a
web service for the interpretation of CNVs’ medical
relevance.

Fig. 5 Example evidence sentences of one paper listed below the summary. Multiple evidence sentences within the same article are grouped
and the key concepts (CNVs, duplication/deletion, disease names) are highlighted by different colors
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Usually, DGV-ClinGen-DECIPHER route is sufficient to
interpret the CNV findings. All CNVs can be classified
into five categories: pathogenic, likely pathogenic, variants
of unknown significance (VOUS), likely benign or benign.
In general, a CNV is interpreted as pathogenic or likely
pathogenic if it resides on a chromosome locus that is
listed in ClinGen, DECIPHER or internal database as
pathogenic. A CNV is interpreted as benign or like benign
if it localizes to a region that is listed in DGV or identical
to ones detected in healthy family members.
Though the definition of pathogenic and benign is

clear, it is not always easy to match the exact definitions.

For all other CNVs that are not clearly matched can be
seen as VOUS. The clinical relevance of VOUSs will be
evaluated by literature search on PubMed. This step can
be time consuming and labour intensive, as most rele-
vant information can be buried in various details.
CNVdigest provides a solution to display the most
wanted information in a structured way, which can be a
great complement to existing databases.
CNVD [28] was generated via manual text mining, which

means a lot of laborious manual curation. Consequently, it
was only able to include 6301 articles. Our system includes
49,422 abstracts of CNV-related articles (by June 2018).

Fig. 6 The returned results of searching diseases “autism” and “schizophrenia” in CNVdigest. The found cytobands and the numbers of paper
were displayed with a pie-chart (left) and a list (right)
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The key behind this massive number is the adoption of
automatic text-mining methods, which include named
entity recognition (both CNVs and diseases) as well
as relation extraction. A comparison of numbers is
listed in Table 2.
In addition, in order to help researchers to obtain the

literature context, we provide the evidence sentences for
each CNV-disease pair.
The articles in our system only include abstracts. This

is due to two reasons: (1) the availability of full-texts is
limited; (2) the performance of state-of-the-art text min-
ing tools could drop significantly when run on full-texts
instead of abstracts.
Some trial users of our system proposes the need for au-

tomated machine translation. For instance, clinical doctors
might want to refer to the facts in system presented in
Chinese. This is a challenging task, as it requires automated
machine translation and a comprehensive mapping from
English biomedical terms to terms in desired languages.
We will make it a priority for future development and
hopefully introduce it in following updates of the system.

Conclusions
The interpretation of the relationship between CNVs and
diseases is of great clinical importance in genetic testing. A
massive amount of such information is buried in literature.
We employed state-of-the-art text mining methods, inte-
grated a number of components to perform the relation ex-
traction of CNVs and diseases by harnessing the
computational power of a supercomputer. The resulting
system, CNVdigest, is a web-based system performing inte-
grative human copy number variant (CNV) analysis. It
identifies medical associations between CNVs and diseases
according to literature evidences. The webserver integrates
information extracted from all searchable published litera-
tures on NCBI that mentioned CNVs. With a concise
front-end, CNVdigest can simplify the analyses of CNV/
disease association. Users can use CNV as an input to
search for the associated diseases, and vice versa. Conveni-
ently, users can apply CNVdigest to understand detected
CNVs from clinical genetic tests (like those generated by
NIPT-CNV-CLOUD, another webserver we developed).
We demonstrate the utility of CNVdigest exemplified by in-
quiring CNV “22q11.2” and searching diseases “autism”
and “schizophrenia”.
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Table 1 Autism and Schizophrenia share a common set of
CNVs

Autism Schizophrenia The common CNVs

16p11.2 22q11.2 16p11.2

15q11.2 15q11.2 15q11.2

15q13.3 15q13.3 15q13.3

1q21.1 1q21.1 1q21.1

16p13.1 16p11.2 16p13.1

22q11.2 3q29 22q11.2

3q29 16p13.1 3q29

17q12 2p16.3 17q12

2p16.3 17p12 2p16.3

7q11.23 17q12

Note: Top ten CNVs in the returned list from searching “autism” or
“schizophrenia” were listed and compared. Note: for cytobands that overlaps,
only one cytoband is listed, e.g. 16p13.1 is listed when both 16p13.1 and
16p13.11 are shown

Table 2 comparison with an existing similar database CNVD

CNVD CNVdigest

Original data 6301 articles 49,422 abstracts

Methods Manual
Methods

automatic text-mining

Number of CNVs unknown 1582

Number of Diseases 792 2425

Page display Relation Rough Precise (trigger words)

Original
sentence

NULL Displayed

polarity
descriptions

NULL Displayed (duplication/
deletion)
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