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Abstract

Background: The majority of cancer-related deaths are due to lung cancer, and there is a need for reliable diagnostic
biomarkers to predict stages in non-small cell lung cancer cases. Recently, microRNAs were found to have potential as
both biomarkers and therapeutic targets for lung cancer. However, some of the microRNA'’s functions are unknown,
and their roles in cancer stage progression have been mostly undiscovered in this clinically and genetically
heterogeneous disease. As evidence suggests that microRNA dysregulations are implicated in many diseases, it is
essential to consider the changes in microRNA-target regulation across different lung cancer subtypes.

Results: We proposed a pipeline to identify microRNA synergistic modules with similar dysregulation patterns across
multiple subtypes by constructing the MicroRNA Dysregulational Synergistic Network. From the network, we
extracted microRNA modules and incorporated them as prior knowledge to the Sparse Group Lasso classifier. This
leads to a more relevant selection of microRNA biomarkers, thereby improving the cancer stage classification accuracy.
We applied our method to the TCGA Lung Adenocarcinoma and the Lung Squamous Cell Carcinoma datasets. In
cross-validation tests, the area under ROC curve rate for the cancer stages prediction has increased considerably when
incorporating the learned microRNA dysregulation modules. The extracted modules from multiple independent
subtypes differential analyses were found to have high agreement with microRNA family annotations, and they can
also be used to identify mutual biomarkers between different subtypes. Among the top-ranked candidate microRNAs
selected by the model, 87% were reported to be related to Lung Adenocarcinoma. The overall result demonstrates
that clustering microRNAs from the dysregulation pattern between microRNAs and their targets leads to biomarkers
with high precision and recall rate to known differentially expressed disease-associated microRNAs.

Conclusions: The results indicated that our method improves microRNA biomarker selection by detecting similar
microRNA dysregulational synergistic patterns across the multiple subtypes. Since microRNA-target dysregulations are
implicated in many cancers, we believe this tool can have broad applications for discovery of novel microRNA
biomarkers in heterogeneous cancer diseases.
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Background

Lung cancer accounts for more than 1.5 million deaths
globally per year and is the leading cause of cancer-related
mortality. About 87% of the lung cancer cases are clas-
sified as Non-Small Cell Lung Cancer, and the 5-year
survival rate of all stages is below 17% because the major-
ity of lung cancer patients (57%) are diagnosed at later
stages because early disease is typically asymptomatic [1].
Even when diagnosed early, the only recommended treat-
ment is surgical resection, despite that up to 30% of those
successfully treated will still die within five years of initial
diagnosis [2]. Therefore, the development of early diagno-
sis and treatment strategy is critical and essential for the
control of this deadly disease. Recently, it has been found
that microRNAs have the potential as both biomarkers
and therapeutic targets for lung cancer [3, 4].

MicroRNAs (miRNAs) are a recently discovered class
of small noncoding RNA. Approximately 22nt, miRNAs
post-transcriptionally target messenger-RNAs (mRNAs)
to regulate the translation of target genes. They have been
found to play a critical role in various biological func-
tions such as proliferation, differentiation, and apoptosis
[5]. Thus, abnormal miRNA regulatory events can cause a
significant impact on various cellular functions, ultimately
resulting in complex events leading to cancer. Increasing
evidence suggests that miRNAs can have a causal role in
tumorigenesis [6].

Due to the significant role of miRNAs found in can-
cer biology, many existing lung cancer studies use miRNA
expression profiles for accurate prediction of lung cancer
stages or subtypes [7, 8]. In a typical differential expression
analysis, a univariate statistical method (e.g., student’s ¢-
test, false discovery rate threshold) is performed to select
miRNAs with a significant deviation between normal and
tumor sample groups. However, the results are not always
satisfactory, as large-scale multi-omics analysis of non-
small cell lung adenocarcinoma (LUAD) revealed distinct
interactions of miRNA to target mRNA that are specific
to histological subtypes [9]. In other words, an identified
miRNA biomarker may correctly classify tumor based on
analyses done on one particular subtype but may misclas-
sify cases of other subtypes, where it may target a different
set of mRNAs. Therefore, for a more robust selection of
miRNA biomarker, analysis of the deviation in miRNA-
target interactions between various lung cancer subtypes
should be considered to assess their potential as predictor
to this heterogeneous disease.

Experimental evidence has shown that multiple miR-
NAs can potentially target a gene through synergism, in
which two or more miRNAs can cooperatively co-regulate
an individual gene [10]. Studying the synergism of miR-
NAs within a specific cellular environment is another
critical step to determine their disease-specific func-
tions at the system level. Construction of the miRNA
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co-regulation network by considering regulatory targets
with similar functions [11] revealed a miRNA-miRNA
functional synergistic network; however, the study of the
changes in miRNA-target interactions between different
cancer subtypes has mainly left uncovered.

To further our understanding of the role of miRNAs in
lung cancers, we aim to identify differentially expressed
miRNAs while considering miRNA-target dysregulations
among different cancer subtypes. We extended the bril-
liant miRNA-target dysregulation idea from Xu et al
[12] and proposed a novel miRNA clustering strategy to
identify miRNA dysregulatory modules. We hypothesize
that by identifying the context-specific group structures
among the miRNAs, the differential analysis procedure
can benefit from a more robust selection of miRNA
biomarkers that can accurately predict cancer stages
across different subtypes.

Methods
Dataset and notations

We denote the miRNA and mRNA expression profiles

&
as column vectors x;j = [xll,x?,,xf] and y; =

T
bt ]

miRNA i and mRNA j across s samples, respectively.
To represent miRNA and mRNA expressions for a spe-

cific group of samples, we denote column vectors x{ =
T
, respec-

to represent the expression level of

nc

[y},yjz,...,yj ]
tively, where n¢ is the number of samples attributed with a
particular phenotype C, e.g., normal, stage I cancer, stage
IT cancer, etc. Note, boldface variables are to represent
vectors and non-boldface for scalars. Also, for expres-
sion data, we use subscripts to identify a specific miRNA
or mRNA expression level, and superscripts to identify a
sample group.

1,2 nc T Cc _
[xi,xi,...,xi] andyi =

Identification of miRNA biomarkers for lung cancer

As an overview of our pipeline, illustrated in Fig. 1, we
developed a novel approach to identify miRNA dysreg-
ulation modules by detecting changes in miRNA-target
associations between different cancer subtypes. First, we
identify significant deviations in miRNA-target correla-
tions between two sample groups. For each miRNA-target
pair found significantly deviated, we form a connec-
tion to build a miRNA-target dysregulation association
matrix. From the identified miRNA-target dysregulations,
miRNA modules are extracted such that functionally simi-
lar miRNAs belong in the same module if they dysregulate
similar targets across multiple cancer subtypes. To accom-
plish this, a miRNA-miRNA Dysregulational Synergism
Network (MDSN) is constructed, and a graph partitioning
method is applied to identify significant miRNA modules.
At the final step, classification analysis predicts cancer
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Fig. 1 Overview of the MiIRNA Dysregulational Synergism Network pipeline. In the first step, multiple differential analyses between different subtype
groups identified miRNA-target dysregulations. Then, the miRNA dysregulations across multiple subtype analyses is used to form the miRNA-target
dysregulation association matrix. Next, the MDSN network is constructed by computing miRNA-miRNA similarity measures, and is used to extract
miRNA modules by a graph partitioning method. Finally, provided the extracted miRNA modules, the Sparse Group Lasso performs classification of
the cancer stage given a sample’s miRNA expression profile

stage and selects relevant biomarkers only from miRNA
expression profile data. A Sparse Group Lasso regular-
ization is applied with the intuition that if a miRNA is
relevant, the rest of miRNAs in the same module are
probably also relevant.

Step 1: Identifying miRNA-target dysregulations between
subtypes

For every putative miRNA-target pairs, we incorporated
sample-matched miRNA expression and mRNA expres-
sion data from distinct sample groups to identify aberrant
miRNA-target interactions. More specifically, the aim
is to find regulatory changes by differential analysis of
the miRNA-target pair’s correlation values between two
sample groups of different lung cancer subtypes. This
Dysregulation criterion was proposed by Xu et al. [12],
which defines the difference of the Pearson’s correlations
between a tumor and a non-tumor group for miRNA i and
target j as:

Dyt = (x* ) o (x) (1)
Y= (na — Do 04 (np — I)ngoyg
i j i ]

where 0.4 and o5 denote the standard deviation of
miRNA lexpressiohs of sample groups A and B, respec-
tively. To determine whether the deviation of the cor-
relation between the two groups is significant, Xu et
al. randomly assigned patients to the two groups and
recalculated Dys 10,000 times, and obtained a p-value by
the frequency of the random Dys being higher than the
actual Dys.

To improve the computational performance of obtain-
ing a significance value for the deviation between two

correlation coefficients, we instead applied Fisher’s trans-
formation [13] as utilized in our previous publication [14].
To summarize, for a given miRNA i and target j, we cal-
culated the two Pearson’s correlation values r4 and rg
from each sample group then obtained their correspond-

ing z-values z4 and zp through Fisher’s transformation
z= % In (% . The z-value for the difference between z4

and zp is obtained by

_ ZA — 2B
"~ J1/(na —3) + 1/(ng — 3)

ZAB

Finally, we can convert the absolute value of z4p to a
p-value (two-tailed) and thereby obtain a statistical signif-
icance of the difference between two miRNA-target corre-
lations. The cut-off for the p-value threshold was chosen
at 0.001, as it has been commonly used as a threshold in
several correlation studies.

Step 2: Building the miRNA-target dysregulation
association matrix
One primary function of miRNAs is the cleavage of the
transcript of its target gene to regulate gene expression.
Thus, in the task of identifying aberrant miRNA-target
interactions, the inverse correlation should be a prereq-
uisite for candidate miRNA and target pairs to avoid
false-positives. In other words, only miRNA-target pairs
which have a negative Pearson’s correlation in at least one
of the sample groups, A or B, were considered.
Furthermore, since the primary goal of this study is
to discover novel miRNA biomarkers to help understand
cancer stage progression, it is essential to consider as
many miRNAs as possible. In this study, the miRNA-
target relationship prediction algorithms, e.g., TargetScan
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7.1 [15] and miRanda [16], were not utilized as the interac-
tion databases only covered a total of 263 miRNAs out of
1881 miRNAs present in the miRNA expression profiles.

For each putative miRNA i and target j considered, we
repeated the dysregulation analysis procedure in Step 1
between all pairs of different lung cancer subtypes as inde-
pendent dysregulation analyses. Then, all miRNA-target
dysregulations found significant were encoded by con-
structing a matrix A with entry A;; equal to 1 if the p-value
of the miRNA i and target j dysregulation passes the
p-value threshold and 0 otherwise. For each independent
dysregulation analyses, the matrix A is concatenated. This
matrix is interpreted as a new feature set, where each row
characterizes a miRNA’s dysregulation targets that were
present across multiple cancer subtypes dysregulation
analyses.

Step 3: Calculating miRNA-miRNA dysregulation functional
similarity

As it has been reported, miRNAs that are functionally
similar tend to have the same targets. Using the identified
miRNA-target dysregulations, we inferred the context-
specific functional similarity between two miRNAs by
considering their mutual dysregulated targets. The func-
tional similarity score between two miRNAs p and q is
calculated by cosine similarity, defined as

A, AT
s q) = H b 2)

Aply Al

where A; is a row vector indicating the dysregulated tar-
gets of miRNA i. The cosine similarity value ranges [0, 1]
and can be interpreted as the number of mutual dysreg-
ulation targets shared between two miRNAs normalized
by their total connections. By calculating the similarity
between every miRNA-miRNA pairs, an adjacency matrix
is produced to construct a miRNA-miRNA similarity net-
work. Since it is difficult to uncover cluster structures
when the network is dense, it is necessary to prune the
weaker miRNA-miRNA connections.

Step 4: Constructing the MDSN and pruning with scale-free
thresholding

The scale-free topology property exists in most biologi-
cal graphs, including miRNAs [17], which indicates that
the miRNA-miRNA network connections follow a power-
law distribution in which more miRNAs tend to have
fewer neighbors and fewer miRNAs tend to have more
neighbors. A well-known framework, Weighted Gene Co-
expression Network Analysis (WGCNA) is utilized to
prune lower weight edges with a threshold chosen such
that the graph’s scale-free property still holds while pre-
serving as many edges as possible.
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After all miRNA-miRNA pairs’ cosine similarity scores
are computed, they are used as edge weights in the
MDSN. This is constructed by an adjacency matrix M
with entries My, = s(p,q) for all miRNAs p,g. Sim-
ilar to the approach used in most biological networks,
the miRNA node degrees is expected to exhibit a scale-
free distribution under some thresholding. We applied the
hard-thresholding technique in WGCNA [18] by remov-
ing from the network any edge with weight lower than
the threshold, which was chosen to be the least stringent
threshold such that the degree distribution maintains a
desirable power-law fitting score.

Step 5: Identifying miRNA dysregulation modules with
community detection

After pruning of the MDSN, we utilized the graph par-
titioning approach to extract miRNA modules by assign-
ing miRNA nodes into communities using a modularity
objective proposed in the Louvain method [19]. Using
a fast greedy iterative procedure, the Louvain method
assigns nodes into communities by optimization of the
modularity objective, which measures the density of
links inside communities compared to links between
communities.

To summarize the algorithm, initially, each node is
assigned to its own community. At the first phase, node
i consider each of its neighbor j and evaluate the gain
of modularity if i is placed in j’s community, and then
selects the neighbor j with the maximum modality gain.
This first phase repeats iteratively until convergence. The
algorithm then alternates to the second phase to build a
new network whose nodes are the newly formed com-
munities found in the first phase. The first and second
phase are repeated iteratively until there is only one com-
munity that includes all nodes. In the final result, the
algorithm gives a hierarchical community structure of
all nodes in the MDSN network. The partition in this
dendrogram with the highest modularity value by the
Louvain algorithm is selected as the miRNA modules
assignment.

Step 6: Classification of cancer stage with identified miRNA
modules

It is known that a classifier with £- 1 norm regularization is
typically used for feature selection in problems with "small
n, large p." However, for problems known to have grouped
features, adding group information as prior knowledge
can improve feature selection and classification perfor-
mance. We applied a multi-class logistic classifier with
Sparse Group Lasso (SGL) with the intuition that if a
miRNA predictor to cancer stage is found relevant, other
miRNAs in the same group are also likely relevant since
they share similar dysregulation targets across the cancer
subtypes.
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SGL is a linear logistic classifier with combined ¢- 1 and
Group Lasso £- 2 norm regularization to achieve a sparse
solution at both the group and within group level [20]. We
used an indicator vector ¢; € {0,1}¥ to represent the i
sample’s reported cancer stage. In this study, & is 5, indi-
cating whether a sample is labeled as normal, stage I, II,
III, or IV. The objective function is as follows:

- (W xd

i T —ci(W'x") _

H\l)éns Ellog<1—l—e )+)Loz||W/||1+)L(l a)GL(W)
i=

3)

where A is the sparsity coefficient, « is the mixing coeffi-
cient between £-1 and Group Lasso £- 2 norm, which is
defined as:

G
GLW) =Y /Igl - 1| Wll2 (4)
g=1

where |g| is the size of the group. The Python package
pylearn-parsimony was used to train the logistic regres-
sion classifier with SGL regularization.

Result

Applications in TCGA non-small cell lung adenocarcinoma
dataset

We downloaded miRNA and mRNA expression data
of the LUAD cohort from The Cancer Genome Atlas
(TCGA) [9], utilizing the TCGA-Assembler tool [21].
Expression quantitation of miRNAs was calculated from
the BCGSC miRNA profiling pipeline. The mRNA expres-
sion profiles were obtained using Illumina HiSeq RNA-
Seq (v2). The Read Per Million miRNA Mapped (RPKM)
values were log2 transformed and scaled to zero-mean
and standard deviation. In total, there were 1881 miRNA
expressions and 20,484 mRNA expressions profiled. The
sample size characteristics of LUAD subjects are shown in
Table 1.

Identified miRNA-target dysregulations between LUAD
subtypes

We identified significant dysregulations for every miRNA-
target pair between 1881 miRNAs and 20,484 mRNAs.
Each miRNA-target pair is tested for significant change
in correlations between different subtype sample groups.
Due to insufficient sample size in some subtypes, only four
histological LUAD subtypes were selected for subtypes
dysregulation analysis, as outlined in Table 1. To build
the miRNA-target dysregulation matrix, we performed
an independent dysregulation analysis for each pair-wise
combination of the four subtypes.

Setting the p-value threshold parameter at p < 0.001,
we obtained a sum of 1,896,631 miRNA-target dysreg-
ulations from a union of six independent dysregulation
analyses for the Acinar, Bronchioloalveolar, Colloid, and
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Table 1 Sample size characteristics of the TGCA LUAD dataset

Phenotype Sample size
Normal (matched) 20
Stage | 277
Stage ll 121
Stage lll 84
Stage IV 24
Acinar? 18
Bronchioloalveolar? 24
Clear Cell 2
Colloid? 10
Micropapillary 3
Mucinous 2
Papillary? 23
Signet Ring 1
Solid 5
Mixed subtype 107
Not otherwise specified 320

@Histological subtypes selected for dysregulation analysis for their sufficient sample
size

Papillary subtypes. In other words, we identified miRNA-
target dysregulations between Acinar vs. Bronchioloalve-
olar, Bronchioloalveolar vs. Colloid, Acinar vs. Colloid,
and so on. Since it is very likely that false-positives
exist among the identified miRNA-target dysregula-
tions, we accounted for this by careful selection of the
threshold parameter to prune weaker miRNA synergism
similarities.

Selection of threshold parameter for the scale-free topology
of MDSN for LUAD cohort

After identifying miRNA-target dysregulations among the
lung cancer subtypes, we computed the miRNA-miRNA
cosine similarity score for every pair of miRNAs to con-
struct the MDSN. For every pair of the 1314 miRNAs
(found dysregulated), we computed a total of 754,086
cosine similarity scores. The power law fitting score [18]
is defined as corr(log;(s), loglo(p(s)))2 where s is the sim-
ilarity scores and the distribution p(s) is modeled by a
histogram of binned data samples. The R? score computed
over all miRNA-miRNA pairs was 0.9135, which satisfies
the R > 0.8 criterion and indicates the network has a
scale-free topology. The similarity score power parameter
was keptat 8 = 1.

Next, we proceeded to select a hard-threshold param-
eter to prune edges from the MDSN with a trade-off
between maximizing the scale-free topology fit score and
maintaining information in the network for modules dis-
covery. The trade-off can be visualized in Fig. 2a. We
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Fig. 2 The R? scale-free criterion fit score at different hard-thresholds. Edges in the MDSN are pruned if their cosine similarity score is lower than the
threshold. a R? scores under hard-thresholding for LUAD cohort. b R? scores under hard-thresholding for LUSC cohort

selected the threshold at 0.55, where the scale-free topol-
ogy score is above 0.8, and pruned all edges which have
cosine similarity score lower than 0.55. After edge prun-
ing, the number of non-isolate miRNA nodes remaining
in the MDSN was 423. From the reduced MDSN network,
we applied the Louvain community detection method to
identify miRNA modules, and the assignment of miRNAs
to the module is indicated by color as shown in Fig. 3.

Applications in the TCGA lung squamous cell carcinoma
dataset

We also obtained matched miRNA and mRNA expres-
sion profiles from the TCGA Lung Squamous Cell Carci-
noma (LUSC) cohort [22]. The preprocessing procedure

of miRNA and mRNA expression profiles are the same as
in the LUAD cohort. An overview of the sample sizes and
clinical characteristics is summarized in Table 2. Accord-
ing to the clinical data compiled by TCGA-Assembler
[21], only less than 20 samples had a histologic sub-
type labeled, and the majority of samples were labeled
as Not Otherwise Specified. Thus, we could not perform
the miRNA-target dysregulation analyses from the pro-
vided LUSC histological subtypes information due to the
insufficient sample size of labeled data.

One reason for this issue is that it has been known the
lung squamous cell carcinoma is clinically and genetically
heterogeneous, and it is challenging to sub-stratify this
heterogeneity. However, a study by Wilkerson et al. [23]
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Fig. 3 Graph force-layout of the MDSN. Nodes are positioned closer together if their interconnectivity is high. MiRNA modules assignment, denoted
by node color, is determined from the Louvain community detection method which maximizes the modularity objective. It is observed that miRNAs

discovered reproducible and clinically significant LUSC
subtypes that can be predicted from the mRNA expres-
sion profiles. A representative expression profile for each
of the four subtypes, Primitive, Classical, Basal, and Secre-
tory, were summarized by a cluster centroid consisting of

Table 2 Sample size characteristics of the TGCA LUSC dataset

Phenotype Sample size
Normal (matched) 37
Stage | 155
Stage ll 125
Stage lll 50
Stage IV 3
Lung Basaloid SCC 10
Lung Papillary SCC 5
Lung small cell SCC 2
Not otherwise specified 353
Primitive? 59
Classical® 96
Basal® 156
Secretory? 53

@Predicted lung squamous cell carcinoma subtypes selected for dysregulation
analyses

196 genes. Using the cluster centroids representing the
four LUSC subtypes, we performed subtype prediction for
all LUSC samples using the nearest-centroid classification
algorithm proposed in [24].

Identified miRNA-target dysregulations between LUSC
subtypes

After the subtype prediction of the LUSC samples were
obtained, we tested for significant dysregulation for every
miRNA-target pair between 1870 miRNAs and 20,472
mRNAs. Six independent dysregulation analyses were
performed for every pairwise combination of the four
subtypes, e.g., Primitive vs. Classical, Basal vs. Secretory,
Primitive vs. Basal, and so on. A union of the six analyses
revealed a sum of 1,560,419 miRNA-target dysregulations
found at the p-value cut-off of 0.001.

Selection of threshold parameter for the scale-free topology
of the MDSN for LUSC cohort

For every pair of the 1490 miRNAs found with dysregu-
lation patterns across multiple LUSC subtypes, we com-
puted a total of 754,086 cosine similarity scores. Similar
to the procedure applied to the network in LUAD cohort,
we selected the edge-prune threshold at 0.50, where the
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scale-free topology criterion R? score is higher than 0.8,
shown in Fig. 2b. The number non-isolate miRNA nodes
that remained in the MDSN is 391.

Extracted miRNA modaules are consistent between
independent subtypes dysregulation analyses

To evaluate the consistency of the extracted miRNA
modules resulting from independent differential analyses,
we compared the miRNA module assignments between
different pairwise subtypes dysregulation analyses, com-
bined analyses of all subtypes, normal-tumor dysregula-
tion analysis, and miRNA family information. The score
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which measures the agreement between two cluster-
ing assignments is the Normalized Mutual Information
(NMI) metric. As shown in Fig. 4, the extracted miRNA
modules showed agreement in some of the independent
subtypes dysregulation analyses for both LUAD and LUSC
cohorts. For example, in Fig. 4a, after identifying dys-
regulations between "Bronchio vs. Colloid" subtypes and
forming the MDSN, the extracted miRNA modules have a
similar clusters structure to that of the modules extracted
in "Acinar vs. Colloid." This may indicate the same groups
of miRNA are dysregulated in the Acinar, Bronchioloalve-
olar, and Colloid subtypes. Similarly in the LUSC cohort

(@

papillary vs bronchio
bronchio vs colloid -
acinar vs colloid
acinar vs papillary
papillary vs colloid 1
acinar vs bronchio -
combined -

tumor vs normal A
miRNA family A

papillary vs bronchio A
bronchio vs colloid 4

(b)
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Secretory vs Basal
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combined
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Fig. 4 MiRNA modules similarity across independent subtypes dysregulation analyses. Each row/column in the figure indicates a miRNA module
assignment, and the color squares indicate the NMI score for the agreement between two miRNA clustering assignments. For example, the
“Bronchio vs Colloid” item indicates the miRNA modules assignment extracted from a MDSN derived from dysregulation analyses between
subtypes Bronchioloalveolar v.s. Colloid. a Comparison of extracted miRNA modules from the LUAD cohort. b Comparison of extracted miRNA
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shown in Fig. 4b, extracted miRNA modules identified
from "Classical vs. Primitive" are highly similar to those
from "Basal vs. Primitive," indicating the same groups of
miRNA are dysregulated in these three subtypes. Notably,
"tumor vs. normal” miRNA modules were not similar to
any of the subtypes dysregulation analyses.

Incorporating miRNA modules information improves
prediction of LUAD lung cancer stage

We applied the logistic classifier with SGL using the
extracted miRNA modules as prior information to the
Sparse Group Lasso regularization. Using a one-vs-
rest scheme for multi-class classification, SGL classifies
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between normal, stage I, stage I, stage III, and stage IV
samples, with numbers of samples corresponding to the
first column of Table 1. We empirically set the sparsity
parameters A 1.0 and @« = 0.5 that were found to
give the best prediction performance from 5-fold cross-
validation tests.

To assess whether adding miRNA clusters information
improves stage prediction performance, we compared
cross-validation scores between SGL and a logistic regres-
sion classifier with only £-1 regularization. With each
classifier, we computed the area under the ROC curve
rates for each stage from a train-test split of 20%, as shown
in Fig. 5.
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MicroRNA groups lead to higher recall and precision of
candidate miRNA biomarkers

To validate whether the extracted miRNA modules aid the
SGL classifier in selecting relevant miRNA biomarkers,
we investigated how many of candidate miRNA biomark-
ers selected are known LUAD-associated miRNAs. We
utilized a benchmark database of differentially expressed
LUAD miRNAs from the dbDEMC [25]. Last updated
June 2014 as of this writing, the dbDEMC contains 545
miRNAs reported by high-throughput experiments to be
differentially expressed in LUAD. In a normal vs. tumor
binary classification experiment using SGL which incor-
porates the extracted miRNA modules, we showed high
precision and recall rates of top-ranked candidate miR-
NAs to known differentially expressed LUAD miRNAs
from the dbDEMC database in Fig. 6.

Discussion

In this study, we integrated paired miRNA and mRNA
expression data to detect aberrant miRNA-target inter-
actions between lung cancer subtypes to discover novel
miRNA biomarkers to predict lung cancer stages. We
have developed an efficient method to identify dysregula-
tions among millions of potential regulatory relationships
between 1,881 miRNAs and more than 20,000 mRNAs
across multiple lung cancer subtypes. Among all the regu-
latory relationships considered, 4.9% of the miRNA-target
pairs were found to have aberrant behavior across the
different subtypes of the lung cancer diseases. Since the
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LUAD and LUSC are clinically and genetically heteroge-
neous diseases, utilizing this information would provide
a glimpse into the miRNAs’ role in cancer pathogenesis
in some specific lung cancer subtypes. This was appar-
ent in Fig. 4, where it is apparent that some specific lung
cancer subtypes possessed similar groups of dysregulated
miRNA modules across multiple independent subtypes
dysregulation analyses. For instance, note that the Prim-
itive subtype in LUSC has high NMI values between the
Secretory vs. Primitive, Classical vs. Primitive, and Basal
vs. Primitive analyses. This indicates that in the Primi-
tive subtype samples, there are possibly a few groups of
miRNAs that have a consistent set of dysregulated targets,
exclusive to all other LUSC subtypes. It would be interest-
ing to report an analysis on such group of miRNA-target
dysregulations in this Primitive subtype, which coinci-
dently has the worst survival outcome (p < 0.05) than
the other three subtypes [23]. Such an observation may
not be apparent with only a normal vs. tumor differ-
ential analysis, as it is shown in Fig. 4 where the NMI
values are near zero in the normal vs. tumor dysregula-
tion analysis compared to all other subtypes dysregulation
analyses.

Despite that a growing number of miRNAs have been
rigorously studied, the functions of most miRNAs are
still unknown. Furthermore, only a small fraction of
miRNAs were considered in the target prediction algo-
rithms that provide a database of putative miRNA-mRNA
relationships. By considering all potential miRNAs and

0.9 1

0.8 1

0.7 1

0.6

0.5 1

0.4 1

0.3 4

0.2 4

0.14

Precision rate of known LUAD miRNAs (%)

0.0 -

Top 10 Top30 Top 60

Il Precision Rate
B Recall rate

Top 90 Top 120 Top 160 Top 200 Top 250
# of top-ranked miRNAs

Fig. 6 Precision and recall rates of candidate miRNAs selected by SGL. Among all 246 candidate miRNAs selected by SGL to classify normal vs.
tumor, we selected k top-ranked miRNAs by sorting top k coefficients by absolute value. The left y-axis (black bars) represents the percentage of
known LUAD miRNAs in the top-ranked set. The right y-axis (gray bars) represents the percentage of miRNAs recalled from known LUAD miRNAs

°
w
x

- 0.25

r0.20

o
=
v

=}
5
Recall rate of known LUAD miRNAs (%)

o
o
v




Tran et al. BMC Bioinformatics 2018, 19(Suppl 20):0

their targets, our method can be used for novel miRNA
functions discovery. However, a primary concern of this
task is that selection of various thresholding hyper-
parameters may produce unstable results. We performed
the miRNA-target dysregulation analysis with varying
p-value threshold at 0.01 and 0.001 and found similar pat-
terns in the NMI similarity comparison from extracted
miRNA modules in Fig. 4. Furthermore, all subtypes
dysregulation analyses showed high NMI similarity with
the miRNA family assignments without having incor-
porated this prior knowledge. This implies that despite
possible false-positives in identifying miRNA-target dys-
regulations, the pruned MDSN can still be an excellent
tool to reveal miRNA-miRNA functional synergism when
inferring novel miRNA functions.

Conclusions

By utilizing a dysregulation metric that allows for analy-
sis of multiple cancer subtypes, we proposed a pipeline
to cluster miRNAs with high functional synergism. The
extracted miRNA modules, when applied to grouped fea-
ture selection, can improve phenotype prediction and
result in biomarkers with high precision and recall rate to
known LUAD-associated miRNAs. Furthermore, the pre-
dicted miRNA modules extracted from different subtype
analyses can be used to reveal common miRNA dysregu-
lations across multiple subtypes in heterogeneous cancer
types. Since miRNA-target dysregulations are implicated
in many cancers, where multi-modal differential analy-
ses between multiple cancer subtypes have mainly left
undiscovered, we believe this tool can have broad applica-
tions in the development of new diagnosis and treatment
strategies.
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