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Abstract

Background: The traditional methods of visualizing high-dimensional data objects in low-dimensional metric
spaces are subject to the basic limitations of metric space. These limitations result in multidimensional scaling
that fails to faithfully represent non-metric similarity data.

Results: Multiple maps t-SNE (mm-tSNE) has drawn much attention due to the construction of multiple
mappings in low-dimensional space to visualize the non-metric pairwise similarity to eliminate the limitations
of a single metric map. mm-tSNE regularization combines the intrinsic geometry between data points in a
high-dimensional space. The weight of data points on each map is used as the regularization parameter of
the manifold, so the weights of similar data points on the same map are also as close as possible. However,
these methods use standard momentum methods to calculate parameters of gradient at each iteration, which
may lead to erroneous gradient search directions so that the target loss function fails to achieve a better
local minimum. In this article, we use a Nesterov momentum method to learn the target loss function and
correct each gradient update by looking back at the previous gradient in the candidate search direction.
By using indirect second-order information, the algorithm obtains faster convergence than the original algorithm.
To further evaluate our approach from a comparative perspective, we conducted experiments on several datasets
including social network data, phenotype similarity data, and microbiomic data.

Conclusions: The experimental results show that the proposed method achieves better results than several versions of
mm-tSNE based on three evaluation indicators including the neighborhood preservation ratio (NPR), error rate and
time complexity.
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Background
A large number of studies have shown that genetic dis-
eases with overlapping phenotypes are closely related to
function-related gene mutations [1, 2]. From another
perspective, there are similar pathophysiological mecha-
nisms between different clinical features and genetic dis-
eases [3, 4]. In addition, classical methods of

dimensionality reduction and visualization of data have
been applied to the analysis of microbial data [5]. How-
ever, generally speaking, the integration and analysis of
microbiome big data are still in its preliminary stage.
There are currently no effective integration techniques
and visualization methods to exploit microbiome big
data. Some studies have focused on established mathem-
atical models that exploit the complicated correlations
between phenotypes and genotypes in isomeric genomic
datasets such as genetic expression data, gene ontology
annotations [6], and protein-protein interaction
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networks [7, 8]. In addition, some studies prove that
non-metric attributes are important features of microbial
data [9]. Researching the associations between diseases
not only helps us to discover their mutual hereditary
basis [10], but also provides us new insights into the mo-
lecular circadian mechanisms [11] and prospective drug
target studies [12] Each person’s gut microbiota has a
dominant flora in the intestine and can be divided into
three different “intestinal types” based on the character-
istics of the human intestine. This finding can help us
discover the relationship between drugs, diet, microbes
and the body in different states of health and disease
[13]. These microbes distributed in different parts of the
body play a vital role in our health. Lowering the dimen-
sions of data and extracting useful information from
data in the analysis of microbiome big data, with the
help of statistics and pattern recognition, the structure
and characteristics of the microbial community could be
analyzed; new biological hypothesis could be proposed
and examined.
Before performing computational tasks on a large

amount of data, to conduct preliminary visualization and
exploration at first will helps us understand this task in-
tuitively. By visualizing the relationships between disease
phenotypes, we may gain new insights into the relation-
ships between genes and disease. The conventional

method of dimensionality reduction visualizes
high-dimensional space objects into two-dimensional or
three-dimensional metric space by constructing a single
map in low-dimensional space [14]. However, this
visualization method suffers from the basic limitations
of the metric space. The main limitation of metric space
comes from the triangular inequality criterion. For ex-
ample, from a biological point of view, if phenotype A is
associated with phenotype B in the metric space and
phenotype B is associated with phenotype C, logically,
phenotype A should be associated with phenotype C. As
a matter of fact, this restriction is most likely to be
ruined by the implicit structure of similarity data. Be-
cause these diseases may be interrelated in different cat-
egories, they may have overlapping phenotypes in which
a cluster of phenotypes may belong to disparate illness
categories. The mm-tSNE [15] can properly model
non-transitive similarities by assign a significance weight
to each point in disparate maps. For example, we imbed
three instance phenotypes A, B, and C into two maps in
low dimensional space (see Fig.1 (a)), mm-tSNE assigns
a significance weight of 1 to the phenotype A on the first
map, assign an importance weight 1 for the phenotype B
in the second map and assign to the phenotype C a sig-
nificance weight in both maps is 0.5. As a result, the
pairs of similarities between phenotype A and B is 0.

Fig. 1 The interpretation of non-metric space similarity and the difference between Nesterov momentum and standard momentum
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The mm-tSNE approach breaks down the nature of
metric-space transitivity similarities by visualizing data
points into multiple maps [15]. Nevertheless, mm-tSNE
may have some drawbacks, that is, the data points with
high significance weights in the uniform map do not ac-
cord with the uniform cluster structure. That adds to
the difficulty of explaining the implication of each and
every map. The mm-tSNE regularization [16] improves
the mm-tSNE by introducing the Laplacian penalty term
in the target loss function. The Laplacian penalty term
has been widely applied to many machine learning
models [17, 18]. Compared with mm-tSNE, a preponder-
ance of mm-tSNE regularization is that it adopts cluster-
ing structure of variate and offers more sparsity for
parameter estimation. These methods use standard mo-
mentum updates [19] to evaluate point of the gradient at
each iteration. But sometimes the gradient of the previ-
ous update is wrong, it would make the current update
jump high, which leads to excessive oscillation. This art-
icle is an extended version of the mm-tSNE
regularization based on NAG from an earlier conference
publication [20]. In contrast to these previous papers,
this article: (1) contains more detailed technical and ex-
perimental descriptions; and (2) includes additional ex-
perimental results on some microbial datasets. In this
article, we use a Nesterov momentum method [21, 22]
to learn the target loss function and correct each gradi-
ent update by looking back at the previous gradient in
the candidate search direction. The key difference be-
tween standard momentum and Nesterov momentum is
that standard momentum calculates the gradient before
the velocity is applied, while Nesterov momentum calcu-
lates the gradient after doing so. Therefore, the calibra-
tion gradient can be corrected faster and more
accurately. This benign-looking difference seems to
allow Nesterov momentum to change velocity in a
quicker and more responsive way, letting it behave more
stable than momentum in many situations, especially for
higher values of momentum coefficient. By indirectly
using the information of the second order, the Nesterov
momentum method achieves a better convergence rate
than the momentum method and further reduces the
error rate of the loss function. The results of the present
study indicate that the proposed method can obtain
comparable performance compared with the original
methods and provide a better data visualization
framework.

Methods
T-distributed stochastic neighborhood embedding (t-SNE)
t-Distributed Stochastic Neighborhood Embedding
(t-SNE) is a classical multi-dimensional scaling tech-
nique [23] It is a non-linear mapping method based on
the early work of Stochastic Neighbor Embedding [24].

As data points are mapped from high-dimensional space
to low-dimensional space, the distances between data
points are maintained and local information and global
information are preserved. This method has been ap-
plied to the visualization of data in many fields such as
literature [25], linguistic data [26], and breast cancer
CADx imaging data [27]. In t-SNE, the similarities
amongst data points are modeled by probability metrics
different from the Euclidean distance decision. The
paired distances between data points in a high-dimen-
sional space are transformed by Gaussian distribution
into probability distances pij to represent the similarities
between data points:

pij ¼
exp − xi−x j

�� ��=2σ2� �
P

k

P
l≠k exp − xi−x j

�� ��=2σ2� � ; for∀i∀ j
: i≠ j: ð1Þ

The aim of t-SNE is to calculate and retain the prob-
abilistic of distances between all object points in
low-dimensional space. In t-SNE, the two or
three-dimensional “metric space” is defined as a
long-tailed distribution Qij that centers at each and every
point, for purposing of avoiding the “crowding problem
[23]”. The paired distances between data points in a low
dimensional space is transformed into a probability dis-
tance qij by t-distribution to represent the similarities be-
tween data points:

qij ¼
1þ yi−y j

��� ���2� �−1

P
k

P
l≠k 1þ yi−y j

��� ���2� �−1 ; for∀i∀ j : i≠ j: ð2Þ

The difference between the similarity qij in the
low-dimensional space and the similarity pij in the
high-dimensional space is measured by calculating the
KL divergence between the joint distributions P and Q:

C ¼ KL P Qkð Þ ¼
X

i

X
j≠i
pij log

pij
qij

: ð3Þ

Multiple maps t-SNE
mm-tSNE is a variant of the t-SNE method that breaks
down the traditional limitations of a single metric map
by constructing multiple mappings M in a
low-dimensional space to visualize pairwise similarities
in non-metric spaces.
Multiple maps t-SNE constructs M maps in low di-

mensional space, where each map contains N data
points. In the map with index m, the data point with

index i has an importance weight πðmÞ
i , which represents

the importance of data point i in map M, and the sum
of the weights of data point i in all maps is equal to 1.
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Therefore, the pairwise similarity qij between data points
in a low-dimensional space is measured by a weighted
sum of pairwise similarities between data points i and j
in all the maps. Its mathematical definition is as follows:

qij ¼
P

mπ
m
i π

m
j 1þ y mð Þ

i −ymj
��� ���2� �−1

P
m0
P

k≠lπ
m0ð Þ
k π m0ð Þ

l 1þ y m0ð Þ
k −y m0ð Þ

l

��� ���2� �−1 for∀i∀ j : i≠ j;

ð4Þ

where yðmÞ
i indicates that the data point i in the high-

dimensional space is mapped to the m map in the low-
dimensional space. Since it is more difficult to directly

calculate the parameter πðmÞ
i . In order to simplify the

calculation, the weight of importance πðmÞ
i is obtained by

calculating the unconstrained ωðmÞ
i :

π mð Þ
i ¼ e−ω

mð Þ
iP

m0e−ω
m0
i

: ð5Þ

The objective loss function has the uniform form as
Eq. 3, but the cost function minimum is calculated by

the location of the point yðmÞ
i in all relevant metric maps

and the associated unrestrained weight ωðmÞ
i .

Multiple maps t-SNE with Laplacian regularization
Multiple maps t-SNE with Laplacian regularization
(mm-tSNE regularization) alleviates the problem that
the higher-weighted data points in the uniform map do
not accord with the uniform clustering structure by

Fig. 2 The experimental results of phenotype similarity dataset
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adding Laplacian penalties to the original mm-tSNE cost
function C (Y).

C Yð Þ ¼ KL P Qkð Þ ¼ 1−λð Þ
X

i

X
j≠i
pij log

pij
qij

þ λπTLπ; ð6Þ

where L = (diag(∑jpij) − Pij).

The gradient about the mapping point yðmÞ
i in the

low-dimensional space is calculated by the following
equation:

∂C Yð Þ
∂y mð Þ

i

¼ 4 1−λð Þ
X

j

∂C Yð Þ
∂d mð Þ

ij

y mð Þ
i −y mð Þ

j

� �
; ð7Þ

where dðmÞ
ij ¼ kyðmÞ

i −yðmÞ
j k2.

The gradient about the weights ωðmÞ
i in the

low-dimensional space is calculated by the following
equation:

∂C Yð Þ
∂π mð Þ

i

¼
X

j

2
qijZ

pij−qij
� � !

π mð Þ
j 1þ d mð Þ

ij

� �−1
þ λLπ; ð8Þ

where Z ¼Pk

P
l≠k

P
m0πm0

i πm0
k ð1þ dm0

kl Þ.
Mathematically, the gradient update of the momentum

item is given by the following equation:

ν tð Þ ¼ γν t−1ð Þ−η
∂C Yð Þ
∂Y

; ð9Þ

Y ¼ Y þ ν tð Þ; ð10Þ

Fig. 3 The experimental results of microbiomic dataset
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where Y are the model parameters, the velocity is v(t),
the momentum coefficient is γ ∈ [0, 1] and η is the learn-
ing rate at iteration t, ∂CðY Þ∂Y is the gradient.

Simplified Nesterov momentum
Nesterov momentum [21, 22] is a first-order
optimization method to improve stability and conver-
gence of regular gradient descent. The algorithm update
rules are as follows [28, 29]:

v tð Þ ¼ μ t−1ð Þv t−1ð Þ−ε t−1ð Þ∇ f θ t−1ð Þ þ μ t−1ð Þv t−1ð Þ
� �

;

ð11Þ

θ tð Þ ¼ θ t−1ð Þ þ v tð Þ; ð12Þ
where θt are the model parameters, the velocity is v(t),
μ(t) ∈ [0, 1] is the momentum coefficient and ε(t) > 0 is
the learning rate at iteration t, f(θ) is the objective func-
tion and ∇f(θ′) is a shorthand notation for the gradient
∂ f ðθÞ
∂θ jθ ¼ θ0.
The equivalent form is as follows:

v tð Þ̂ ¼ μ t−1ð Þ v t−1ð Þ^ ‐ε t−1ð Þ∇ f θ t−1ð Þ^
� �

‐ε t−1ð Þμ t−1ð Þ½∇ f θ t−1ð Þ^
� �

−∇ f θ t−2ð Þ^
� �

�:

ð13Þ

θ tð Þ̂ ¼ θ t−1ð Þ^ þ v tð Þ̂ : ð14Þ
Different from the momentum term, Nesterov mo-

mentum renews the parameter vector at some
positionθ(t), which depends on μ(t − 1)ν(t − 1) as well as in
the last momentum update of the current parameter
position. The gradient correction to the velocityvt, with
the Nesterov momentum, is calculated at point θ(t) + μ(t
− 1)v(t − 1), and if μ(t − 1)v(t − 1) is an even worse update,
∇f(θ(t − 1) + μ(t − 1)v(t − 1)) will point reversely θ(t) more

forcefully than the gradient computed at θ(t), hence pro-
viding a larger and more timely correction to v(t). Fig. 1
(b) illustrates the geometric significance of this
phenomenon. With the equivalent form of Nesterov mo-
mentum, we can observe the difference between Nes-
terov momentum and standard momentum. The
direction of this update has increased by an amount of

μðt−1Þ½∇ f ðθðt−1Þ^ Þ−∇ f ðθðt−2Þ^ Þ� , the change is essentially an
approximation of the second order of the objective func-
tion. Since Nesterov momentum uses the second-order
information of the objective function, the Nesterov mo-
mentum is more efficient than the standard momentum
term in modifying the large and undue velocity in each
iteration, which makes it run faster than the momentum
method, and can further reduce the error rate of the loss
function.

Multiple maps t-SNE regularization based on Nesterov
momentum
In this article, unlike the original several versions of
mm-tSNE, we use the Nesterov momentum method to
optimize the target loss function, which lets the loss
function reach the optimal value better and faster and
obtain a higher neighborhood preservation ratio.
The learning algorithm is as follows:

ν tð Þ ¼ γν t−1ð Þ−η
∂C Yð Þ

∂
Y þ γν t−1ð Þ
� �

: ð15Þ

Y ¼ Y þ ν tð Þ; ð16Þ

where Y represents the model parameter to be opti-
mized, ν(t) represents the velocity of the i iteration,
γ ∈ [0, 1] represents the momentum coefficient, η repre-
sents the learning rate for the i iteration, and ∂CðY Þ

∂Y repre-
sents the gradient.

Fig. 4 Heatmap of neighbourhood preservation ratio for mm-tSNE regularization based on Nesterov momentum
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Datasets
To assess the performance of our approach, we apply our
method to several datasets, including phenotypic similarity
dataset and microbial dataset. The microbial dataset con-
sisted of 6313 orthologous proteins which are from 345 in-
dividual intestinal microorganisms [30]. After data
preprocessing, a similarity matrix of 1299 KOs is finally ob-
tained. The phenotypic similarities come from the Online
Mendelian Inheritance in Man (OMIM) database [31, 32],
which contains 1025 phenotypes related to 21 diseases, re-
spectively, according to the disease classification informa-
tion from the Human Disease Network [8]. At them in the
middle, the value of similarity less than 0.5 is filtered out.

Evaluation indicators

Neighborhood preservation ratio The ideal state for
dimensionality reduction visualization is that the

neighboring point of the sample point xi in the
high-dimensional space is exactly the same as its neigh-
boring point in the low-dimensional spaceyi. That is, it
is assumed that the neighboring points around the sam-
ple point xi pass through the high-dimensional space.
After the dimensional method is projected into a
two-dimensional space, the neighboring points aroundyi-
coincide with the high-dimensional space. The neighbor-
hood preservation ratio is a measure proposed by
Laurens van der Maaten [15], which measures similar-
ities in the high-dimensional space are preserved in the
low-dimensional space by the mm-tSNE method. For
each data point i, we choose its k highest pij-values in
the high-dimensional space as its k nearest neighbors
(Ni1 for short), and select the k highest qij-values in the
low-dimensional space as its k nearest neighbors (Ni2 for
short). By calculating the intersection of Ni1 and Ni2, it
can be determined whether the reduced-dimensional

Fig. 5 The relationship between NPR and the number of maps. The results show that the relationship between NPR (neighborhood preservation
ratio) and increasing number of maps when mm-tSNE regularization based on Nesterov momentum is applied and λ = 0.005

Fig. 6 Time complexity comparison results
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visualization method used can maintain the distribution
of neighboring points of data in high-dimensional space.
Therefore, NPR indicates the average ratio of the num-
ber of neighbors to be saved.

NPR ¼ 1
n

Xn

i¼1

Ni1∩Ni2
		 		

k
; ð17Þ

where |Ni1 ∩Ni2| is the number of points that common
points in high-dimensional space and low-dimensional
space and n represent the total number of visualized tar-
get data points.

Error rate The error rate represents the cost of using
the KL divergence method to model the difference be-
tween the Q distribution and the P distribution.

Time complexity The time complexity of the algorithm
is measured by the number of times the basic operations
are repeated.

Results
We compare the mm-tSNE regularization based on Nes-
terov momentum method with the original several
mm-tSNE methods in the phenotype (Fig. 2) and

Fig. 7 The Map 15 in multiple maps is visualized by the mm-tSNE regularization based on Nesterov momentum method

Fig. 8 The Map 9 in multiple maps is visualized by the mm-tSNE regularization based on Nesterov momentum method
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microbiome (Fig. 3) dataset respectively using the neigh-
borhood preservation ratio, the error rate and the time
complexity as the evaluation indicators.
We then apply the mm-tSNE regularization based on

Nesterov momentum to explore the nonmetric relation-
ships on phenotype similarity dataset and microbiomic
dataset. The number of model parameters m—the number
of maps and λ—the penalty term are selected according to
the neighborhood preservation ratio (NPR) (See methods).
Fig. 2 and Fig. 3 show the experimental results on pheno-
type similarity dataset and microbial dataset, respectively.
The mm-tSNE regularization based on Nesterov momen-
tum has performance comparable with mm-tSNE and
mm-tSNE regularization. The green line in Fig. 2 and Fig.
3 shows that our proposed models are at an advantage
over original mm-tSNE methods of several versions. Fig. 4
is the heat map of NPR in the parametric space of m and
λ when apply mm-tSNE regularization based on Nesterov
momentum algorithm. The x-axis represents the value of
λ in the experiment, and the y-axis represents the number
of maps. The color change in the legend represents a
gradual decrease in the preservation ratio of the neighbor-
hood from high to low. When λ = 0.002 and the number
of maps is 27, the neighbor’s preservation ratio is maxi-
mized. Nevertheless, according to the experimental re-
sults, we choose the number of maps as 15, and set the λ
as15 as our model parameters, because it is sufficient to
model the non-metric structure of phenotype similarities
and KOs similarities. When the mm-tSNE regularization
based on Nesterov momentum is applied, the relationship
between the NPR and the number of maps is shown in
Fig.5. When λ = 0.005 and m = 15, we obtain the highest
neighborhood preservation ratio. Overall, the mm-tSNE
regularization based on Nesterov momentum obtains bet-
ter performance compared to other methods and reduces
the time complexity of algorithm from Ο(1/k) (after k
steps) to Ο(1/k2) [21] (See Fig. 6). Since the processed data
of the proposed algorithm is a matrix with N×N size, the
spatial complexity of proposed algorithm does not im-
prove relative to the original algorithms. The space com-
plexity of the proposed algorithm is O (N2).

Discussion
From the phenotypic point of view, similar phenotypes
tend to converge into the same class. Nevertheless, some
of the phenotypes in the same disease category may exist

in other disease categories as well. In addition, we dis-
cover that our method compared to mm-tSNE and
mm-tSNE regularization can better appropriately model
non-transitive similarities between phenotypes. For ex-
ample, Apert syndrome (AS, OMIM ID: 101200) has im-
portance weights of 0.5967 and 0.3896 at two maps
(Maps 9 and 15, See Fig. 7 and Fig. 8). Removing the
phenotype of each map with an importance weight less
than 0.1 prevents visualization from being too clutter. In
Map 9, Ellis-van Creveld syndrome (EVC, OMIM ID:
225500) is one of the neighbors of the AS, with similar-
ity of 0.5148 (See Table 1) and they have an importance
weights of 0.5967 and 0.9474 in the metric space Map 9
severally (See Table 2). In Map 15, AS has a near neigh-
bor Mowat-Wilson syndrome (MOWS, OMIM ID:
235730) with similarity 0.5957. From Table 2, it can be
found that MOWS is not displayed on Map 9 and EVAS
is not displayed on Map 15, the fact that they are both
neighbors in single maps. In other words, the neighbor
of AS in Map 9 is not essentially the neighbor of it in
Map 15. In fact, the similarity between EVC and MOWS
is 0 (See Table 1). Although the initial aim of mm-tSNE
regularization and mm-tSNE is to find intransitivity
similarity. We find that the mm-tSNE and mm-tSNE
regularization combine the four phenotypes in Table 1
into one map (See Fig. 9 and Fig. 10). This result indi-
cates that the mm-tSNE regularization based on Nes-
terov momentum excavates non-transitive similarity of
the original several methods without discovering.
Except MOWS, at Map 15 (see Fig. 7), AS has another

near neighbor--Hay-Wells syndrome (HWS, OMIM:
106260) with a similarity 0.5957. AS, MOWS and HWS
are all neighbors in Map 15. Nevertheless, astonishing
truth is that the similarity between AS and HWS is 0
(See Table 1). Then we have a deep analysis of these
three phenotypes. Apert syndrome is a congenital dis-
ease; the main symptoms include craniosynostosis, mid-
dle facial hypoplasia, hands and feet, with the tendency

Table 1 Extracted similarities from original matrix

Phenotype With OMIMID AS (OMIM:101,200) MOWS (OMIM:235,730) HWS (OMIM:106,260) EVAS (OMIM:225,500)

AS (OMIM:101,200) 1 0.5957 0 0.5148

MOWS (OMIM:235,730) 0.5957 1 0.5298 0

HWS (OMIM:106,260) 0 0.5298 1 0.5392

EVAS (OMIM:225,500) 0.5148 0 0.5392 1

Table 2 Importance weights for extracted phenotypes

Map9 Map15

AS (OMIM:101200) 0.5967 0.3896

MOWS (OMIM:235730) 9.0475e-04 0.9920

HWS (OMIM:106260) 0.1436 0.8348

EVC: (OMIM:225500) 0.9474 0.002
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of bone structure fusion [33–35]. Mowat-Wilson’s syn-
drome is an autosomal dominant complex dysplasia,
characterized by a variety of clinical symptoms such as
mental retardation, motor retardation, epilepsy, vaso-
vagal disease and neuropathy, caused by mutations in in-
dividual functions [36–38]. HWS is a rare, complex
disease characterized by congenital ectodermal dysplasia

with a variety of symptoms including thinning hair, mild
hypohidrosis, scalp infection, dental hypoplasia, and
maxillary dysplasia [39–41]. Although these three dis-
eases belong to different types of diseases (tissue, devel-
opmental and multiple respectively), they have the same
symptoms, such as nail and tooth dysplasia and skeletal
deformities. The experimental result shows that

Fig. 9 The Map 13 in multiple maps is visualized by the mm-tSNE regularization method

Fig. 10 The Map 9 in multiple maps is visualized by the mm-tSNE method
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although the text mining method [42] measures the dir-
ect similarity between AS and HWS as 0, our method
does deduce their true relationship from data. This is
different from non-transitive similarity modeling, be-
cause they are in the uniform metric space Map 15.
The experimental results demonstrate that our pro-

posed method reveals the non-transitive similarity not
found in the original several mm-tSNE methods in
microbiomic dataset (See Table 3). K00691 is a maltose
phosphorylase involved in glucose metabolism and tran-
scription [43]. Table 3 shows three KOs, of which at
least three maps have an importance weight of not less
than 0.2, which are respectively close to K00691. K05340
is a transporter involved in signal transduction and glu-
cose uptake of cellular activity. K06204 is a Dnak inhibi-
tor that is involved in the biofilm formation and
prokaryotic cell activities of Escherichia coli and rRNA
transcription [44]. From Table 3 we can see that al-
though these three KOs are similar in Map 7, they are
not similar to each other in other maps. For example,
K05340 in Map 12 is not similar to K06204. Likewise,
K06204 is not similar to K05340 in Map 13. These
non-transitive similarities can not be expressed by trad-
itional data visualization methods.

Conclusions
We propose a new method to optimize the mm-tSNE
regularization cost function. Experimental result shows
that this method outperforms several versions of
mm-tSNE, when measured by neighborhood preserva-
tion rate and error rate. In this study, it is shown that
non-metric properties are ubiquitous in biological and
microbiological data and should be considered in future
studies. Traditional visualization techniques are effective
when applied to small and medium-scale data, but they
still face a huge challenge when applied to large bio-
logical and microbiological data. In future research
work, we will propose a method to solve the problem of
high computational complexity and problems in data
visualization caused by the increase of data volume and
the high dimensionality.
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