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Abstract

including a number of strains of Staphylococcus aureus.

Background: Sequencing highly-variable 16S regions is a common and often effective approach to the study of
microbial communities, and next-generation sequencing (NGS) technologies provide abundant quantities of data for
analysis. However, the speed of existing analysis pipelines may limit our ability to work with these quantities of data.
Furthermore, the limited coverage of existing 16S databases may hamper our ability to characterise these
communities, particularly in the context of complex or poorly studied environments.

Results: In this article we present the SigClust algorithm, a novel clustering method involving the transformation of
sequence reads into binary signatures. When compared to other published methods, SigClust yields superior cluster
coherence and separation of metagenomic read data, while operating within substantially reduced timeframes. We
demonstrate its utility on published lllumina datasets and on a large collection of labelled wound reads sourced from
patients in a wound clinic. The temporal analysis is based on tracking the dominant clusters of wound samples over
time. The analysis can identify markers of both healing and non-healing wounds in response to treatment. Prominent
clusters are found, corresponding to bacterial species known to be associated with unfavourable healing outcomes,

Conclusions: SigClust identifies clusters rapidly and supports an improved understanding of the wound microbiome
without reliance on a reference database. The results indicate a promising use for a SigClust-based pipeline in wound
analysis and prediction, and a possible novel method for wound management and treatment.
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Background

Chronic wounds pose a significant risk to the patient,
especially if the patient is elderly. Treatment and ongo-
ing care are labour-intensive and costly, draining billions
of dollars from public health budgets across the world.
The impact of chronic wounds is expected to increase
markedly as the population ages and as the incidence
of type II diabetes increases in line with increased inci-
dence of obesity. It is now well-established that bacte-
rial populations in the wound may heavily influence the
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healing process [1]. The standard approach to partial
characterisation of the wound microbiome is based on tar-
geted sequencing of wound samples, followed by a lookup
in a reference collection. This approach is hampered by
the limitations of existing algorithms, by incomplete bac-
terial reference collections — with only a small fraction
of species captured in curated and annotated databases —
and by variability in the composition of bacterial com-
munities. The increasing prevalence of sequencing in a
clinical context will only exacerbate these concerns. Tax-
onomic classification of bacterial samples through Next-
Generation Sequencing (NGS) remains challenging, with
a relatively recent study noting that only a small fraction
(< 5%) of reads could be identified at the species level [2].
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This is problematic for the clinician, as pathogenicity is
usually species-specific — for example, a given Escherichia
or Bacillus species may be a very dangerous pathogen, or
completely harmless. New methods are needed to char-
acterise microbiota without relying on existing sequence
collections.

Massive reductions in sequencing costs mean that chal-
lenges now lie in the downstream computational analy-
sis of genomic data at scale [3]. Routine collection and
sequencing of wound samples will generate abundant
data, and may lead to breakthroughs in our understand-
ing of their biology and treatment. However, it will not
be possible to deliver on this promise without methods
capable of handling these large-scale datasets and rapidly
identifying markers of healing or stagnation. Ideally, such
algorithms will also be able to predict the progression of
wound conditions over time.

This paper details a new method that relies on encoding
the sequence reads as binary signatures to make cluster-
ing feasible at scale. Binary signatures are obtained from
the k-mers contained within the reads. We show how the
method can be used to characterise wound samples, and
also demonstrate its general utility on previously pub-
lished datasets. We evaluate the clusters obtained via the
coherence of the entities in each cluster and the sep-
aration between individual clusters, and show that our
approach generates clusters superior to a range of alter-
native approaches. We also consider the speed at which
these clusters are produced.

To demonstrate the utility of our method, we anal-
yse labelled patient data sampled over several weeks and
show that tracking dominant clusters identifies mark-
ers of wounds refractory to treatment and markers of
wounds that successfully heal. In this specific dataset,
it is possible to identify with confidence those species
likely to be responsible for the observed effect, but the
method is more widely applicable. The cluster itself may
be used as a proxy for bacterial species identification:
proximity to a well defined cluster may support expec-
tations of a similar clinical outcome. In such occur-
rences, the measured coherence of the cluster further
reinforces our confidence in the prediction. It is important
to note that such an approach differs significantly from
the more common methods using database look-up for
identification.

Methods

Sample preparation and Sequencing

Over a period of 12 weeks in 2011, 364 wound sam-
ples were collected (using the Z-technique [4]) from
56 patients undergoing treatment for a total of 66
chronic wounds at the Queensland University of Technol-
ogy (QUT) wound clinic. These samples were collected
by specialist wound care clinicians following a defined
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protocol for collection of Z-swabs and preserved at -80°C
until DNA extraction was undertaken.

These wounds included mixed ulcers, arterial ulcers,
venous ulcers, pressure ulcers, as well as amputation
surgery, and were located at different areas of the lower
extremities. All patients received standard wound care at
the clinic, including silver, hydro-fibre, hydrogel and zinc
paste dressings. Prior to swab collection, wounds were
washed with water. It is acknowledged that the use of
antimicrobial dressings is likely to have influenced the
microbial flora. Wounds that did not heal after a period
of 24 weeks from initial presentation at the clinic were
considered non-healing.

DNA was extracted from swab samples according to
the protocol described by Price et al. [5], followed by
physical and enzymatic lysis. Polymerase chain reaction
(PCR) methods were then used to amplify the segments,
using fusion primers derived from the universal 165 rRNA
(prokaryotic small subunit ribosomal RNA). The samples
were then sequenced using the Ion Torrent PGM platform
[6], obtaining a total of 57,864,417 reads with an average
length [ = 337. These reads were filtered by removing
the barcode and primer, and reads with / < 32 were dis-
carded, reducing the read count to 46,313,157. Duplicate
reads were also removed, further reducing the count to
24,892,382.

Signature-based clustering

Use of SigClust allows us to identify tight groupings
of structurally similar reads, which we can then use as
a proxy for the original reads in the analysis of large
datasets. We demonstrate the efficacy of our approach by
verifying the method on previously published datasets of
[lumina reads. Having shown that the clusters found are
plausible, we then apply the method to the wound sam-
ple reads discussed above. We conjecture that the clusters
so obtained will be linked to clinical outcomes for the
patients who provided samples during the study. This
potentially allows similarity-based inference to be con-
ducted as new samples are obtained, without reference to
an external database. In this section we describe the Sig-
Clust method and the experiments we used to verify its
effectiveness.

SigClust makes use of a well-known clustering algorithm
called k-means [7]. The approach involves starting with a
random set of initial centroids, then progressively refining
the centroids by moving them to the mean of the clusters
they define, each time redistributing the points into the
clusters to which they are closest. The approach is guar-
anteed to converge, usually to a local optimum, within a
finite number of iterations; however, as the greatest gain
to cluster coherency occurs in the earliest iterations [8],
it is not usually necessary to iterate the method until it
converges.
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To calculate k-means, the underlying dataset must be
represented as a set of vectors within a metric space;
the distribution of points into clusters requires that the
triangle inequality hold true, while the calculation of
the centroids requires that an arithmetic mean be well-
defined. An appropriate binary signature embedding is
obtained through random indexing [9]. The resulting sig-
natures support the properties required if we are to use
k-means: distances between points can be calculated using
a high speed bitwise (Hamming) distance calculation,
and the mean of the cluster members can be computed
with standard vector arithmetic. In addition, converting
sequences into binary signatures provides a significant
performance advantage for computing pairwise similar-
ity scores: expensive alignment-based methods can be
replaced by relatively inexpensive Hamming distance cal-
culations, markedly reducing execution time for cluster-
ing methods that require a large number of comparisons.

The binary signatures created through random indexing
function as a vector space representation of the underly-
ing reads. These representations are fixed-length binary
strings irrespective of the size of the reads, with the result
that the number of cycles required to compare two signa-
tures is identical for all signatures. This comparison is also
very fast, as modern processors have dedicated instruc-
tions for both exclusive or and population count, which
can be combined to compute efficiently the Hamming
distance between these sequences.

The approach we use to generate signatures from text
data is described in detail by Geva [10]. The main adjust-
ment to this approach we have made here is that, rather
than dividing the input document up into terms on
whitespace boundaries as is common in text processing,
we instead slide a k-mer window of length 5 over the
input sequence. Upon reading each k-mer, we hash it to
create a vector of pseudo-random values in the range
[ —1,+1]. This results in a total of / — 4 vectors generated
for each sequence of length /. These vectors are summed
together and the resulting vector is quantised to cre-
ate a binary signature. The quantisation process involves
mapping negative values to 0-bits and non-negative val-
ues to 1-bits. Hence, a vector of length w will map to
a signature consisting of w bits. The signature size is a
configurable parameter for this approach: long signatures
have the advantage of greater representational capacity,
while shorter sequences trade this capacity for greater
storage and processing efficiency. Informal experiments
have shown that for datasets similar to the wound read
set, a signature size of 256 bits offers a compact repre-
sentation with only a modest decline in representation
quality. Modern 64-bit processors support exclusive or
and population count instructions, so the Hamming dis-
tance between two 256-bit signatures can be computed
using only eight machine instructions.
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One feature of the standard k-means algorithm is that
the number of clusters k must be known a priori; the
algorithm involves starting with an initial set of ran-
domly chosen cluster centroids, then iteratively refining
them. There is no provision for the number of clusters to
change during this process. As a result, there is the pos-
sibility that a poor selection of k may result in a cluster
arrangement that does not reflect the underlying dataset.
In the absence of pre-existing knowledge of the struc-
ture of the dataset, the standard approach is to choose
k through experimentation or heuristics. For the pur-
poses of this study, we precisely choose the number of
clusters we will receive as output in order to facilitate
fair comparison with existing methods. Many of these
alternatives do not allow the number of clusters to be
specified a priori, but instead determine the number of
clusters from a cluster similarity threshold supplied by the
user. When comparing against multiple methods, we sup-
ply a value of k that ensures a fair comparison to other
methods.

We summarise the full SigClust algorithm in Algorithm 1.

Previously published datasets

SigClust was initially tested with two sizeable published
datasets in order to demonstrate the general utility of the
approach, and to allow for a direct comparison with meth-
ods proposed by other authors. The first collection, the
Oral Metagenome — Human MGP41 dataset, was intro-
duced in [11]. This dataset consists of some 1237319
primer-targeted reads of the V5 region obtained by Illu-
mina sequencing, with an average length of 59. A second,
much larger collection, the PRJEB4688 Evaluation Set,
was assembled for the analyses reported in [12]. Here
we confine ourselves to the Illumina data, comprising
5497442 reads with an average sequence length of 253.
Note that we examine these data sets purely from a com-
putational perspective, and do not consider the biological
significance of the clusters obtained, which lies outside the
scope of this paper.

Other clustering approaches

Our approach was compared to two alternative meth-
ods to benchmark its computational performance and the
quality of the clusters obtained. UClust [13] employs a
greedy heuristic based on similarity scores obtained via
USearch. For each new sequence, USearch finds the clos-
est existing centroid. If the identity score between this
sequence and the centroid exceeds a certain threshold, the
sequence is added to the cluster. Otherwise a new clus-
ter is formed with this sequence as the centroid. USearch
is a well known heuristic search method which rapidly
identifies high-identity matches by counting the number
of unique k-mers shared by the two sequences. Sequences
with the highest counts are then examined in more detail,
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Algorithm 1 SigClust

Input: S,k,w,d,r where S = protein/nucleotide
sequences, kK = cluster count, w = signature width,
d = signature density, r = k-means iterations

Output: C where C = clusters
1: foralls € Sdo
2. for all kmer € s do

3 Random number generator rng is seeded with
kmer
4 fori=0tow—1do
5: if rng() < d then
6: if rng() <0.5 then
7: vec[i] < vec[i]—1
8: else
9: vec[i] < vec[i]+1
10: end if
11: end if
12: end for
13: fori=0tow—1do
14 if vec[i] < 0 then
15: signature[s][i] < 0
16: else
17: signature[s][i] < 1
18: end if
19: end for
20.  end for
21: end for

22: fori=0tok—1do

23: s < random value 0..|S]|
24:  medoid[i] < signature[s]
25: end for

26: forc=0tor —1do

272 fori=0to|S|—1do

28: closest distance < 0o

29: forj=0tok —1do

30: distance < Hamming distance(signature[:],
medoid][j])

31 if distance < closest distance then

32 closest distance < distance

33: Cli] «j

34: end if

35: end for

36:  end for

37.  Initialise A as an array of k w-dimensional vectors
of magnitude 0

38: Initialise count as an array of k integers

39: fori=0to|S|—1do

40: A[Cli]] < A[C[i]]+signature[]

41: count[C[i]] <= count[C[{]]+1

42:  end for

43: forj=0tok —1do

44 medoid[j] <— A[j] = count]j]
45:  end for
46: end for
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with identities now calculated using global alignments.
This search process is terminated when a good enough
match is found or when several rejections have occurred.

Our second baseline method relied on BLAST [14]
to cluster the dataset against the NCBI complete 16S
rRNA reference set [15]. Clusters were constructed by
using BLAST to search for each wound read sequence
in the 16S database using default BLAST settings, sub-
sequently placing each sequence into a cluster associated
with the matching 16S microbial strain, species or genus.
This resulted in three different cluster sets at different
levels of granuality; 9354 strain clusters, 8375 species clus-
ters and 2221 genus clusters. Approximately 1 million
(~ 2%) of these searches could not be matched against
any sequences in 16S and were excluded from the analy-
sis. For the majority of searches the E value reported by
BLAST was conclusive enough to show that the read did in
fact belong to the corresponding strain; however, in other
cases, only species or genus-level classification could be
achieved.

As discussed in more detail below, we performed all
computational experiments on a Linux workstation with
36 hyperthreaded Xeon cores running at 2.3GHz with
512GB RAM.

Community analysis

Clusters obtained from the wound read collection were
subsequently viewed as representative of the underlying
microbial communities for each sample. As there may
be changes in coverage when comparing across samples,
we focused on the relative contribution of each of these
clusters within the sample.

To analyse each wound, we tracked how these relative
contributions changed dynamically over the sequencing
period, and aimed to identify patterns in community
structure that could be aligned with healing outcomes.
This was achieved by focusing on the changes in com-
munity similarity over time. This time-decay method [16]
was adapted from similar work on the decay of commu-
nity similarity through spatial variation, or distance-decay
(17, 18].

A quantitative measure of these variations in bacte-
rial community structures was calculated with the Bray-
Curtis (BC) dissimilarity score [19], using the vegan R
package [20]. In our context, the BC dissimilarity is based
on the cluster relative counts between different observa-
tions. For two distinct observation time points i and j, and
clusters xy, it is defined as:

Dk |k — ]

BC;; =
T (ki + )

€[0,1]

where each of the sums are indexed over the clusters. Note
that the BC dissimilarity is not a proper metric: it does
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not satisfy the triangle inequality, and transitive relation-
ships do not hold. This was not needed in our context: we
just used evidence from the time-decay analysis and the
relative cluster abundance to identify specific clusters and
patterns of interest.

The overall process from sample to community analysis
is summarised in Fig. 1.

Results

Clustering results

To ensure a fair comparison between different cluster-
ing approaches, a metric that does not disproportionately
favour one approach over another was required. In par-
ticular, metrics based on the Hamming distance between
signatures may disproportionately favour SigClust, which
works directly with these signatures, over methods which
instead work directly with reads. Hence we make use of
cluster quality metrics based on alignment scores between
the original reads, adopting a sampling approach so that
these metrics can be computed efficiently.

The process used for this comparative evaluation is
based on global pairwise alignment with the Needleman-
Wunsch [21] and local pairwise alignment with the Smith-
Waterman [22] algorithms. Each method computes an
alignment score for a pair of reads, though their resolu-
tion differs. To determine the overall level of cluster purity
for a given arrangement, we sampled a large number of
read pairs, pairs that share the same cluster (intracluster
pairs) and pairs from different clusters (intercluster pairs).
We were then able to compare the distributions of dis-
tances of the different categories of pairs, allowing us to
compare the respective cluster purities for each clustering
approach.

Comparisons between SigClust, UClust and the BLAST -
16S based method are considered below. Distributions
of pairwise Needleman-Wunsch scores are depicted in
Fig. 2, showing a clear advantage for SigClust. Separation
between the distributions is more pronounced for Sig-
Clust than for the baseline methods, notwithstanding the
smaller number of clusters generated by our approach;
due to the nature of the calculation, arrangements involv-
ing a larger number of clusters have an advantage when it
comes to cluster purity. Table 1 shows the mean alignment
scores for each approach, along with the execution time
required, demonstrating that SigClust offers substantial
performance advantages over the other methods.

The same evaluation was repeated with Swmith-
Waterman scores with the outcomes shown in Fig. 3,

Analysis
Reads Signatures Clustering - Relative abundance
« Time decay

Fig. 1 Clustering and analysis pipeline
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where the advantages are less clear. As is shown in Table 2,
SigClust provides the greatest distance between the aver-
age intracluster and intercluster scores, yet the degree of
overlap in the histograms remains large, suggesting the
clusters are not as well separated.

The discrepancy here can partially be explained by
observing that the current approach of generating a sin-
gle binary signature for each read is ultimately global,
and unable to reward perfect matching of highly sim-
ilar subsets in the same way as local alignment meth-
ods such as BLAST. As a result, while we can present
the SigClust algorithm as a highly capable global clus-
tering tool, if local clustering is more desirable for
a particular application and local sensitivity is of the
utmost importance, there may be more suitable tools
available.

The same experiment was repeated using two pub-
lished datasets of reads sequenced with Illumina technol-
ogy: the Oral Metagenome - Human (mgp41) [11] study
and PRJEB4688 [12]. The Needleman-Wunsch results for
these datasets are included in Table 1, while the Smith-
Waterman results are included in Table 2. To ensure a
fair comparison, we compared SigClust against UClust
directly, using the same number of clusters reported by
UClust as input into SigClust. The results show SigClust
continues to be competitive with UClust while taking a
fraction of the time to run. The difference in cluster purity
between the two methods is more marginal with the Oral
Metagenome dataset, potentially due to the shorter reads
reducing the advantages of SigClust’s fixed-length encod-
ing. For the larger PRJEB4688 dataset, SigClust’s advan-
tages are further emphasised, with the approach offering
very significant performance improvements along with a
clear gap in the distributions between intracluster and
intercluster pairs. This shows that at least some of Sig-
Clust’s advantages are portable to widely varying datasets
across different sequencing technologies.

Biological significance
In this section we undertake community analysis of
the clusters obtained via SigClust, using the approach
described above. As the value of k selected for algorithm
evaluation (obtained empirically from UClust) is rela-
tively large, proximal clusters were merged. This process is
equivalent to choosing a lower value of kK when executing
SigClust, and reduces the reliance on the exact value for k.
The choice of merge proximity threshold is data-
specific, and a natural intra-cluster distance may be
inferred through experiment. For the wound reads, a
Hamming distance of 35 provides a suitable threshold
for cluster merging, corresponding to a similarity score
of approximately 95% — 97%, although this varies some-
what by read (or corresponding species or strain). This
threshold distance choice for clusters is grounded in the
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Fig. 2 Needleman-Wunch global alignment cluster analysis. Histogram of Needleman-Wunch scores between random pairs of reads in the same
cluster (intracluster pairs) and pairs of reads from different clusters (intercluster pairs)

properties of the wound reads and their respective species
and strains.

Armed with a threshold value, cluster merging proceeds
as follows: We create a binary matrix M recording clus-
ter pairs identified as potential merge candidates based on
the Hamming distance between them. Here M[i] [j]= 1
if clusters i and j are candidates for a merge; otherwise
M]i][j]= 0. Clusters are sorted in decreasing order of
their number of potential partners. For each cluster, we
extract potential partners to form a submatrix M’, which
is then processed to select merges which favour cluster
coherence. We go through all potential partners and reject
the one that has the fewest shared partners (i.e. the row

with the lowest sum). We repeat this process until all rows
only contain 1s (in which case the remaining clusters are
merged together) or alternatively, all partners have been
rejected and no merge operation is performed. If a merged
cluster is created, the individual member clusters are not
considered as potential partners for the following clusters.

The clusters obtained reveal patterns that are associated
with wound healing outcomes. We have identified a set of
clusters present at high levels in a sample time-series —
multiple wound samples collected from patients over a 12
week period. Of all the clusters identified by SigClust, five
are present in 20 of the 24 non-healing wounds. These
clusters, and their dominant species, are listed as follows:
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Table 1 Comparison of clustering methods based on
Needleman-Wunsch alignment scores

Wound Microbiome
46313157 sequences, average sequence length: 337

Method Time Clusters Intercluster Intracluster
(m) Avg SD Avg  SD
SigClust 16 5254 -68.8 1251 2194 1077
Merged SigClust 18 1260 -73.9 1180 1809 1369
UClust T=0.75 156 7141 -814 1116 1485 1421
16S Genus 2586 2221 -82.4 1046 986 1674
16S Species 2586 8375 -76.9 1108 1256 1625
16S Strains 2586 9354 -824 1046 986 1674

Oral Metagenome — Human (mgp41) [11]
1237319 sequences, average sequence length: 59

Method Time Clusters Intercluster Intracluster
(m) Avg SD Avg  SD

SigClust 0.2 17621 55 223 516 141

UClust T=0.75 1.7 17621 -44 144 388 133

PRJEB4688 [12]
5497442 sequences, average sequence length: 253

Method Time Clusters Intercluster Intracluster
(m) Avg SD Avg SD

SigClust 162 6998 -94.8 1266 2501 772

UClust T=0.75 9 6998 -109.0 1174 1215 935

Results are shown for the wound data, and for two previously published lllumina
metagenomic datasets. We report for each method the clustering time in minutes
and the number of clusters returned. The remaining columns of the table show the
mean and standard deviation of the separation for the sampled intercluster and
intracluster pairs

0,34,50 (Staphylococcus aureus), 28 (Enterococcus fae-
calis), and 80 (Bacteroides fragilis). Wound #4059, which
is a typical non-healing representative (Fig. 4), shows
dominance of clusters 28 (E. faecalis) and 0 (S. aureus)
over the entire sampling period. Their persistence in the
wound is apparent when looking at the BC dissimilarity
(Fig. 5).

Abundant species of this nature may be identified
readily using our methods or through a variety of well-
established alternatives such as Mothur/QIIME. In ear-
lier sections of this paper we observed that SigClust
rapidly yields clusters notable for their strong internal
coherence and clear inter-cluster separation. SigClust may
thus offer significant advantages over existing cluster-
ing approaches when characterising diverse communities,
especially those comprising taxons exhibiting low abun-
dance. If clusters are more coherent and distinct, then we
may have greater confidence in their utility as operational
units, and in subsequent identifications made through
sampling of their constituent members.

The five clusters listed above for non-healing wounds
are also present in most of the wounds that took at least
12 weeks to heal (some 18 out of 20 such wounds). Wound
#4032 (Fig. 6) is a good representative example of such
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wounds. Note that the time points are measured rela-
tive to the first clinic visit, rather than as an absolute
time since the wound first occurred. As a result we only
have a lower bound of the total healing time for these
wounds. In the earlier study that produced this dataset,
wound sampling was limited in all cases to a maximum
of 12 weeks after the first visit. Subsequent time points
are not available, but a possible interpretation of the even-
tual outcome is that the wounds healed once these clusters
were no longer present. The BC dissimilarity results for
wound #4032 (Fig. 7) support this hypothesis. Over the
entire sampling period the community structures seem
less stable. By week 12, only clusters characterised as S.
aureus) remain (clusters 0, 34,50 and 58). This is consis-
tent with the interpretation that the wound was unable
to heal at this stage and required future clearing of
these clusters.

This interpretation is further supported by other
wounds such as #4068 (Fig. 8). For this wound, clusters
0 and 28 have a significantly reduced contribution to the
overall population by week 9, and the wound was observed
to heal by week 12. These clusters are identified as S.
aureus and E. faecalis, respectively.

On the other hand, wounds that healed rapidly (requir-
ing four weeks or less) generally contained different
clusters that were not present at significant levels in
non-healing wounds. For instance, cluster 233 is present
in wound #4046 (Fig. 9), but did not appear elsewhere.
One wound healed in just four weeks despite still show-
ing a peak in cluster 0 (S. aureus) in week 3. How-
ever, that wound exhibits a very high BC dissimilarity,
which suggests that the microbial population was unsta-
ble. This therefore remains consistent with our earlier
interpretation.

Taken together, these results demonstrate that our
method can track fluctuations in the wound microbiome
over the sampling period and detect the presence of
pathogenic bacteria in some of the wounds and samples.
They also show that it is possible to link specific clusters
with healing or non-healing outcomes for these wounds.

Computational performance

Table 1 shows the execution times (in minutes) for Sig-
Clust and the baseline methods UClust and BLAST over
the wound reads dataset, the Oral Metagenome - Human
(mgp41) [11] Ilumina dataset and the PRJEB4688 [12]
Ilumina dataset. These experiments were run on an Intel
Xeon EE5-2699 v3 with 36 hyper-threaded cores clocked
at 2.30GHz, for a total of 72 hardware threads. Both the
signature generation code and the clustering code were
multi-threaded with OpenMP and configured to consume
all available threads. The time of 16 min for the standard
SigClust approach on the wound dataset includes both sig-
nature generation time and clustering time. Generating
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Fig. 3 Smith-Waterman global alignment cluster analysis. Histogram of Smith-Waterman scores between random pairs of reads in the same cluster
(intracluster pairs) and pairs of reads from different clusters (intercluster pairs)

256-bit signatures for each of the 24,892,382 reads that
remained after removing short sequences and duplicates
took 4 min and 28 s of elapsed wall time. Each itera-
tion of k-means required an average of 2 min and 51 s,
and we ran a total of four iterations, yielding a clus-
tering time of 11 min and 24 s. The Merged SigClust
approach used the same process, but also included an
additional two minutes to generate the mutual distance
graph between the clusters and to find close clusters to be
merged.

UClust was run on the same hardware; however, it was
not able to make full use of all the hardware threads and so
did not exhibit a similar speed-up. The difference between

UClust and SigClust comes close to a 10x performance
increase, depending on the size of the dataset, with larger
datasets showing the greatest difference. We see this on
both the wound dataset, some 16 min vs. 156 min, as well
as on the published Illumina datasets, with 0.2 min vs.
1.7 min on the Oral Metagenome study and 1.62 min vs.
9 min on PRJEB4688.

The BLAST runs were also executed on the same
hardware, but multi-threading here provided only lim-
ited advantages due to the nature of the algorithm, with
BLAST unable to take full advantage of the set of threads
available. BLAST was not able to offer performance com-
petitive with the other approaches.
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Table 2 Comparison of clustering methods based on
Smith-Waterman alignment scores

Wound Microbiome
46313157 sequences, average sequence length: 337

Method Time Clusters Intercluster Intracluster

(m) Avg SO Avg SD
SigClust 16 5254 59.0 587 2344 97.9
Merged SigClust 18 1260 555 512 2116 104.9
UClust T=0.75 156 7141 50.3 41.8 2029 95.0
16S Genus 2586 2221 439 28.0 1889 92.5
16S Species 2586 8375 48.7 396 2058 936
16S Strains 2586 9354 50.1 42.6 206.7 935
Oral Metagenome — Human (mgp41) [11]
1237319 sequences, average sequence length: 59
Method Time Clusters Intercluster Intracluster

(m) Avg SO Avg SD
SigClust 02 17621 255 118 537 96
UClust T=0.75 1.7 17621 20.2 69 434 9.1
PRJEB4688 [12]
5497442 sequences, average sequence length: 253
Method Time Clusters Intercluster Intracluster

(m) Avg SD  Avg SD
SigClust 162 6998 444 485 257.7 67.0
UClust T=0.75 9 6998 37.1 38.0 159.1 66.9

As before, results are shown for the wound data, and for two previously published
lllumina metagenomic datasets. We report for each method the clustering time in
minutes and the number of clusters returned. The remaining columns of the table
show the mean and standard deviation of the separation for the sampled
intercluster and intracluster pairs

Discussion
Ongoing technological advances and consequent reduc-
tions in the cost of DNA sequencing may potentially revo-
lutionise clinical microbiology, but sample processing and
analysis is not yet straightforward, and may still require
significant specialist bioinformatic expertise [23—25]. Mil-
lions of prokaryotic species exist in nature [26, 27] and less
than 0.2% of them have been identified, significantly lim-
iting our understanding of the role of bacteria in human
health and disease. Despite enormous progress in the
study of bacterial organisms over the past decade or more,
there remains no comprehensive database listing all bacte-
rial species associated with humans [28]. Such a database
would provide crucial advantages in healthcare, allowing
clinicians to link the pathological changes observed in
their patients with potentially causative bacterial species.
Bacteria colonize all wounds whether they are chronic
or acute. Currently, there is an increased interest in inves-
tigating whether there is a correlation between different
bacterial communities in wounds and the ultimate repair
of the wound, i.e. whether bacteria contribute to the main-
tenance of a wound in a chronic state. Chronic wounds
are defined as lasting more than three months and occur
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most commonly in diabetic, elderly and immunocompro-
mised people [29-31]. Given the economic burden and
more importantly, the significant morbidity caused by
slow healing wounds, a “personalised medicine" approach
for examining and treating these chronic wounds could
result in a better way forward for wound management and
patient prognosis [31].

Yet there remain a number of computational and ana-
lytical challenges to be overcome before this vision is
realised. For example, identification of bacterial deter-
minants of wound healing and its absence can be com-
promised by selection bias in the experimental protocol.
The 16S rRNA gene sequence analysis pipeline typi-
cally consists of three main components: pre-processing
of sequences, constructing Operational Taxonomic Units
(OTUs) that are similar to bacterial taxa or species, fol-
lowed by annotation of the OTU tables. Pre-processing
the 16S rRNA is used to remove low-quality sequences
prior to the construction of the OTU table and chimeric
sequences (generated during the PCR amplification pro-
cess) are identified and removed from the dataset
[32]. In this step, significant proportions of 16S rRNA
sequences are eliminated and hence can lead to selec-
tion bias of bacterial species representation in the sam-
ple . Importantly, the appropriate analysis methods
and parameters used for 16S rRNA sequence analysis
are dependent on the method used for sequencing as
well as the region of the 16S rRNA gene targeted for
sequencing [33].

Clustering — the main focus of this paper — is an
essential step in existing workflows. After pre-processing,
the OTU table is constructed by clustering similar
sequences based on a defined similarity threshold. Several
approaches are commonly used for this purpose [34], and
each may have a marked effect on the resulting analysis.
The choice of reference clusters and the similarity thresh-
olds employed are both known to affect the outcome
significantly [35-37]. Issues resulting from variations in
sequencing depth can be addressed through normali-
sation and rarefaction [38]. However, most approaches
rely on a specific database collection, with annotation of
the OTU table based on representative taxonomic and
phylogenetic relatedness [39, 40]. Moreover, a number
of alternative approaches are used to classify 16S rRNA
gene sequences, including BLAST, RDP (a k-mer based
method) and phylogenetic placement [41], where phylo-
genetic trees are generated and used for diversity metrics
(eg. UniFrac) or for data visualization.

The underlying approach described in this paper aims to
handle the common situation where a complete sequence
reference list is unavailable. Instead, we rely on read clus-
ters to act as the operational units. In some cases, clusters
may be resolved to known references using traditional
methods. While this is not a necessary condition for our
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the dominant bacterial strain in the NCBI 16S rRNA
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for this purpose. Each query consisted of 100 randomly-
selected reads from a given cluster. The most commonly
selected strain among this read sample was then asso-
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Based on this approach, clusters 0,34 and 50 were
associated with Staphylococcus aureus (subsp. anaerobius
strain MVEF-7). It is widely known that Staphylococcal

biofilms may limit wound healing [42], and this is iden-
tifiably associated with the healing outcomes observed.
Enterococcus faecalis (strain NBRC 100480; cluster 28)
also impairs wound healing [43]. Equally interesting is
the appearance of Bacteroides fragilis (strain NCTC 9343)
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in cluster 80. Bacteroides species are normally commen-
sal gut organisms but they may also be responsible for
certain types of infection, and B. fragilis is unique in
inducing abscess formation as the sole infectious agent
[44, 45], with injection of capsules proving sufficient [46].
Compromised wound healing is thus to be expected.

These findings are supported by an earlier study using
standard methods [47], providing clear evidence that Sig-
Clust can produce biologically relevant clusters and con-
tribute to our understanding and treatment of chronic
wounds. Rapid assessment of microbial diversity allows
for tailored antimicrobial therapy to be administered in a
timely fashion. Targeted approaches of this nature limit
overuse of broad-spectrum antimicrobials and reduce the
likelihood that antimicrobial resistance may develop.

While we have successfully employed 16S reference
sequences to validate our methods, we should emphasise
that the utility of our approach does not rely on this refer-
ence. The prevalence of healthcare-related bacterial stud-
ies means that most wound-related bacteria may be found
in the NCBI 16S database, but our method is more gen-
eral and may be applied when database coverage is poor
or non-existent. Analysis here is not dependent on the
existence of a reference database, but requires only that
some ground truth be available from the domain of inter-
est, allowing us to associate information with each cluster,
supporting its application across a wide range of scientific
and clinical contexts. The utility of our methods is further
enhanced by their inherent parallelism and the reduced
memory footprint and extremely rapid pairwise compar-
isons that come with the signature-based representation.
The use of binary signatures allows the approach to scale
to very large collections beyond the scope of competing
methods.

Tables 1 and 2 report the application of SigClust to pre-
viously published Illumina datasets. While we have not
performed community analysis on the clusters obtained,
these results showcase the general utility of the method,
the quality of the clusters produced and the consistent
performance advantages of the algorithm over UClust, a
tool widely known for its computational efficiency.

Conclusions

In this paper we have introduced SigClust, a novel, high-
speed clustering approach which allows the accurate anal-
ysis of read collections at scale, potentially supporting
the timely processing of clinical wound samples as part
of an integrated pipeline. We have further demonstrated
the utility of the approach through community analysis,
highlighting the correlation of certain cluster types with
wounds that heal successfully and of others with wounds
refractory to treatment. These findings have been fur-
ther validated through 16S reference lookup and their
alignment with the outcomes of an earlier, independent
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study of the same dataset. We note further that the per-
formance advantages that underpin our success continue
to hold even when the method is applied to large-scale
datasets with markedly different characteristics based on
very different sequencing technologies.

The superior clustering performance offered by these
methods, along with their computational efficiency, will
allow more rapid progress in our understanding of wound
microbiota and in the development of better diagnostic
and therapeutic approaches for non-healing wounds. As
the method may operate in the absence of an external ref-
erence database, there is wide potential for its application
across a range of metagenomic domains, and its suitability
for very large scale collections will make it a natural candi-
date for these analyses as the availability of metagenomic
datasets continues to grow rapidly.
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