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Abstract

Background: In systems biology, there is an acute need for integrative approaches in heterogeneous network
mining in order to exploit the continuous flux of genomic data. Simultaneous analysis of the metabolic pathways and
genomic context of a given species leads to the identification of patterns consisting in reaction chains catalyzed by
products of neighboring genes. Similar such patterns across several species can reveal their mode of conservation
throughout the tree of life.

Results: We present CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods), a novel method that identifies
metabolic and genomic patterns consisting in maximal trails of reactions being catalyzed by products of neighboring
genes. Patterns determined by CoMetGeNe in one species are subsequently employed in order to reflect their degree

Conserved interspecies patterns

of conservation across multiple prokaryotic species. These interspecies comparisons help to improve genome
annotation and can reveal putative alternative metabolic routes as well as unexpected gene ordering occurrences.
Conclusions: CoMetGeNe is an exploratory tool at both the genomic and the metabolic levels, leading to insights
into the conservation of functionally related clusters of neighboring enzyme-coding genes. The open-source
CoMetGeNe pipeline is freely available at https://cometgene.Iri fr.
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Background

Genomic data and chemical reactions embody the dual
aspect of metabolism [1] that allows exploring the
links between genome evolution and chemical evolu-
tion of enzyme-catalyzed reactions [2]. It is well-known
that neighboring reactions corresponding to neighboring
genes underline an evolutionary advantage in keeping the
genes involved in succeeding reactions in close proxim-
ity [3, 4]. Finding almost identical sequences of reactions
being catalyzed by products of neighboring genes in var-
ious species suggests that such sequences are made up of
key enzymatic steps, best performed when their encod-
ing genes are adjacent and co-transcribed. This type of
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metabolic and genomic organization strongly suggests the
various species have been under strong evolutionary pres-
sure to optimize the expression of enzyme-coding genes
involved in successive reactions [5, 6].

In the present study, we focus on the identification
of conserved metabolic and genomic patterns. Roughly
speaking, metabolic and genomic patterns can be defined
as corresponding neighborhoods of reactions and genes
for a given species. Conserved metabolic and genomic pat-
terns represent similar neighborhoods of reactions and
genes for a variety of species. Interspecies comparisons
based on conserved patterns may help to shed light onto
the evolution of conserved metabolic and genomic neigh-
borhoods. Differences in conserved patterns may signal
various types of metabolism by pointing out alternative
metabolic routes among several species. Such patterns
may also suggest how metabolic maps may be completed
by adding missing information derived from literature
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cross-checks. Furthermore, these patterns may uncover
unexpected genomic organization motifs that are not self-
evident but that nevertheless recurrently occur across
several taxons.

The identification of metabolic and genomic pat-
terns requires extraction of relevant information from
metabolic and genomic contexts as well as its simultane-
ous integrated analysis. Knowledge extraction from bio-
logical networks has been the topic of numerous research
efforts, mainly concentrated on ‘omics’ data integration
[7], network alignment and network mining. Network
alignment has been used to align metabolic pathways
[8, 9] and protein-protein interaction (PPI) networks
[10, 11]. Network mining has multiple applications, such
as prediction of RNA topology [12, 13] or identification of
protein complexes in PPI networks [14].

The problem addressed in this paper involves knowl-
edge extraction and processing from heterogeneous (as
opposed to homogeneous) networks. Heterogeneous net-
work sets present different types of information describ-
ing distinct aspects of related processes for the same
biological entity. For example, a set of heterogeneous
networks would include at least two items such as the
genomic context of an organism and any one of the follow-
ing networks: its metabolic pathways, its co-expression,
co-regulation, and PPI networks.

The integrative analysis of several types of networks
describing different processes for a given biological entity
may lead to unexpected insights on the function of these
processes, or on their respective relationships. Several
early studies have thus concentrated on incorporating
information from two heterogeneous networks. Ogata
et al. [15] used EC numbers as the correspondence
between reaction and gene networks in order to identify
functionally related gene clusters. Enzyme Commission
(EC) numbers represent a hierarchical classification sys-
tem for enzymes, according to the chemical reactions
that the enzymes catalyze [16]. Observing that enzymes
encoded by genes belonging to an operon tend to catalyze
successive reactions, Zheng et al. [17] developed a method
for operon prediction using metabolic and genomic data.
Spirin et al. [18] integrated metabolic networks and
genomic associations in order to reveal evolutionary
modules.

More recent works have proposed general frameworks
for the integration of heterogeneous biological networks
as either exact approaches [19-21] or heuristics [22, 23].

The pioneering approach of Boyer et al. [19] relied
on the construction of an undirected correspondence
multigraph representing the input networks and the rela-
tions between them. Common connected components
were extracted from the correspondence multigraph in
the form of syntons (neighboring genes for two or more
species), metabolons (neighboring genes whose products
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are involved in connected metabolic reactions), and inter-
actons (neighboring genes coding for physically inter-
acting proteins). The same group further proposed a
framework that handles larger numbers of input networks
by building an undirected network alignment multigraph
on-the-fly [20]. An improved method allowing the cor-
respondence between aligned networks to be partial
was employed for the detection of synteny blocks in
bacteria [21].

In parallel, Bordron et al. [22] presented SIPPER, a
method they illustrated on the integrated genomic and
metabolic network of Escherichia coli. The integrated net-
work is a directed weighted graph where each vertex
is labeled with a reaction-gene pair. Arc weights in the
integrated network represent the distance between genes
within the genome. For any pair of reactions and a given
k, SIPPER extracts subgraphs consisting of the k shortest
paths between the source and destination reaction.

Fertin et al. [23] proposed a heuristic for determining
a longest path P in a directed acyclic graph (DAG) such
that P induces a connected subgraph in an undirected
graph, where the two graphs have the same vertex set. The
heuristic was used to find chains of reactions catalyzed
by products of neighboring genes in one application, or
by physically interacting proteins in another application.
Since the heuristic can only be applied on DAGs, if the
directed graph modeling a metabolic pathway contains
cycles then a decomposition into DAGs is necessary [24].
Doing so is not straightforward and can lead to loss of
solutions.

While interesting, the previously discussed frameworks
have disadvantages related to the scope of our study. The
extracted motifs are either subgraphs [19-22] or paths
[23]. From a biological standpoint, it makes sense to allow
for repeated vertices because metabolic pathways typically
contain cycles. Hence, path extraction is not an appro-
priate option. We decided to focus on trail extraction, as
trails can contain repeated vertices, but not repeated arcs
[25]. In effect, a trail corresponds to a group of genes
that are directly involved in a sequence of metabolic reac-
tions. For example, the genes involved in the histidine
operon encode successive steps in the biosynthesis of this
amino acid; such successive steps form a trail. Another
example (presented in the results section) is that of mra
and mur genes involved in consecutive steps of pepti-
doglycan biosynthesis. For many bacterial species, the
genes involved in these reactions are neighbors on the
chromosome.

In this paper, we present CoMetGeNe (COnserved
METabolic and GEnomic NEighborhoods), an exact
method that identifies maximal trails of reactions being
catalyzed by products of neighboring genes. CoMetGeNe
allows for a flexible notion of neighborhood by defining
parameters that authorize omitting a few reactions and/or
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adjacent genes. We subsequently employ CoMetGeNe for
the identification of conserved metabolic and genomic
patterns across a panel of 50 bacterial species representing
the main phyla throughout the bacterial tree of life.

Methods

Model

A non-spontaneous metabolic reaction is catalyzed by
one or several enzymes. A given enzyme can be encoded
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(i) Genomes (viewed as gene networks) are represented
as undirected graphs with protein-coding genes for
vertices (Fig. 1a). Two protein-coding genes are
connected by an edge if they are neighbors on the
same strand of the same chromosome.

(i) Metabolic pathways are represented as directed
graphs with reactions for vertices (Fig. 1b). An arc
leading from reaction r; to r; signifies that reaction r;
produces a metabolite that is a substrate for r;.

by one or several genes. We regard metabolic path-  (iii) For a given species S, the relation between one of its
ways and genomic context as networks of reactions and metabolic pathways and its genome takes the form of
genes, respectively. We represent the relation between a correspondence function associating genes to
metabolic pathways and their encoding genes using a clas- reactions: for any given reaction r, the
sical model involving two graphs and a correspondence correspondence function returns the set of genes of
function: species S that code for enzymes catalyzing reaction r
a r5 rG rl’ r2 r3 r7 ,ﬁl rlﬂllﬂ r4 G ,
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L(D) with a single vertex

Fig. 1 Schematic view of the CoMetGeNe model linking metabolic reactions and their encoding genes. a The undirected graph G’ represents the
gene order of a given species. The reactions that gene products catalyze are indicated above each gene. b The directed graph D represents a
metabolic pathway of the same species as in a. € The correspondence between reactions in D and genes in G'. d G is an undirected graph with the
same vertex set as D built using the correspondence between reactions and genes. G represents gene neighborhood with respect to the reactions
that the gene products catalyze. e L(D) is the line graph of D. By definition of the line graph, vertices of L(D) are arcs in D. Strongly connected
components (SCCs) of L(D) are shaded in gray and assigned a label S;. f C is the condensation graph of L(D), obtained by replacing every SCC of
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(Fig. 1c). This information can be found in a
knowledge base such as KEGG (Kyoto Encyclopedia
of Genes and Genomes) [26] which, for a given
species, contains information on its metabolic
pathways, the reactions that the species performs,
and the genes associated to these reactions.

The method we propose, CoMetGeNe, requires two
input graphs possessing the same vertex set. Thus, an
additional undirected graph is constructed as described
in [27] such that it reflects gene neighborhood with
respect to the reactions that the gene products catalyze
(Fig. 1d). The additional graph links two reactions 7;
and 7; with an edge if at least one of the genes cod-
ing for an enzyme involved in reaction r; is adjacent to
a gene coding for an enzyme involved in r;. For exam-
ple, genes X and Y are neighbors in G’ (Fig. 1a). Gene
X codes for an enzyme involved in reaction rg, and gene
Y codes for an enzyme involved in reactions ry and 7.
To reflect adjacency between genes X and Y, reactions rg
and rg, respectively rg and 719, are linked by an edge in G
(Fig. 1d).

Finding metabolic and genomic patterns for a single
species

Problem formulation

Given a metabolic pathway and the gene network for the
same species, the objective is to identify a maximal num-
ber of consecutive reactions being catalyzed by products
of neighboring genes. The problem was initially formu-
lated under the name of LONGEST SUPPORTED PATH
(LSP) [28], as follows:

LONGEST SUPPORTED PATH (LSP)

Input: A directed graph D = (V,A), an undirected
graph G = (V, E).

Output: A longest path P in D such that G[ V(P)] is
connected.

In the above formulation, the notation G[ X], where G is
agraph and X is a set of vertices, stands for the subgraph of
G induced by X, that is the subgraph of G with vertices of
X as its vertex set, and where edges (or arcs in the directed
case) are all the edges (or arcs) of G linking two vertices
in X (see [29]). Thus the solution for LSP is a path in the
directed graph D inducing a connected subgraph in the
undirected graph G.

The vast majority of metabolic pathways, however,
exhibit cycles (e.g. reversible reactions). Taking cycles into
account requires that solutions be authorized to contain
repeated vertices. Recall that, contrary to paths, trails can
contain repeated vertices, but not repeated arcs [25].

We now define the concept of span and propose a
new problem formulation that provides trails as solutions,
instead of paths. The span of a trail T represents the num-
ber of distinct vertices in T. For example, if T is the trail
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(ra, 13, r7, 13, 13, ra) in Fig. 1b, then the span of T is 5,
because vertex rs is repeated.

MAXIMUM SPAN SUPPORTED TRAIL (MaSST)

Input: A directed graph D = (V,A), an undirected
graph G = (V,E), an arc (&, v) in D.

Output: A trail of maximum span T in D passing
through (u, v) such that G[ V(T')] is connected.

Whereas LSP produces a path for every graph D, MaSST
outputs trails of maximum span passing through arcs of
D if the vertex sets of these trails induce connected sub-
graphs in G. The choice of producing a trail for every arc
in D is deliberate in order to ensure that more than a sin-
gle trail is retrieved per graph. For example, for graphs D
(Fig. 1b) and G (Fig. 1d) and the arc (r1,r2), MaSST out-
puts one of the two following trails of span 8: (r1, ry, r3,
17,18, '3, '4, Y9, r10) or (1, ra, 17, '8, '3, T4, T'9, 19). For any
other arc in D, the output of MaSST is either of the two
following trails of span 9: (rs, ¢, 12, 13, 17, 1'8, '3, ¥4, 19, F10)
or (V5, Y6, Iy, 17,18, '3, 4, 19, rl()).

For practical purposes (see Path finding in the line graph
below), we solve MaSST by using the line graph of D.
Given a directed graph D, its line graph L(D) is a directed
graph in which vertices are arcs in D. There is an arc in
L(D) from a vertex x to another vertex y if and only if
x = (r,s) and y = (s,t) with r, s, £ € V(D). For example,
the graph in Fig. 1e is the line graph of the graph in Fig. 1b.

Let D be a directed graph and L(D) be its line graph.
Let P = (aj, ay, ..., ax) be a path in L(D), where
a; = (ti_1, ), 1 < i < k, are arcs in D. The trail in
D corresponding to P, denoted L~1(P), is the trail T =
(to, t1, t2, ..., tk—1, t). If P is an empty path, then
L71(P) is an empty trail. For example, if P is the path
((r3,77), (r7,13), (r8, r3)) in Fig. le, then L~1(P) is the trail
(r3, r7, 78, r3) in the directed graph D.

We further propose MAXIMUM SPAN SUPPORTED
CORRESPONDING TRAIL (MaSSCoT), a problem formu-
lation equivalent to MaSST:

MAXIMUM SPAN SUPPORTED CORRESPONDING TRAIL
(MaSSCoT)

Input: A directed graph D = (V,A), an undirected
graph G = (V, E), an arc (u,v) in D.

Output: A path P in the line graph of D such that
L~1(P) has maximum span, passes through (u,v), and
G[ V(L~1(P))] is connected.

Note that, as LSP has been shown to be NP-hard in the
general case [23, 28], we have proved that MaSST and
MaSSCoT are also NP-hard (Additional file 1).

Graph reduction

Fertin et al. [23] introduced the concept of a cover set of
a path and proposed an algorithm to compute it. Briefly,
given two graphs D (directed) and G (undirected) on the
same vertex set U, as well as a path P in D, the cover
set of P with respect to D and G is a maximal subset
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of U containing only vertices that might extend P into
a path P’ such that G[ V(P)] and the undirected graph
underlying D[ V (P')] stay connected. We have shown that,
for a given arc (u,v) in D, reducing the input graphs D
and G to the cover set U’ of (u,v) and feeding these
reduced graphs D[ U’] and G[ U’] as input to MaSST and
MaSSCoT yields the same solution as providing D and
G as input (Additional file 2). In other words, graphs D
and G are reduced to a strict minimum without loss of
solutions.

Path finding in the line graph

The problem of trail enumeration in the directed graph
D modeling a metabolic pathway is naturally solved by
performing path enumeration in the line graph L(D). In
other words, MaSST is solved using the MaSSCoT prob-
lem formulation. Path enumeration in L(D) is restricted to
a minimum using the following three steps:

1 The strongly connected components (SCCs, see [29]
for a definition) of L(D) and its condensation graph
are computed, where a condensation graph results
from replacing every SCC with a single vertex
(Fig. 1e, f). Note that condensation graphs are acyclic
by definition.

2 For every SCC of L(D), vertices acting as entry points
from predecessor SCCs, as well as vertices acting as
exit points to successor SCCs are determined. For
example, in Fig. le, vertices (ry, r3) and (rp, r7) are
entry points for SCC S, when coming from the
predecessor SCC S;. Vertex (3, r4) in Sy is an exit
point when heading to SCC S3. In S3, vertex (rg, r9) is
both an entry point when coming from predecessor
S» and an exit point when heading to successor Ss. S1
has no predecessor SCCs and Sy has no successor
SCCs.

3 For every SCC X of L(D), path enumeration is
performed only between strictly necessary source
and destination vertices, as follows: (i) if X has at
least one predecessor and one successor SCC, then
paths are enumerated between feasible pairs of entry
and exit points for these SCCs; (ii) if X has no
predecessor and at least one successor SCC, then
paths are enumerated between every vertex of X and
exit points towards the successor SCC(s); (iii) if X has
at least one predecessor and no successor SCC, then
paths are enumerated between entry points from the
predecessor SCC(s) and every vertex of X; (iv) only if
X has no predecessor and no successor SCCs, paths
are enumerated between every pair of vertices of X.

The paths obtained through step 3 above are evaluated
in terms of span of their corresponding trails in D and the
best candidate paths among them are retained. They are
referred to as best partial paths.
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Concatenation of partial paths

A path Q in the condensation graph C of L(D) is “trans-
lated” into one or several paths in L(D) by concatenating
best partial paths in SCCs of L(D). Let C; and C; be two
consecutive vertices of a path Q in C of length at least 1.
Let S; and S; be the SCCs in L(D) corresponding to C; and
Cj, respectively. Then Q has more than one corresponding
path in L(D) if S; has at least two exit points when head-
ing to the successor SCC S}, or if S; has at least two entry
points when coming from the predecessor SCC S;.

For example, two paths in L(D) (Fig. 1e) correspond to
path Q1 = (S1, S2, S3, S4) in C (Fig. 1f): Py = ((r1,72),
(r2,77), (r7,18), (r8,13), (r3,14), (ra,19), (r9,r10)) and P} =
((r1,12), (ro,r3), (r3,1r7), (r7,78), (rs,7r3), (r3,ra), (ra,ro),
(r9,r10)). The corresponding trails in D (Fig. 1b) are
L™Y(P1) = (r1, 2, 17, 78, 13, 74, 79, 110) and L™1(P)) = (11,
ro, 13, ¥7, ¥, '3, 4, I'9, r10), both with span 8. Note that if
P (respectively P}) passed through arcs (r4, r5), (15, 76), or
(r6,12), then Py (respectively P}) would be a trail instead
of a path, which is not allowed.

In order to determine the solution to the MaSST prob-
lem, all paths in the condensation graph of L(D) are
enumerated such that their corresponding paths in L(D)
contain the SCC possessing the input arc (i, v) as vertex.
If a path in L(D) obtained by concatenating best partial
paths contains vertex (i, v), it is then evaluated in terms of
its span by comparing it to the best current solution and
by updating the current solution if necessary.

For example, let (&, v) = (rp,r7) (Fig. 1b). After trans-
lating path Q; = (S1, S2, S3, S4) in C to a path in L(D),
the best current solution P; has span 8 as shown above.
Now, suppose path Qy = (S, S3, Sa) (Fig. 1f) is enumer-
ated. There is one corresponding path in L(D) (Fig. 1e)
passing through (r, r7), obtained by concatenation of best
partial paths in Sy, S3, and Ss. The best partial path in Sy
ends in vertex (73, r4) (which is an exit point when heading
toward S3) and may start with any vertex in Sy, provided
the corresponding trail in D has maximum span. The path
in L(D) corresponding to Qy is therefore Py = ((r5,76),
(res72), (r2,77), (r7,718), (r8,73), (r3,74), (ra,r9), (r9,710)),
for which L~1(Py) has span 9. When P; and P, are com-
pared, the best current solution now becomes P, (because
L~1(P,) has maximum span and because G[ V (L™1(Py))]
is connected (Fig. 1d)).

HNET algorithm

We propose HNET (Heterogeneous NETwork mining),
an algorithm that solves the MaSST problem using the
MaSSCoT formulation internally (Algorithm 1). Unlike
the heuristic solution introduced in [23] to the LSP prob-
lem, HNET is an exact method. However, it is not exhaus-
tive, meaning that if several trails of maximum span pass
through a given arc (x,v) in D, then only one such trail
is reported as solution. The bottleneck in HNET is path
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enumeration at line 5. In effect, the number of paths
between two given vertices of a graph can be exponen-
tial with respect to the size of the graph. The exponential
worst-case complexity of path enumeration is due to the
NP-hardness of MaSST and MaSSCoT. The worst-case
scenario occurs when all possible paths are enumerated
between all pairs of vertices in a SCC. This scenario occurs
in two distinct cases which nonetheless rarely arise in
practice. The first case is that of SCCs of D that are com-
pletely disconnected from the rest of the graph. Sequences
of reactions in metabolic pathways that are completely
disconnected from the rest of the pathway are typically
very short and therefore not limiting for exhaustive path
enumeration. The second case is when D is strongly con-
nected, corresponding to the infrequent situation in which
a chain of reactions leads from any reaction r; to any other
reaction ; of a given metabolic pathway, and vice versa.
In the following, assume: D = (V, A) is a directed graph;
(u,v), an arc in D; G = (V, E), an undirected graph; L(D),
the line graph of D; and C, the condensation graph of L(D).

Algorithm 1 HNET(D, G, (u,v))
Input: A directed graph D = (V, A), an undirected graph
G = (V,E),an arc (u4,v) in D.

Output: A trail 7 of maximum span in D that includes
(u, v) such that G[ V(T)] is connected, or & if no such
trail exists.

: D,G < GRAPHREDUCTION(D, G, (i, v))

L(D) < LINEGRAPH(D)

C < CONDENSATIONGRAPH(L(D))

A <« ACCESSPOINTS(L(D), C)

B <— PARTIALPATHS(L(D), A)

: Let a € V(C) such that the SCC of L(D) correspond-
ing to a contains (1, v)

7. P<«— O

8: foralls € V(C) do

9. forallt e V(C)do

A o e

10: for all Q in ENUMERATEPATHS(C, s, t) do

11: ifa € V(Q) then

12: for all P’ in FINDPATHS(L(D), Q, B) do

13: if (u,v) € V() and G[ V(L™ YP))] is
connected then

14: P <« BESTPATH(P, P)

15: return L~1(P)

Algorithm GRAPHREDUCTION (line 1) returns the
reduced graphs D and G (see Graph reduction above). For
graphs D and G in Fig. 1 (panels b and d), the reduced
and unreduced graphs are the same. LINEGRAPH (line 2)
returns the line graph L(D) of the reduced input graph
(Fig. 1b, e). CONDENSATIONGRAPH (line 3) returns the
condensation graph of L(D), i.e. the directed acyclic graph
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obtained by replacing every SCC of L(D) by a single vertex
(Fig. 1e, f).

Algorithm ACCESSPOINTS determines entry and exit
points for every SCC X of L(D), from SCCs that are pre-
decessors of X and toward SCCs that are successors of
X (see Path finding in the line graph above, step 2). This
information is stored in a data structure A that the algo-
rithm returns at line 4. Algorithm PARTIALPATHS then
uses A to compute best paths in every SCC X of L(D) (in
terms of span of their corresponding trails in D) between
all feasible pairs of source and destination vertices. Source
vertices are entry points from predecessor SCCs if X has
predecessors, and vertices of X otherwise. Reciprocally,
destination vertices are exit points to successor SCCs if X
has successors, and vertices of X otherwise. These paths,
termed best partial paths, are stored in a data structure B
that the algorithm returns at line 5 (see Path finding in the
line graph above, step 3).

At line 6, HNET determines 4, the vertex of C whose
corresponding SCC in L(D) contains the input arc (i, v)
as a vertex. Next, all possible paths in C are enumerated
(lines 8-14) and, if they contain vertex 4, the correspond-
ing paths in L(D) are obtained by concatenation of best
partial paths stored in B. The best current solution is
updated accordingly. A path P in L(D) qualifies as a best
current solution if the trail in D corresponding to P,
L~1(P), fulfills the following conditions: (i) it contains the
input arc (u, v); (ii) it induces a connected subgraph in G;
(iii) it has maximum span so far.

Algorithm ENUMERATEPATHS at line 10 returns all
paths starting with vertex s and ending in vertex ¢ in the
condensation graph. If s and ¢ are the same vertex, the
algorithm returns either one. Algorithm FINDPATHS at
line 12 returns all paths in L(D) corresponding to path
Q in the condensation graph C, obtained by concatena-
tion of best partial paths stored in 5. Given two paths
in L(D), algorithm BESTPATH at line 14 returns the best
current path, i.e. the path among the two whose corre-
sponding trail in D has greater span than the other (see
Concatenation of partial paths above).

Finally, HNET returns the trail in D corresponding to
the best solution (line 15), effectively solving the MaSST
problem. An additional consistency check is performed
as detailed in [27] to ensure that the trail L71(P) also
“makes sense” when passing from G to the initial graph G’
(see Model and Fig. 1, panels a through d). It is checked
whether vertices in G’ corresponding to the vertex set of
the trail are connected. Note that [27] describes a heuristic
solution to LSP (see Problem formulation).

Allowing for skipped vertices

The MaSST and MaSSCoT formulations imply that solu-
tions consist of strictly neighboring genes and reactions.
As in a previous graph-based approach for the integration
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of heterogeneous biological data in another context [19],
a preprocessing step was added to CoMetGeNe in order
to allow for non contiguous reactions and/or genes. The
preprocessing step consists in modifying the input graphs
by adding arcs (respectively edges) between vertices sepa-
rated by at most dp other reactions (respectively 8 other
genes). 8p and §g are referred to as the gap parame-
ters. Their value should be set quite low (e.g. at most 3)
for ensuring that CoMetGeNe results are relevant from a
biological point of view.

Finding conserved metabolic and genomic patterns across
multiple species

Here we show how trail finding, presented in the pre-
vious section, can be used to identify conserved inter-
species metabolic and genomic patterns. We developed
two methods for grouping trails obtained using the
CoMetGeNe pipeline. They rely on examining trails of a
given species, the reference species, in terms of either reac-
tions or genes involved in these reactions, with the aim of
comparing trails of the reference species with similar trails
found for the remaining species. Both methods start out
by pooling together all trails produced by the CoMetGeNe
pipeline, for every species, every metabolic pathway, and
every combination of the gap parameters.

For reasons explained below, both trail grouping meth-
ods were designed to treat trails as reaction sets, meaning
that the order of reactions is not taken into account and
that repeated reactions are ignored. In Fig. 1b, trails 1 =
(ry, 17, 18, 13, r4) and ty = (ro, 13, 17, g, '3, r4) both have
the same corresponding reaction set {ry, r3, ra, 17, r3}.

As previously explained, CoMetGeNe determines trails
of reactions being catalyzed by neighboring genes. The
definition of conserved patterns (in terms of metabolic
and gene neighborhoods) needs to be able to accommo-
date slight variations between species. One such variation
is encountering a different reaction order between trails.
For example, if trails (r9,r10) and (r10,79) are identified
for two different species for the pathway in Fig. 1b, these
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trails naturally constitute a conserved pattern for the two
species. Another variation that needs to be taken into
account is best illustrated with the example of trails #; and
ty above. If these trails are obtained for different species,
the common feature is that both species perform the same
five reactions using products of neighboring genes, irre-
spective of reaction order and of whether reaction r3 is
repeated. Another example of variation that should not
prevent the identification of conserved patterns is related
to reactions (or genes) that are present in trails of some,
but not all, of the species. For example, suppose the trails
t3 = (ry, 13, r7) and ty = (r3, r7, rg) are identified for two
different species for the pathway in Fig. 1b. The fact that
reactions r3 and r7 are common to both trails and are cat-
alyzed by products of neighboring genes for both species
should be identified as a conserved pattern. The necessity
of accommodating these types of trail variations explains
the choice for processing trails as reaction sets during the
present trail grouping step.

Let P be the panel of selected species under study.
Species S € P denotes the chosen reference species.
Let Rs be the set of all reaction sets of S. Note that
reaction sets in Rg are not disjoint. From a biological
standpoint, Rs represents the pool of trails of the refer-
ence species produced by CoMetGeNe, viewed in terms of
reaction sets.

In the following, two genes of a given species are said to
be neighboring if they are separated by at most three other
genes on the same strand of the same chromosome.

Trail grouping by reactions
Briefly, the method of grouping trails by reactions consists
in grouping reactions of the reference species accord-
ing to the reaction sets they belong to. This grouping
method focuses more on metabolic rather than genomic
conserved patterns.

Grouping trails by reactions for the reference species S
consists in constructing a table T¢ where rows represent
reactions in every reaction set of S and columns represent

r, r, r, } R

w Iy

r2 r8
S --e-] U
r2 r7

6 8

1 1 1

B I X

1 1 1

Fig. 2 Gene neighborhood for species S and S;. Genes belonging to the same chromosomal strand are shown as rectangles. Neighboring and non
neighboring genes are linked with continuous and dotted edges, respectively. Reactions in which gene products are involved are specified above
each gene, with the exception of gene By of species S which does not code for an enzyme. Reactions belong to the pathway in Fig. 1b. R
represents a reaction set of S. R’ designates a maximal subset of R such that genes of S involved in reactions in R’ (in bold) are neighbors
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Table 1 Trail grouping by reactions and by genes for the
reference species S against species S5

R Sgenes (G) Sy genes (H) SiinTL SiinT{
rn U A

rs X X1 X X

3 % —

r7 w Wi X X

3 T Ty X X

R Neigh. (G) Neigh. (%)

Trail grouping by reactions and by genes are represented by the fourth (51 in T¢)
and fifth (Sy in Tf) columns, respectively (see text for definitions of the Tg and ng
tables). Labels without parentheses in table headers and footers refer to T, whereas

labels within parentheses refer to ng. R refers to both T{ and ng. R’ refers only to
T Entries in bold in columns R, S genes, and Sy genes respectively designate R’
and neighboring genes in S and S (see table footer) for Tg. For Tg, entries in bold in
columns G and H designate G” and H/, respectively (see table footer). R represents
a reaction set of S. G represents the group of neighboring genes of S whose products
catalyze the respective reactions in R. Symbols in column Sy in T¢ represent
conserved metabolic patterns between species S and S; for reactions in R. Symbols
in column Sy in ng represent conserved genomic patterns between species S and $;
for genes in G. Roughly speaking, R’ designates a maximal subset of R such that
genes of Sy involved in reactions in R’ are neighbors; H designates genes in S
involved in reactions in R; H' designates neighboring genes in H involved in
reactions in R. H' maximizes the number of genes in G’, where genes in H’ and

G’ € G are involved in the same reactions in R (see text for formal definitions)

the remaining species in P. Table T¢ reflects conserved
metabolic patterns between the reference species and the
rest of the panel through the three possible symbols that
can be assigned to each cell. These symbols allow to eas-
ily distinguish which reactions of the reference species are
not present in the other species (blanks), and which are
catalyzed by products of neighboring (crosses) and non
neighboring (dots) genes of the other species.

For example, for the trail ¢ = (r¢, 12, 13, 17, rg) in Fig. 1b
and the gene neighborhood in Fig. 2 for the reference
species S and another species S1, T is represented by the
first (R) and fourth (S; in Tg) columns in Table 1. Reaction
r3 is not performed by species S;. Reactions g, 17, and rg
are performed by neighboring genes of S (71, W1, and X3,
respectively), whereas reaction ry involves the product of
a distant gene.

Rows in table Tg represent reactions in Rg and are
ordered by reaction sets of S. Note that a given reac-
tion performed by species S appears several times in T
if it belongs to several reaction sets. Columns represent
the remaining species in P and are ordered according to
evolutionary distance to S, such that species phylogenet-
ically closer to S have lower column indexes than species
phylogenetically distant from S.

Let T¢[i,j] denote the cell in T¢ on row i and column
j. Let r; denote the reaction of species S corresponding
to row i in Tg. Let S; denote the species correspond-
ing to column j in Tg. Let R C Rg denote the reaction
set of species S to which reaction r; belongs. For the
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example presented above, the reaction set of species S that
is investigated is R = {ry, r3, 16, 17, rg} (see the first
column (R) in Table 1).

Let R’ denote a maximal subset of R such that the genes
of S involved in R’ are neighbors. For the above example,
the subset R’ is {r¢, 17, rg} (see R/, i.e. entries in bold in
the first column (R) in Table 1) because reactions in R’
involve the neighboring genes 77, W1, and X7, respectively
(even though gene Bj is skipped).

One of the following three symbols is assigned to each
cell T[4, 5]:

across (x) ifr; e R'.
adot () ifr; € R — R’ and r; is performed by species
S1.

e ablankifr; € R — R’ and r; is not performed by
species Sj.

For the above example (see the fourth column (S; in
Tg) in Table 1), the cells corresponding to reactions in
R’ receive a cross symbol (x). Since reaction ry is per-
formed in S; by gene A; which is not a neighbor of W1,
Ty, or Xj, the corresponding cell on column S; in Tg
receives a dot symbol (.). Finally, reaction r3 is absent
from Sj, therefore the corresponding cell receives a blank.
The interpretation is that reactions rg, r7, and rg are per-
formed in species S; by products of neighboring genes.
Reaction r3 is absent from S;, whereas the gene involved
in ry is not a neighbor of genes involved in reactions
e, 7, and rg.

Trail grouping by genes

Here, we group CoMetGeNe reaction sets according
to the gene order of the reference species. This sec-
ond grouping method focuses more on genomic rather
than metabolic conserved patterns. Two genes coding
for enzymes involved in the same metabolic reaction are
referred to as functionally similar genes. Functionally sim-
ilar genes in two species can be either analogues (prod-
ucts of convergent evolution) or homologues (products of
divergent evolution).

Grouping trails by genes consists in constructing a table
Tg where rows represent genes of the reference species
S involved in reaction sets shared by S and at least one
other species in P, and columns represent the remain-
ing species in P. Table Tf reflects conserved genomic
patterns between the reference species and the rest of
the panel through the two possible symbols that can be
assigned to each cell. These symbols allow to easily dif-
ferentiate genes of S with neighboring (crosses) and non
neighboring (dots) functionally similar genes in other
species.

For example, for the trail ¢ = (rg, r2, r3, 17, rg) in Fig. 1b
and the gene neighborhood in Fig. 2 for the reference
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species S and another species Si, Tf is represented by the
second (G) and fifth (S; in Tﬁ) columns in Table 1. Genes
X1, W1, and T; of S; respectively have the neighboring
functionally similar genes X, W, and T in the reference
species S.

Let Rg, be the set of all reaction sets for species S1 €
P — {S}. Let R be the set of reaction sets defined by:

R=RgN

U &

S1eP—{S}

Hence, R represents the set of reaction sets common to
S and at least one other species in P. Let Gg be the set of
genes of the reference species S that are involved in reac-
tions belonging to reaction sets of R. From a biological
standpoint, Gs represents the pool of genes of the refer-
ence species coding for enzymes involved in reaction sets
common to S and at least one other species in P.

Rows in table Tg represent genes from Ggs and are
ordered by chromosome and strand, according to the
position of genes on the strand. Columns represent the
remaining species in P and are ordered according to evo-
lutionary distance to S (see Trail grouping by reactions).

Let S; denote the species corresponding to column j
in Tg. Let G be a subset of Gs such that genes in G are
neighbors on the same strand and chromosome of S. For
the example presented above, the gene group of species S
that is investigated is G = {U, X, V, W, T’} (see the second
column (G) in Table 1).

Let R be the set of reactions in all reaction sets in which
the genes in G are involved. Formally, R is the set of all
reactions r such that: (i) there exists a reaction set 4 of
species S such that 7 € %, and (ii) there existsa gene g € §
such that g is involved in r. In other words, given a group
G of neighboring genes of S, R is the set of reactions in
trails common to S and at least one other species in P such
that reactions in ‘R are catalyzed by products of genes in
G. For the above example, R is {ro, 3, 14, 77, 73} (see the
first column (R) in Table 1).

Let H be the set of genes of S; involved in reactions in
R. That is, given R, the genome for species Si, and the
correspondence between reactions in ‘R and genes of S,
H is the set of genes in S; (along with their position on
the chromosome) such that every gene in # is involved in
at least one reaction in R. For the above example, H =
{A1, X1, W1, T1} (see the third column (#) in Table 1).

Let H' C H be neighboring genes in H, and let G’ C
G such that genes in H’ and G’ are involved in the same
reactions in R. H’ is chosen such as to maximize |G|, i.e.
the number of genes in G involved in the same reactions
as neighboring genes in H.

For the above example, gene A; is not a neighbor of
gene Wi, therefore ' must be a strict subset of H.
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There are several possible strict non empty subsets of
‘H of neighboring genes, other than singletons: {W7, T1},
{W1,X1}, {T1, X1}, and {W7, T1, X1}. The subset of H that
is of interest is H' = {W71, T1, X1}, as it maximizes the
number of genes in G involved in reactions in R; G’ is thus
{X,W, T} (see H and G/, i.e. entries in bold in the third
(H) and second (G) columns, respectively, in Table 1). The
genes in H’ can be considered neighbors because only
gene B; needs to be skipped as it does not code for an
enzyme. The subset of reactions in R catalyzed by genes
in H' is therefore {rg, r7, rg}.

Let Tf[ i,j] denote the cell in Tf on row i and column
j» where i is the index in Gg of a gene g; in G. One of the
following two symbols is assigned to each cell Tf[ ijl:

e across (x)ifg; € G
e adot()ifgie G—¢G'.

For the above example, cells for genes U and V receive a
dot symbol (.), whereas cells for genes X, W, and T receive
a cross symbol (x) (see the second (G) and fifth (S in Tg)
columns in Table 1). The interpretation is that genes X,
W, and T of the reference species are involved in reac-
tions catalyzed by neighboring genes in species S1. Notice
that from trail grouping by genes alone it is not possi-
ble to decide whether the reactions catalyzed by genes U
and V are absent from S; or performed by products of
non neighboring genes. Trail grouping by genes assigns
dot symbols to S; for genes U and V of the reference
species. However, trail grouping by reactions assigns a dot
symbol to ry and a blank to r3, thus effectively distin-
guishing between reactions present in S; (r2) and absent
from S7 (r3).

Pipeline

Trail finding (the HNET algorithm) and trail grouping
are implemented in the form of CoMetGeNe, a Python
2.7 pipeline available under a MIT license at https://
cometgene.lri.fr. CoMetGeNe is not compatible with
Python 3. The following Python libraries are required:
NetworkX (version > 1.10 and < 2.2) for graph handling,
and Ixml (version > 3.5.0) for XML parsing. An Inter-
net connection is mandatory for automatic data retrieval.
Pipeline usage is detailed in Additional file 3.

CoMetGeNe files

CoMetGeNe automatically extracts the necessary data
from KEGG using its REST API [30]. Metabolic path-
ways are stored in KGML format in a user-specified
directory. Only pathways for primary and secondary
metabolism excluding global and overview maps are
extracted (i.e., maps whose KEGG identifier is at least
01100 are excluded). Genomic and EC number informa-
tion are stored in binary format.
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Trail finding

The script CoMetGeNe.py offers a convenient
command-line interface for Finding metabolic and
genomic patterns for a single species. The only required
information is the species to be analyzed (designated by
its three- or four-letter KEGG identifier [31]) and the
directory where metabolic pathways of the species in
question will be stored. Optionally, the gap parameters dp
and 8¢ can be specified (their default value being 0), as
well as an output file for the results.

An important speedup is attained if CoMetGeNe
is ran in parallel using the provided script
CoMetGeNe launcher.py. Restrictions inherent
to KEGG limit pathway and genomic information
retrieval to 3 and 2 threads, respectively. Trail finding
in CoMetGeNe can, however, take full advantage of the
maximum number of physical threads. See Results for
CoMetGeNe run times.

A potential caveat when running CoMetGeNe in paral-
lel is that KEGG may block concurrent downloads when
using a fast Internet connection. Another potential caveat
is that the machine may run out of memory on very large
datasets (hundreds or thousands of species). In both cases,
a possible workaround consists in adjusting parameters
for CoMetGeNe launcher.py. In the latter case, the
dataset may be split into several smaller batches. For more
details, see the “Trail finding” page on the CoMetGeNe
website (https://cometgene.Iri.fr/tfinding.html).

Storing metabolic pathways and genomic informa-
tion for a given species allows CoMetGeNe to per-
form trail finding without re-downloading the same
data for subsequent executions, e.g. when CoMetGeNe
is ran for the same species but with different gap
parameters.

CoMetGeNe uses a configurable timeout (defaulting to
5 min) for analyzing a given metabolic pathway. If the
timeout is reached without producing any result, the path-
way in question is “blacklisted” for the current species
and set of gap parameters. This prevents CoMetGeNe
from further attempting to analyze the given pathway
for subsequent executions if the gap parameters increase.
For example, a pathway that is blacklisted for (5p = 2,
3¢ = 2) will not be further analyzed for (8p,dg) €
{(2,3),(3,2),(3,3)}. The blacklist is stored locally as a
text file. Blacklisted pathways are computationally pro-
hibitive due to the exponential number of enumerable
paths. However, blacklisted pathways only amount to 3.3%
of our dataset (121 out of 3709 pathways).

Trail grouping

Once CoMetGeNe results are available for several species,
trail grouping can be performed in order to iden-
tify conserved metabolic and genomic patterns for sev-
eral organisms (see Finding conserved metabolic and
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genomic patterns across multiple species). The script
grouping.py provides this functionality and offers the
possibility to save tables T¢ and Tf in CSV format.

Three binary files are created when grouping trails by
either reactions or genes. They contain pathway data,
genomic information, and parsed CoMetGeNe results
that can be reused when choosing another species as
reference.

Experimental setup

The test machine is a quad-core 2.6 GHz Intel Xeon E5-
2623 v4 (Broadwell) with 10 MB L3 cache and 64 GB of
RAM, running under Ubuntu GNU/Linux 16.04.3 LTS.
Although the test machine has 64 GB of main memory,
running CoMetGeNe on a single thread only requires
approximately 100 MB of RAM.

Results

Using CoMetGeNe, we performed trail finding and trail
grouping on a panel of 50 bacterial species spanning major
phyla of the bacterial tree of life (Table 2), with gap param-
eters dp and §g ranging from O to 3 (see Allowing for
skipped vertices). Full results are available in Additional
file 4. Genome size varies between 1062 and 8300 genes,
with an average of 3269.5 genes. In total, 3709 pathways
were extracted (74 pathways per species, on average).
Metabolic and genomic data were extracted from KEGG
on June 1, 2018 (see CoMetGeNe files and Additional
file 5). See Additional file 6 for statistics per species on
genome size, number and percentage of enzyme-coding
genes, and number of pathways.

A total of 4179 CoMetGeNe trails were identified, of
which 2620 (62.7%) occur solely in a single species. The
number of trails per species varies between 19 and 501,
with an average of 201 trails. Table 3 shows trail span
distribution (recall that the span of a trail represents the
number of distinct reactions in the trail). The majority of
trails are short, consisting of up to three distinct reactions.
Other trails, however, have as many as 35 unique reac-
tions, e.g. for the fatty acid biosynthesis pathway in Bifi-
dobacterium breve (bbv) and Streptococcus pneumoniae
(snd), see Additional file 7 for the full list of reactions. See
Additional file 6 for statistics per species on the number
of trails, as well as the average and median trail span.

The trail finding run time for CoMe t GeNe for the whole
dataset of 50 bacterial species (Table 2) was under 4 hours
and 30 min when using 8 threads (see Additional file 8 for
execution times per species). The trail finding run time
does not take into account the time required to auto-
matically retrieve data from KEGG, as this is dependent
upon the Internet connection speed and upon the num-
ber and size of the selected genomes. In our experimental
setup, metabolic pathways and genomic information were
retrieved in 12 and 76 min, respectively. When each of the
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Table 2 The panel of 50 bacterial species chosen for this study
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Species Strain Class KEGG
code
Escherichia coli K-12 MG1655 y-proteobacteria eco
Yersinia pestis CO92 (biovar Orientalis) y-proteobacteria ype
Vibrio cholerae 0395 y-proteobacteria vco
Shewanella putrefaciens CN-32 y-proteobacteria spc
Pseudomonas aeruginosa PAO1 y-proteobacteria pae
Xylella fastidiosa 9a5¢c y-proteobacteria xfa
Ralstonia solanacearum GMI1000 B-proteobacteria rso
Neisseria meningitidis MC58 (serogroup B) B-proteobacteria nme
Acidithiobacillus ferrivorans — Acidithiobacillia afi
Agrobacterium radiobacter — a-proteobacteria ara
Rickettsia rickettsii lowa a-proteobacteria rrj
Geobacter sulfurreducens PCA §-proteobacteria gsu
Nitrospira defluvii — Nitrospira nde
Acidobacterium capsulatum — Acidobacteriales aca
Desulfurispirillum indicum — Chrysiogenetes din
Fusobacterium nucleatum subsp. nucleatum ATCC 25586 Fusobacteriia fnu
Denitrovibrio acetiphilus — Deferribacteres dap
Thermodesulfatator indicus — Thermodesulfobacteria tid
Aquifex aeolicus — Aquificae aae
Bacillus subtilis subsp. subtilis 168 Bacilli bsu
Listeria monocytogenes EGD-e Bacilli 1lmo
Staphylococcus aureus subsp. aureus N315 (MRSA/VSSA) Bacilli sau
Lactobacillus acidophilus NCFM Bacilli lac
Streptococcus pneumoniae ST556 Bacilli snd
Clostridium perfringens 13 Clostridia cpe
Mycoplasma pneumoniae M129 Mollicutes mpn
Synechocystis sp. PCC 6803 Cyanobacteria (phylum) syn
Prochlorococcus marinus subsp. marinus CCMP1375 Cyanobacteria (phylum) pma
Chloroflexus aurantiacus — Chloroflexia cau
Bifidobacterium breve ACS-071-V-Sch8b Actinobacteria bbv
Corynebacterium glutamicum ATCC 13032 (Kyowa Hakko) Actinobacteria cgl
Mycobacterium tuberculosis H37Rv Actinobacteria mtv
Streptomyces coelicolor — Actinobacteria sco
Deinococcus radiodurans — Deinococci dra
Thermus thermophilus HB27 Thermi tth
Fimbriimonas ginsengisoli — Fimbriimonadia fgi
Acetomicrobium mobile — Synergistia amo
Thermotoga maritima MSB8 Thermotogae tmm
Caldisericum exile — Caldisericia cex
Dictyoglomus thermophilum — Dictyoglomia dth
Fibrobacter succinogenes — Fibrobacteria fsu
Gemmatimonas aurantiaca — Gemmatimonadetes gau
Chlorobium phaeobacteroides DSM 266 Chlorobia cph
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Table 2 The panel of 50 bacterial species chosen for this study (Continued)

Species Strain Class KEGG
code
Bacteroides fragilis YCH46 Bacteroidia bfr
Rhodopirellula baltica — Planctomycetia rba
Chlamydia pneumoniae CWL029 Chlamydiia cpn
Opitutus terrae — Opitutae ote
Borrelia burgdorferi N40 Spirochaetia bbn
Elusimicrobium minutum — Elusimicrobia emi
Helicobacter pylori 26695 g-proteobacteria heo

See Additional file 6 for statistics per species (genome size, number and percentage of enzyme-coding genes, number of pathways, number of trails, average and median

trail span, number of trails of span between 1 and 3, between 4 and 10, and 11 or higher)

species in the dataset is taken in turn as reference species,
trail grouping by reactions and by genes takes approxi-
mately one hour in total. Thus, data retrieval from KEGG
for our bacterial panel (Table 2), followed by trail finding
and trail grouping, amounted to approximately 7 hours.

Available software for detecting metabolic reactions
being catalyzed by products of neighboring genes is
scarce. The C3Part/Isofun package [32] implements the
methods proposed in [19-21]. It takes as input a file in
extended DIMACS format describing the layered multi-
graph [21], and outputs connected components common
to both layers in the multigraph. Unlike C3Part/Isofun,
the CoMetGeNe software does not require the user to
prepare any input files as they are extracted automati-
cally from KEGG, thus rendering CoMetGeNe extremely
simple to use. In order to evaluate C3Part/Isofun, we con-
structed the input files corresponding to the pathways
and genome of Escherichia coli. Since C3Part/Isofun pro-
duces undirected subgraphs whereas CoMetGeNe out-
puts trails, comparing the two programs is not straightfor-
ward. We therefore investigated whether the reaction sets
corresponding to CoMetGeNe trails may be found among
the results of C3Part/Isofun and vice versa. CoMetGeNe
and C3Part/Isofun extracted 114 trails and 65 subgraphs,
respectively. While most results are common to the two
programs, CoMetGeNe detected 50 additional trails with
respect to C3Part/Isofun, whereas C3Part/Isofun identi-
fied 7 additional subgraphs with respect to CoMetGeNe.
These subgraphs, being undirected, do not translate actual
metabolic routes, some of them corresponding to partly
overlapping CoMetGeNe trails. The comparison between
CoMetGeNe and C3Part/Isofun is detailed in Additional
file 9.

Table 3 Distribution of trail span

Trail span Percentage of trails
1-3 56.4%

4—10 38.7%

11-35 4.9%

CoMetGeNe recovered trails in most major path-
ways of E. coli, including nucleotide metabolism, fatty
acid biosynthesis, carbohydrate metabolism, and amino
acid metabolism. For example, CoMetGeNe trails were
detected for the biosynthesis of every amino acid with the
exception of tyrosine and tryptophan. In the following,
two case studies in E. coli are illustrated, the first involved
in glycan metabolism, and the second one in amino acid
metabolism.

Exploring steps of peptidoglycan biosynthesis

Figure 3a illustrates trail finding by CoMetGeNe on the
well-studied biological process of peptidoglycan biosyn-
thesis. Peptidoglycan is the main constituent of the bacte-
rial cell wall and is present in the vast majority of bacteria.
The trail in Fig. 3a was recovered in the peptidogly-
can biosynthesis pathway of Escherichia coli (eco00550)
and represents the conversion of UDP-N-acetylmuramate
(UDP-MurNAc) into a precursor of DAP-type peptido-
glycan. Figure 3b shows the genes coding for enzymes
involved in this trail: murE (b0085), murF (b0086),
mraY (b0087), murD (b0088), murG (b0090), and murC
(b0091). Note that the trail produced by CoMetGeNe
was obtained by skipping gene ftsW (60089), with gap
parameter ég set to 1.

The skipped gene encodes the FtsW protein, which plays
an essential role in cell division [33]. Moreover, it has been
shown that FtsW is also a transporter of peptidoglycan
precursors across the inner membrane [34]. It is there-
fore interesting that the gene encoding this transporter,
although not included in the trail, is found in the same
neighborhood as peptidoglycan biosynthesis genes. This
underlines the capacity of CoMetGeNe to identify trails of
reactions that are compatible with their genomic context.

Trail grouping was performed for E. coli (eco) as ref-
erence species. Figures 3c and 3d respectively illustrate
the portions in tables TS, (trail grouping by genes)
and T7_, (trail grouping by reactions) corresponding to
the trail in Fig. 3a, for E. coli and 9 other bacterial
species presenting interesting features. Trail grouping by
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Fig. 3 CoMetGeNe trail for £. coli in the peptidoglycan biosynthesis pathway. a Partial view of the peptidoglycan biosynthesis pathway, adapted
from KEGG PATHWAY, map eco00550 (August 3, 2018 version). Green reaction nodes designate reactions present in £. coli. The gap parameter 8¢
was set to one (thus allowing to skip one gene). Reactions in the trail (red contours) are labeled with the corresponding KEGG reaction identifiers (R
numbers) and with the Blattner identifiers and gene names of genes coding for the respective enzymes. The genes involved in this trail are
neighbors on the positive strand of the E. coli chromosome (see b). Dashed arrows from a metabolite m to another metabolite m’ signify that a
chain of reactions, omitted in this figure for clarity, leads from m to m’. b Genomic context for genes involved in the trail in a. The gene in gray is not
involved in the trail. € Group of homologous genes involved in the trail in a, present in various species. See Trail grouping by genes for details.

d Group of reactions defining the trail in a. eco_gene designates the gene in E. coli whose product catalyzes the corresponding reaction. See

Trail grouping by reactions for details. In this figure, all reactions that are absent from certain species (blanks) are highlighted in gray

genes and by reactions for the full dataset is available in
Additional files 10 and 11, respectively.

Trail grouping by genes identifies genes of the refer-
ence species with neighboring functionally similar genes
in other species. The degree of conservation of gene
neighborhood for the genes involved in a given trail is
directly proportional to the number of cross symbols (x)
in Tf for the reference species S. The density of crosses in
Té o (Additional file 10) confirms that the trail in Fig. 3ais
frequently found for the species in the dataset, albeit with
varying degrees of conservation of gene neighborhood.
This finding represents a positive control, being consistent
with the fact that most bacteria possess peptidoglycan cell
walls.

Cells with dot symbols (.) in Tgco (Fig. 3c and
Additional file 10) do not allow to distinguish between
non neighboring and missing genes. However, Fig. 3d
identifies species with missing reactions (in gray in
the figure) with respect to E. coli: Geobacter sulfurre-
ducens (gsu), Staphylococcus aureus (sau), Mycoplasma

pneumoniae (mpn), Fimbriimonas ginsengisoli (£gi),
Rhodopirellula baltica (rba), and Opitutus terrae (ote).
The remaining species perform all the reactions but do
not necessarily have contiguous genes coding for the
required enzymes. Of the six species with missing reac-
tions with respect to E. coli, M. pneumoniae (mpn) is a
negative control, as it is well-known that it is devoid of a
cell wall [35].

G. sulfurreducens (gsu), a deltaproteobacterium [36]
with a peptidoglycan dry weight fraction of 4% [37],
is reportedly missing reaction R04617 (Fig. 3d) which
should be catalyzed by MurF (Fig. 3a). However, the
KEGG GENES entry GSU3073 is annotated as murF [38]
but the gene is not associated to reaction R04617 in the
pathway map as of the writing of this paper (August 3,
2018 version of map gsu00550). GSU3073 is located in
the same gene neighborhood as the other genes encod-
ing the enzymes for the reactions in Fig. 3d. Moreover,
as revealed by CoMetGeNe, every other reaction in the
trail is performed by enzymes encoded by neighboring
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genes. We confirmed the functional annotation murF
for gene GSU3073 by performing a protein BLAST [39]
for the E. coli MurF query sequence against G. sul-
furreducens (NCBI taxon 35554). The matching protein
WP_010943698 (40% identity, 98% query cover, E-value
le—76) corresponds to gene GSU3073 via the identical
protein YP_006589581. The missing reaction R04617 for
G. sulfurreducens (gsu) is hence an instance of incor-
rect annotation in the KEGG knowledge base in the sense
that gene GSU3073 has not been associated to reaction
R04617.

S. aureus (sau) is a Gram-positive bacterium [40],
well known to produce lysine-type peptidoglycan (dashed
arrow in Fig. 3a) instead of DAP-type peptidoglycan.
This is accomplished using the alternative route pass-
ing through reactions R02783 (EC 6.3.2.9) and R02786
(EC 6.3.2.7). The metabolic route leading to lysine-type
peptidoglycan in Staphylococcus shares the two reactions
catalyzed by MurC (R03193) and MurD (R02783) with
the route leading to DAP-type peptidoglycan. Equivalents
of the other four reactions in Fig. 3d exist in lysine-
type peptidoglycan biosynthesis and are performed by
the same enzymes (MurE, MurF, MraY, and MurG) on
UDP-MurNAc substrates having lysine (instead of DAP)
residues. As illustrated in Fig. 3d, only two genes among
those involved in peptidoglycan biosynthesis in S. aureus
are neighbors (mraY and murD).

E ginsengisoli (£gi), a member of the recent Arma-
timonadetes phylum, is reportedly missing reaction
R03193 (EC 6.3.2.8 in Fig. 3a) which should be cat-
alyzed by MurC (Fig. 3d). Since this species has been
described as synthesizing DAP-type peptidoglycan [41]
and it also performs every other reaction in the trail
in Fig. 3a using products of neighboring genes, we pro-
ceeded to a protein BLAST [39] search against F ginsen-
gisoli (NCBI taxon 1005039) with the MurC sequence of
Chthonomonas calidirosea, another member of the Arma-
timonadetes phylum, as query. The search was incon-
clusive, as the best match (WP_025227986) corresponds
to gene OP10G_4783 which encodes a hypothetical pro-
tein roughly half the size of MurC and with no known
domains, and the second best match (AIE88152) corre-
sponds to gene OP10G_4784 which is a D-alanine-D-
alanine ligase (ddl), being involved in another reaction
in the peptidoglycan biosynthesis pathway (see dd! in
Fig. 3a). Intriguingly, OP10G_4784 has been annotated
as a UDP-N-acetylmuramate—L-alanine ligase, which
describes the role of MurC. Furthermore, OP10G_4784
has the additional Mur_ligase_C annotation, correspond-
ing to the C-terminal Mur ligase domain, but MurC
should possess additional middle and catalytic domains.
Although the STRING database [42] reports that fusions
of murC and ddl occur frequently in the Chlamydiae phy-
lum, it does not appear to be the case for OP10G_4784
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due to missing Mur ligase domains and different sequence
size with respect to murC-ddl fusions in Chlamydiae.
Interestingly, a Mur ligase catalytic domain is reported
for the short neighboring gene OP10G_4785, also anno-
tated as a UDP-N-acetylmuramate—L-alanine ligase. A
KEGG ortholog search for OP10G_4785 reveals longer
murC ortholog sequences in other species. Two hypothe-
ses are therefore possible: (i) the activity EC 6.3.2.8 is
performed jointly by products of genes OP10G_4784
and OPI0G_4785 in E ginsengisoli (£g1i), or (ii) the
open reading frame for OPI0G_4784 was incorrectly
predicted, the ddl coding sequence erroneously includ-
ing a Mur ligase C domain that may in fact belong to
OP10G_4785.

R. baltica (rba), as other Planctomycetes, has been
thought to be lacking peptidoglycan [43]. Consistent with
annotations in KEGG reflecting the existing genome
annotations, CoMetGeNe only identifies one reaction
among the six in the trail in Fig. 3a as being present
in R. baltica. In addition, no peptidoglycan biosynthesis
genes are currently listed in the STRING database [42]
for other Planctomycetes beside members of the Plancto-
myces genus. However, Jeske et al. [44] have biochemically
demonstrated that sugar and peptide components of pep-
tidoglycan are present in Planctomycetes. The study also
uses an in silico approach to identify candidate peptido-
glycan biosynthesis genes in R. baltica and other Planc-
tomycetes. The fact that the findings of this study are yet
to be reflected in existing annotations indicates the diffi-
culty of validating proposed gene function. Consequently,
CoMetGeNe correctly identifies the only reaction in the
trail in Fig. 3a that is associated to an annotated gene in R.
baltica (rba).

O. terrae (ote), a member of the subdivision 4 of the
Verrucomicrobia phylum, had been thought to be one
of the very few exceptions of free-living bacteria with-
out peptidoglycan [45]. Using CoMetGeNe, we however
determined that all reactions in the trail in Fig. 3a are
present in O. terrae (Fig. 3d), with the exception of reac-
tion R03193 which should be catalyzed by MurC. Fur-
thermore, the five present reactions are catalyzed by prod-
ucts of neighboring genes. These CoMetGeNe results are
in agreement with the data obtained by Rast et al. [46],
who have recently challenged the concept of free-living
bacteria lacking peptidoglycan. They proved that mem-
bers of the Opitutaceae family do possess peptidoglycan
cell walls. We propose the candidate murC gene in O. ter-
rae to be Oter_2637, following a protein BLAST [39] for
the E. coli MurC query sequence (WP_012375453 with
29% identity, 94% query cover, E-value 5e— 41).

Uncovering unexpected gene ordering patterns
Figure 4a shows a CoMetGeNe trail for E. coli in
the glycine, serine, and threonine metabolism pathway
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Fig. 4 CoMetGeNe trail for E. coli in the glycine, serine, and threonine metabolism pathway. a Partial view of the glycine, serine, and threonine
metabolism pathway, adapted from KEGG PATHWAY, map eco00260 (October 26, 2017 version). Reaction R02291 performing the enzymatic
activity 1.2.1.11 was skipped (8p = 1). Genes with black identifiers do not belong to the gene group in b. Genes with red identifiers are neighbors on
the positive strand of the E. coli chromosome. See Fig. 3a for other explanations. b Group of homologous genes involved in the trail in a, present in
various species. Eleven of the species in the dataset (highlighted in gray) either do not have functionally similar genes to 60003, or are not
contiguous with genes functionally similar to 60002 and b0004. «-, B-, y -, and §-proteobacteria are highlighted in pink; Terrabacteria, in brown;
Sphingobacteria (FCB bacteria), in yellow; and Planctobacteria (PVC bacteria), in light green. € Group of reactions defining the trail in a. The cells
highlighted in gray correspond to the three species among the ones highlighted in gray in b that do not perform reaction R01771 (catalyzed by

(eco00260), representing the conversion of aspartate
into threonine. CoMetGeNe produced this trail by skip-
ping reaction R02291 (EC 1.2.1.11), with gap parameter
Sp setto 1.

Figures 4b and 4c respectively show the corresponding
grouping by genes and by reactions for E. coli as refer-
ence species and 30 other bacteria from the dataset (trail
grouping for the full dataset is available in Additional
files 12 and 13). In the case of the 11 species highlighted
in gray in Fig. 4b, functionally similar genes to b0003 are
not neighbors of functionally similar genes to 0002 and
b0004. The relevant genomic context for these species
and two additional ones, Denitrovibrio acetiphilus (dap)
and Rhodopirellula baltica (rba), is shown in Fig. 5.

Figure 4c shows that, of the species highlighted in
gray in Fig. 4b, Caldisericum exile (cex), Gemmatimonas
aurantiaca (gau), and Bacteroides fragilis (;ofr) do not
perform reaction R01771 (EC 2.7.1.39), in which the
product of gene 0003 is involved (species highlighted in
gray). Only Lactobacillus acidophilus (Lac) conserved the
functionally similar gene LBA1211 as a neighbor of the
gene performing the reaction {R01773, R01775} (see
also Fig. 5). The functionally similar genes to »0003 for the
other species highlighted in gray in Fig. 4b exist, but they
are located farther on the bacterial chromosome.

Figure 5 shows that strictly neighboring functionally
similar genes involved in reactions {R01773, R01775}

(EC 1.1.1.3, in green) and R01466 (EC 4.2.3.1, in blue)
are conserved for Pseudomonas aeruginosa (pae), Ral-
stonia solanacearum (rso), Acidithiobacillus ferrivorans
(afi), Nitrospira defluvii (nde), and Desulfurispiril-
lum indicum (din). Interestingly, bi-functional enzymes
catalyzing both reactions R00480 (EC 2.7.2.4, in yel-
low) and {R01773, R01775} (EC 1.1.1.3, in green) are
present for E. coli (eco), C. exile (cex), G. aurantiaca
(gau), and B. fragilis (bfr).

Intriguingly, in species N. defluvii (nde), D. indicum
(din), and B. fragilis (bfr), the genes involved in reac-
tions R00480 (EC 2.7.2.4, in yellow) and R01466 (EC
4.2.3.1, in blue) are separated by a gene whose product
is involved in the reaction R01518 (EC 5.4.2.12, in red).
The bacterial panel was examined in order to determine
whether other species exhibit a similar gene ordering pat-
tern. Only D. acetiphilus (dap) and R. baltica (rba) have
neighboring genes involved in R01518 and other reac-
tions from the trail in Fig. 4a. The common denominator
for all five species seems to be that the genes whose
products catalyze reactions R01518 (EC 5.4.2.12, in red)
and R00480 (EC 2.7.2.4, in yellow) are strict neighbors
(Fig. 5). Reaction R01518 makes use of a phosphomu-
tase activity for transferring a phosphate group within
the same molecule (phosphoglycerate), whereas R00480
employs a phosphotransferase activity for adding a phos-
phate group to aspartate using ATP. Although there is no
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Fig. 5 Genomic context for genes involved in the trail in Fig. 4a. Two additional reactions are shown: R02291 (EC 1.2.1.11) linking reactions
R00480 (EC2.7.24)and {R01773,R01775} (EC 1.1.1.3),and R01518 (EC 54.2.12) representing a phosphoglycerate mutase activity farther along
the glycine, serine, and threonine metabolism pathway. Neighboring genes are linked by an edge. Genes are color-coded according to the
reactions in which the enzymes they encode take part. Two pairs of neighboring genes on different strands of the bacterial chromosome are shown
for L. acidophilus (Lac) and G. aurantiaca (gau). The gene in white in T. thermophilus (t th) encodes a hypothetical protein. D. acetiphilus (dap) and
R. baltica (rba) exhibit a similar gene ordering pattern to N. defluvii (nde), D. indicum (din), and B. fragilis (b£x) (see text)

obvious link between the two reactions aside from the
transfer of a phosphate group, it could be an instance of
genomic hitchhiking [47]. This means that operons some-
times contain functionally unrelated genes that nonethe-
less share similar expression requirements with the rest
of the operon. It is possible that gene apgM (encoding
the enzyme involved in reaction R01518, in red) benefits
from the expression levels of genes involved in the trail
in Fig. 4a. At any rate, a physiological and/or biochemical
reason for co-expression of apgM and the gene involved
in R0O0480 (in yellow) seems to exist, since the two genes
are neighbors across the bacterial domain, as reported in
the STRING database [42].

Discussion

To contribute insights into the understanding of the
complex architecture of pathways forming the primary
metabolism [48, 49] and the relationship between
metabolism and genomic context [50, 51], we designed
CoMetGeNe, a method for the discovery of metabolic and
genomic patterns for one species (trail finding) or for a
group of species (trail grouping).

Trail finding identifies trails of reactions catalyzed by
products of neighboring genes. Flexibility is allowed in the
definition of reaction and gene neighborhoods by autho-
rizing that several reactions and/or genes be skipped.
Trail finding is an exact approach using graph reduction
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and path finding in the line graph of the directed graph
modeling a metabolic pathway. Path finding in the line
graph of a directed graph vyields trails in the given
directed graph and is based on path enumeration. Since
metabolic and genomic data are required for trail find-
ing, the CoMetGeNe pipeline also handles automatic
data retrieval from KEGG. Considering the quantity of
metabolic and genomic data to be retrieved and ana-
lyzed, as well as the exponential nature of the HNET
algorithm due to MaSST and MaSSCoT being NP-hard,
the total trail finding run time (including data retrieval)
for the selected panel of 50 bacterial species (Table 2) was
quite satisfactory, amounting to less than 6 hours. More-
over, CoMetGeNe execution time is linear with respect
to the number of species to analyze. Data retrieval and
trail finding for the 1545 completely assembled represen-
tative bacterial genomes present in NCBI Genomes as of
November 2018 [52], for instance, requires approximately
8 days. Additional files 14 and 15 contain trail finding
results and statistics, respectively, for 1467 of the 1545
species having an identifiable equivalent in KEGG.

Following trail finding, trail grouping is a second step
leading from metabolic and genomic patterns for a sin-
gle species (trails) to the identification of potentially
interesting conserved metabolic and genomic patterns in
interspecies comparisons. In order to capture the most
relevant conserved patterns across multiple species, it is
fundamentally important to go beyond strictly matching
patterns by accommodating possible trail variations, such
as trail directionality, reaction order, repetition of reac-
tions, as well as different but overlapping sets of reactions
and/or neighboring genes. The necessity of incorporating
these variations for establishing conserved interspecies
patterns requires processing trails as reaction sets during
the trail grouping step. Once trail grouping has identified
potentially interesting conserved patterns, CoMetGeNe
users can proceed to analyze the conserved metabolic and
genomic patterns between species on a case-by-case basis.
During this third analysis step, reaction sets should be
considered in their metabolic context and hence treated
yet again as trails.

To provide a powerful and flexible way to analyze
CoMetGeNe trails, we propose two methods of trail
grouping, respectively termed trail grouping by genes and
by reactions.

On the one hand, trail grouping by genes is restricted
to genes of the reference species that are involved in
reaction sets common to at least another species. This
approach has the advantage of keeping together neigh-
boring genes that potentially make up for more than a
single trail for the reference species. For example, in the
peptidoglycan biosynthesis pathway for Escherichia coli
(map eco00550), CoMetGeNe identified an additional
trail of four reactions made up of dd/ (R01150 in Fig. 3a),
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murF, mraY, and murG. The gene ddIB is a neighbor of
murC (right side of Fig. 3b). Trail grouping by genes for
E. coli as reference species results in the group of genes
in Fig. 3b plus the additional gene ddIB, whereas trail
grouping by reactions delineates two distinct groups of
reactions: the one in Fig. 3d defining the trail in Fig. 3a,
and the aforementioned group of four reactions.

On the other hand, trail grouping by reactions iden-
tifies all reaction sets for the reference species, which
makes it possible to retrieve valuable information in the
form of alternative reactions that might have been filtered
out when grouping trails by genes. For example, suppose
the reference species is the only species in the panel of
species under study to perform a given metabolic route
M, while also sharing some reactions with other species in
the panel. If the shared reactions as well as those specific
to the metabolic route M involve neighboring genes in the
reference species, then the specific route M, while not vis-
ible when grouping trails by genes, will be present in trail
grouping by reactions.

We chose to focus on prokaryotes because of their
propensity for organization of genes into operons [53].
Although eukaryotes exhibit gene clustering to a cer-
tain extent [54], such an organization is quite infrequent.
Additional file 16 contains statistics on genome size,
number and percentage of enzyme-coding genes, and
CoMetGeNe trails obtained for five eukaryotic species
(budding and fission yeast, nematode, zebrafish, and
mouse). Overall, we detected fewer trails for eukaryotes
by an order of magnitude with respect to bacteria. In
terms of span, the median trail span for eukaryotes is
approximately half the median trail span in bacteria (see
Additional files 6 and 15). Genome fragmentation in the
case of eukaryotes with respect to bacteria accounts for
the differences in trail detection. Whereas the organi-
zation of prokaryotic genes into operons has long been
known and studied, CoMetGeNe does not focus specifi-
cally on operons. It uncovers them if the resulting proteins
are involved in consecutive steps in a metabolic pathway,
but it also uncovers genes that are adjacent to operons if
the proteins they encode belong to the same trail of reac-
tions. For example, CoMetGeNe identifies a trail of six
reactions for E. coli in the valine, leucine, and isoleucine
biosynthesis pathway (eco00290 in KEGG) represent-
ing the conversion of threonine into leucine (data not
shown). This trail involves five genes of E. coli, four of
which constitute the ilvMEDA region of the ilvLGMEDA
operon. The fifth gene, ilvC, is not part of this operon as
its transcription is regulated by expression of ilvY [55].

A further advantage of CoMetGeNe is to disclose miss-
ing reactions in various species when grouping trails by
reactions. Some instances of missing reactions may indi-
cate the existence of alternative metabolic routes with
respect to the reference species, as is the case for S. aureus.
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In other cases, missing reactions suggest that annotations
in public knowledge bases may be incorrect, incomplete
and/or outdated. We identified a case of incorrect anno-
tation in KEGG for murF in G. sulfurreducens and we
proposed a likely candidate for murC in O. terrae. We also
hypothesize that an error occurred for the prediction of
the open reading frame of ddl! in E ginsengisoli, leading to
ddl including a domain that may belong to its neighboring
gene. If this hypothesis is verified, the redefined coding
sequence neighboring dd! is likely murC.

Another example occurs in the glycine, serine, and thre-
onine metabolism pathway and identifies a trail leading
from aspartate to threonine (Fig. 4a). Trail grouping shows
that neighboring genes are involved in the trail for numer-
ous species in the selected panel, although one of the reac-
tions is either missing or is performed by the product of
a distant gene. Closer investigation reveals an unexpected
pattern in gene neighborhood for several of the species
in the panel (Fig. 5), where a phosphoglycerate mutase is
found to neighbor the aspartate kinase involved in the first
reaction in the trail. The pattern is conserved across the
bacterial domain, although its biochemical rationale is not
readily apparent.

Conclusions

CoMetGeNe is an exploratory tool determining neighbor-
hood patterns in the metabolic and genomic context of a
given species, as well as conserved metabolic and genomic
neighborhoods across multiple species. CoMetGeNe may
help provide insight into metabolic evolution and reveals
the existence of surprising motifs of gene organization.
The open-source CoMetGeNe pipeline implementing our
method is available at https://cometgene.lri.fr.
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