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Abstract

Background: Functional modules in protein-protein interaction networks (PPIN) are defined by maximal sets of
functionally associated proteins and are vital to understanding cellular mechanisms and identifying disease
associated proteins. Topological modules of the human proteome have been shown to be related to functional
modules of PPIN. However, the effects of the weights of interactions between protein pairs and the integration of
physical (direct) interactions with functional (indirect expression-based) interactions have not been investigated in
the detection of functional modules of the human proteome.

Results: We investigated functional homogeneity and specificity of topological modules of the human proteome
and validated them with known biological and disease pathways. Specifically, we determined the effects on functional
homogeneity and heterogeneity of topological modules (i) with both physical and functional protein-protein interactions;
and (ii) with incorporation of functional similarities between proteins as weights of interactions. With functional enrichment
analyses and a novel measure for functional specificity, we evaluated functional relevance and specificity of topological
modules of the human proteome.

Conclusions: The topological modules ranked using specificity scores show high enrichment with gene sets of known
functions. Physical interactions in PPIN contribute to high specificity of the topological modules of the human proteome
whereas functional interactions contribute to high homogeneity of the modules. Weighted networks result in more number
of topological modules but did not affect their functional propensity. Modules of human proteome are more homogeneous
for molecular functions than biological processes.

Keywords: Topological modules, Functional modules, Physical PPI, Functional PPI, Functional enrichment analysis, Protein-
protein interaction networks

Background
Even after decades of research in the field of human genes,
gene products and functions, understanding of genotype-
phenotype relationship is far from complete. Biomolecules
(genes, RNA, proteins, metabolites) interact with each
other and environmental factors in order to accomplish
various biological processes. Representing these interactions
as biological networks (metabolic, protein-protein interac-
tions, gene regulatory, co-expression) and their analyses
provide insights in finding genes associated with cellular

processes such as immune response, signalling pathways or
with a complex disease like cancer [1].
Currently, 20,231 proteins of the human proteome have

been identified [2] but the landscape of their interactions
is only partially known. Protein interactions may be phys-
ical when their amino acid residues physically interact
through electrostatic forces like hydrophobic or functional
interactions when a protein influences the activity of an-
other protein through regulation, co-expression, or some
other genetic interaction [3, 4] (Fig. 1). Large scale experi-
ments like yeast two-hybrid and affinity purification
coupled to mass spectrometry identify physical protein in-
teractions [5, 6] while high throughput expression* Correspondence: asjagath@ntu.edu.sg
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techniques like microarray and RNA-seq elucidate func-
tional links between proteins [7, 8].
Protein-protein interaction networks (PPIN) like most

biological networks are believed to be modular in nature
[4, 9, 10] and detecting functional modules of PPIN are
vital for understanding gene-function associations and
designing therapeutics. Topological modules are
sub-networks where nodes within a module have dense
connections as compared to the nodes of the other mod-
ules [11]. Functional module, on the other hand, is a
sub-network that contribute to similar biological func-
tions [4, 9]. Computational methods accurately inferring
functional and disease modules of the human proteome
would be of paramount importance for studying cellular
and disease mechanisms.
Numerous computational algorithms have been attempted

on biological networks in order to identify modules by using
networks’ topological properties based on node neighbours
[12], edge weights [13] and modularity [14, 15]. Other
sub-network identifying algorithms including those finding
core and loop structures [16, 17], cliques [18] and frequent
graph patterns [19] have also been attempted to find topo-
logical modules in biological networks. However, only a few
studies have compared their functional properties and their
relevance to functional modules [20–22]. Usual approach to
evaluate the functional significance of topological modules is
to perform functional enrichment analysis and decide on the
significantly enriched biological functions [21, 23, 24]. This
approach is however inconclusive of determining functional
coherence and specificity of topological modules [25]. In
present work, we introduce a novel functional specificity
measure that encompasses both functional homogeneity and
heterogeneity of the topological modules. Top ranked topo-
logical modules are thereby identified and validated for their
functional specificity.

We combine functional interactions inferred from ex-
pression data [26, 27] and physical interactions of PPIN
[6, 16] to provide holistic functional attributes to protein
nodes and interactions of the network for the determin-
ation of functional modules [28–30]. Though several
studies have reported characteristics of resulting mod-
ules of different biological networks [13, 17, 21], there is
a need of a systematic study elucidating the effects of
using both functional and physical interactions of PPIN
on detecting topological and functional modules. Previ-
ously, Theofilatos et al. and Lubovac et al. have applied
weighted PPIN to predict protein complexes using a
Markov clustering based approach and ranking measure
on the basis of weighted neighborhood property, re-
spectively [31, 32]. But here we investigate the role of
edge weights incorporated from gene functional similar-
ities in the modular detection of PPIN.
Our contributions in this study are (i) evaluation of

functional coherence and specificity of the topological
modules of the human proteome by using novel mea-
sures, (ii) determination of the effect of using both
direct physical and indirect functional links of PPIN
on detection of functional modules, and (iii) system-
atic analysis of incorporating functional context of in-
teractions as edge weights using functional similarities
of genes. We have used three different PPIN datasets
of the human proteome and Louvain community de-
tection algorithm [14] for modular detection. The
weighted PPIN were generated by calculating func-
tional similarity between interacting proteins by using
molecular functions, biological processes and cellular
components of Gene Ontology (GO) [33]. We also
elaborate on how physical and functional interactions
between proteins affect functional diversity of topo-
logical modules.

Fig. 1 Illustrations of physical, functional and combined protein-protein interaction networks (PPIN)
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Results
Physical and functional PPIN
The present study considers three types of human PPIN
based on physical, functional, and combined interactions
as given in Table 1. The strengths or weights of
protein-protein interactions with respect to their func-
tional context (MF, BP and CC) are calculated from
functional similarities of respective GO context, using
Wang measure [34]. This led to nine sets of weighted
PPIN and their network properties are listed in Table 2.
PPIN like other biological networks such as metabolic

and gene-regulatory networks are characterised by spe-
cific interactions between proteins (nodes) and functions
of proteins and therefore demonstrate small world prop-
erties (i.e., short path length) and scale free characteris-
tics (i.e., few nodes with large number of neighbours)
(Tables 1 and 2).

Topological modules
Topological modules of binary and weighted PPIN were
detected using Louvain algorithm and analysed to inves-
tigate how (i) different interactions (physical and func-
tional) and (ii) different biological contexts (i.e., MF, BP
and CC ontologies) affect the functional properties of
the modules.
As shown in Table 3, the number of modules predicted

for different networks vary considerably although the
modularity values remain almost the same. We note that
the number of modules predicted for weighted networks
(1586 to 2912) is much more than that of binary net-
works (34 to 64), but only 0.3 to 1.2% of these modules
are mesoscale (size> 10) as compared to 20–27% of bin-
ary networks. A closer inspection of Figs. 2, 3 and 4
finds that most of the modules are of size two, corre-
sponding to isolated protein pairs whose interactions
with others is yet be known or weak.

Biological relevance of PPIN modules
More importantly, proteins in topological modules ought
to share the same functional profile. To study functional
relevance of topological modules in the human prote-
ome, mesoscale modules from all networks were tested
for their biological relevance by using functional enrich-
ment analysis. The enriched function set F is given by
the union of all significantly enriched functions across
topological modules and functional specificities of the

set of enriched functions were computed for each PPIN.
Figure 5 (and Additional file 1: Figure S2) shows the dis-
tribution of significantly enriched biological functions
and size of topological modules of binary and weighted
physical PPIN.

Functional homogeneity and specificity of topological
modules
Functional homogeneity of a module quantifies func-
tional consistency of a topological module as defined by
the maximal fraction of proteins associated with a bio-
logical function. The homogeneity ranges from 0 to 1
where a value of 1 indicates that all genes in the module
exhibit that function. A module’s heterogeneity value es-
timates how specific a function is for a particular
module.
A recent study of human proteome [35] discussed

how most of the topological modules are functionally di-
verse despite high homogeneity values. In our study, we
further this observation by including functional interac-
tions and incorporating the weights to PPIN. As shown
in Table 4, the MF and BP homogeneity values are ob-
served to be higher (0.79 and 0.59) for physical networks
than functional networks (0.64 and 0.57) whereas cellu-
lar localizations (~ 0.7) do not vary much across differ-
ent networks. We conclude that functional interactions
lead to low homogeneity values in networks because
they mostly represent cross talks between modules with
not much variations in cellular localizations. For ex-
ample, cross talks in TGF-beta signalling is known to be
involved in many developmental defects and cancer [36].
This observation concurs with homogeneity values de-
rived in gene-disease associations (a type of functional
interactions) in disease networks [24, 37].
Table 5 shows heterogeneity values for enriched func-

tions of the modules. On average, molecular function
homogeneity was observed to be higher than bioprocess
homogeneity for physical (0.80 > 0.42) and combined
(0.72 > 0.45) networks except for functional networks
(0.42 < 0.60). But homogeneity and heterogeneity values
are more varied (high standard deviation) for functional
PPIN than physical and combined. Thus, it is advanta-
geous to integrate physical protein interactions with ex-
pression based networks for functional analyses as
attempted in some reported studies [29, 38].

Table 1 Properties of different binary PPIN: physical (P), functional (F), and combined (C)

Network Nodes Edges Avg. degree Avg. path
length

Diameter Edge
density

Clustering
coeff.

Giant
component
size

P 13,269 98,013 14.73 6.95 11 0.0011 0.15 13,177

F 11,362 613,865 108.06 3.14 11 0.0095 0.26 11,271

C 15,562 700,640 90.04 6.10 11 0.0057 0.20 15,518
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Effect of the resolution limit on module detection in PPIN
Modularity-based algorithms for module detection often
suffer from resolution limit [39] as the scale of modular-
ization depends upon the inter-connectedness of the
modules. This leads to the inability to detect smaller
modules in a given network. To study the effect of reso-
lution limit in detecting topological modules, we also
implemented the Incremental Louvain algorithm [35],
which first finds modules by maximizing modularity
while incrementally modularizing larger modules into
smaller sub-networks, thus converging the algorithm for
modules with size greater than a threshold size.
Here, we observed on average eight times more meso-

scale modules as compared to the Louvain algorithm, the
majority of modules being smaller in the size range of 10
to 200 (Additional file 1: Figure S4). In case of smaller
modules detected using Incremental Louvain algorithm,
an increase in the homogeneity values is observed when
indirect functional interactions are combined with

physical PPI (Tables 6 and 7). While functional homoge-
neities of modules detected with the Louvain algorithm
decreased when functional interactions are introduced
into PPI network. This phenomenon can be simply attrib-
uted to difference in module sizes. When compared with
respect to three ontologies, the homogeneity of modules
shows on average 3.4% decrease for MF, 47.08% increase
for BP and 4.6% decrease in CC. And heterogeneity values
showed large percentage of decrease for these smaller
modules (85.1, 78.9 and 87% decrease in MF, BP and CC,
respectively). Weighting interactions in PPI network im-
proves homogeneity of these modules but no change in
heterogeneity values is observed.

Functionally specific modules
The specificity of a particular function takes both its
homogeneity within the module and its diversity across
the modules into account. The normalized specificity
scores for all significantly enriched functions across

Table 2 Properties of weighted PPIN: physical (P), functional (F) and combined (C) PPIN weighted by functional contexts: molecular
function (MF), biological process (BF) or cellular components (CC)

Network Nodes Edges Avg. degree Avg. path
length

Diameter Edge density Clustering
coeff.

P-MF 13,269 98,013 9.06 1.54 5.73 0.0007 0.133

P-BP 5.25 0.60 5.13 0.0004 0.136

P-CC 8.85 1.40 5.36 0.0007 0.135

F-MF 11,362 613,865 43.96 0.42 4.77 0.0038 0.223

F-BP 26.12 0.27 5.06 0.0023 0.222

F-CC 46.90 0.64 5.45 0.0040 0.226

C-MF 15,562 700,640 38.82 0.63 5.03 0.0025 0.176

C-BP 22.76 0.28 4.12 0.0015 0.178

C-CC 40.53 0.66 4.36 0.0026 0.180

Table 3 Properties of topological modules of different PPIN

Network Modularity Number
of Modules

Mesoscalea

modules (%)
Largest
Module Size

Network edge
density

Module edge
density

P 0.43 64 26.6 2150 0.0011 0.0014 ± 0.01

P-MF 0.46 1586 1.2 1658 0.0007 0.0006 ± 0.0003

P-BP 0.53 2213 1.0 1988 0.0004 0.0004 ± 0.0002

P-CC 0.45 1754 0.9 2159 0.0007 0.0006 ± 0.0003

F 0.52 54 20.4 2730 0.0095 0.007 ± 0.004

F-MF 0.52 1777 0.6 2367 0.0038 0.005 ± 0.003

F-BP 0.55 1999 0.7 1998 0.0023 0.002 ± 0.001

F-CC 0.50 1700 0.7 2565 0.0040 0.009 ± 0.015

C 0.51 34 23.5 6882 0.0057 0.004 ± 0.003

C-MF 0.50 2391 0.3 6484 0.0025 0.003 ± 0.003

C-BP 0.53 2912 0.4 4186 0.0015 0.002 ± 0.001

C-CC 0.48 2430 0.5 4869 0.0026 0.002 ± 0.001
aMesoscale modules refer to the modules with size more than 10
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Fig. 2 Size distributions for modules detected using Louvain algorithm in physical networks of human proteome: x-axis represents the size of
modules while y-axis represents the count of meso-modules of size more than 10 nodes. P denotes the binary physical network while P-MF, P-BP
and P-CC denote the weighted networks with edges scored according to functional similarity based on molecular functions (MF), biological
process (BP) and cellular component (CC), respectively

Fig. 3 Size distributions of modules detected using Louvain algorithm in functional networks of human proteome. x-axis represents the size of
modules while y-axis represents the count of meso-modules of size more than 10 nodes. F denotes the binary functional network while F-MF, F-
BP and F-CC denote the weighted networks with edges scored according to similarity based on molecular functions (MF), biological process (BP),
and cellular component (CC), respectively
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modules are summarized in Fig. 6. As seen from the pat-
terns of homogeneity and heterogeneity values, physical
PPIN produce more functionally specific modules
(highly homogenous and less diverse) than functional
and combined PPIN, underscoring the benefit of includ-
ing proteomics while analysing expression based net-
works in the identification of functional modules.

Topological modules were ranked using the specificity
score and we labelled the modules with normalized spe-
cificity greater than 0.90 as functionally specific modules
and the others as general modules. Table 8 summarizes
the biological functions and Table 9 enlists enriched bio-
logical pathways of specific modules. Main functions
specific to the modules were enzymatic activities like

Fig. 4 Size distributions for modules detected using Louvain algorithm in combined networks (physical and functional) of human proteome. x-axis
represents the size of modules while y-axis represents the count of meso-modules of size more than 10 nodes. C denotes the combined physical
network while C-MF, C-BP and C-CC denote the weighted networks where edges scored according to similarity based on molecular functions,
biological process (BP), and cellular components, respectively

Fig. 5 Functional enrichment analyses of topological modules: (a) and (b) show distributions of enriched molecular functions in topological
modules of PPIN networks. X-axis, Y-axis (left) and Y-axis (right) represent the modules, number of statistically significant GO terms, and size of
modules, respectively. See Additional file 1: Figure S2 for the set of enriched biological processes and cellular locations in the modules
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kinase, hydrolase, and transferase; and protein and nu-
cleotide binding activities. About 36 to 55% of topo-
logical modules in binary and 14 to 32% of in weighted
networks were classified as specific modules according
to above mentioned criteria. More number of modules
are found to be functionally specific (55%) in physical
PPIN as compared to functional and combined PPIN
(Table 8). This is in agreement with the effect of hetero-
geneity and homogeneity values of physical networks.
This maybe imparted to the fact that direct interaction
between proteins which are elucidated through high
throughput screening experiments [6, 40] are more often
studied and more popularly annotated with functions
and that gene-function associations as annotation based
functional enrichment analysis are affected by missing
annotations. See Additional file 1: Tables S1 and S2 for
specific modules enriched in biological processes and
cellular locations.

Biological validation by pathway enrichment analysis
To validate biological relevance of top ranked specific
modules, their enrichment with genes from experimen-
tally known biological pathways was computed. Four
gene sets of known pathways were considered: glycolysis,
transcriptional regulation, lung cancer and breast cancer,
and their details [40–42] are given in Table 10. Breast
and lung cancer pathway set has a total 363 and 300
genes, out of which 347 and 286 are present in the phys-
ical, 260 and 219 in the functional and 349 and 288 in

the combined PPIN. Out of 244 genes from glycolysis
pathway, 158 are present in the physical, 187 in the
functional and 226 in the combined PPIN.
The overlapped fractions of genes of known pathways

to those in specific and general modules were calculated
in order to estimate validity of the topological modules.
As shown in Fig. 7, specific modules from binary com-
bined PPIN retrieved ~ 79% of breast and lung cancer
genes as compared to 43–45% by modules of weighted
PPIN. In a similar fashion, for physical and functional
PPIN, specific modules of binary PPIN were enriched
with more cancer pathway genes (69 and 89% for breast
cancer, 69 and 85% for lung cancer) than respective
modules from weighted PPIN (56 and 45% for breast
cancer, ~ 49% for lung cancer). Specific modules of bin-
ary networks were also highly enriched with 70, 90, and
76% of glycolysis genes and 71, 87 and 77% of transcrip-
tional regulation genes in physical, functional and com-
bined networks, respectively.

Discussion
The three different PPIN (physical, functional and com-
bined) were modularized and their functional relevance
was analysed using functional enrichment analysis. As
observed from Table 1, physical PPIN are sparser (have
high average path length and low edge density) than
functional PPIN, resulting due to high number of func-
tional interactions and noise in the gene expression ex-
periments. For weighted networks (Table 2), the edges

Table 4 Functional homogeneity of mesoscale modules detected by Louvain algorithm, evaluated using three ontologies: MF, BP,
and CC

PPIN MF BP CC

max mean std max mean std max mean std

Physical Binary 0.81 0.79 0.01 0.85 0.59 0.24 0.78 0.75 0.04

Weighted 0.83 0.80 0.02 0.75 0.42 0.31 0.80 0.77 0.01

Functional Binary 0.71 0.64 0.12 0.72 0.57 0.25 0.8 0.72 0.25

Weighted 0.71 0.42 0.22 0.74 0.60 0.25 0.8 0.76 0.07

Combined Binary 0.74 0.73 0.01 0.70 0.58 0.25 0.77 0.75 0.01

Weighted 0.73 0.72 0.002 0.72 0.45 0.29 0.76 0.75 0.01

Table 5 Functional heterogeneity of modules detected by Louvain algorithm, calculated for all the enriched functions

PPIN MF BP CC

min mean std min mean std min mean std

Physical Binary 0.05 0.07 0.05 0.04 0.09 0.06 0.05 0.09 0.08

Weighted 0.04 0.08 0.12 0.04 0.09 0.05 0.05 0.21 0.20

Functional Binary 0.09 0.22 0.14 0.09 0.17 0.12 0.09 0.25 0.16

Weighted 0.08 0.20 0.14 0.07 0.16 0.15 0.09 0.24 0.16

Combined Binary 0.14 0.20 0.12 0.14 0.25 0.15 0.14 0.28 0.21

Weighted 0.13 0.21 0.18 0.07 0.10 0.05 0.09 0.31 0.19
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with low functional similarity between proteins reduce
the average path length to lower values than binary
PPIN (ranges from 0.2 to 1.5 as compared to 3.1 to 6.9).
There is a high overlap between functional and physical
PPIN with 9069 common nodes between the two, under-
lining that most physical interactions also exert func-
tional interactions. However, small amount of
non-overlapping edges between physical and functional
PPIN suffices to cause changes in edge density and clus-
tering coefficient for the combined network.
When modularized using Louvain algorithm, size dis-

tribution of topological modules in three PPIN (Figs. 2,
3, 4 and Table 3) shows that weighting interactions with
functional similarities of proteins removes weak
protein-protein interactions in PPIN and leads to higher
number of compact modules.
Figure 5 (and Additional file 1: Figure S2) shows the

functionally enriched GO terms in the PPIN modules.
The number of enriched cellular functions and processes
are observed to be higher for the weighted PPIN despite
the smaller size of the modules. The number of cellular
locations decreases however with the inclusion of
weights of protein interactions. Overall, combined PPIN
are enriched by more GO terms, with biological pro-
cesses approximately 1.5 to 3 times more, molecular
functions up to 3 times more and cellular locations ap-
proximately 1.4 times more, than those in physical and
functional binary PPIN.

Functional homogeneity analysis (Tables 4 and 5)
shows Physical PPIN modules to be more specific than
functional networks, in case of molecular functions as
compared to bioprocesses and cellular localizations.
Overall, homogeneity and heterogeneity values are not
much different when weighted interactions are consid-
ered, indicating that topological modules are more resili-
ent to edge weights when functional annotations are
considered. We also conclude that topological modules
in PPIN are more homogeneous and specific in molecu-
lar functions, and less homogeneous (diverse) in terms
of biological processes. This is in agreement with the
fact that a biological process may involve multiple sets
of molecular functions and thus functional modules map
to a number of molecular functions but less number of
biological processes. Most importantly, the results indi-
cate that the functional modules are observed to be
more homogenous and specific when direct interactions
in PPIN are also considered (as seen in the combined
network), a fact to kept in mind when identifying bio-
logically relevant modules by using computational
methods. To study the effect of resolution limit on func-
tional properties of modules, three PPIN were modular-
ized using Incremental Louvain Algorithm that resulted
in modules, eight times more in number but smaller in
size than Louvain (Additional file 1: Figure S4). Despite
the differences, enrichment analyses of modules from
both type of algorithms show that physical networks are

Table 6 Functional homogeneity of mesoscale modules detected by Incremental Louvain algorithm, evaluated using three
ontologies: MF, BP, and CC

PPIN MF BP CC

max mean std max mean std max mean std

Physical Binary 1 0.57 0.28 1 0.67 0.29 1 0.65 0.28

Weighted 1 0.63 0.27 1 0.81 0.20 1 0.76 0.22

Functional Binary 1 0.59 0.25 0.97 0.73 0.22 1 0.72 0.23

Weighted 0.97 0.69 0.25 1 0.85 0.16 1 0.72 0.24

Combined Binary 1 0.60 0.26 1 0.72 0.26 1 0.70 0.24

Weighted 0.98 0.65 0.26 1 0.82 0.19 1 0.74 0.21

Table 7 Functional heterogeneity of the modules detected by Incremental Louvain algorithm, calculated for all the enriched
functions

PPIN MF BP CC

min mean std min mean std min mean std

Physical Binary 0.008 0.017 0.02 0.008 0.02 0.03 0.008 0.02 0.03

Weighted 0.007 0.017 0.02 0.008 0.03 0.04 0.008 0.03 0.04

Functional Binary 0.01 0.02 0.03 0.01 0.03 0.03 0.01 0.03 0.04

Weighted 0.01 0.03 0.03 0.01 0.04 0.04 0.01 0.03 0.05

Combined Binary 0.007 0.02 0.02 0.007 0.02 0.02 0.007 0.02 0.04

Weighted 0.008 0.02 0.02 0.007 0.02 0.03 0.01 0.03 0.05
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Fig. 6 Functional specificity of significantly enriched molecular functions of topological modules. See Additional file 1: Figure S3 for specificity
scores of topological modules for BP and CC enrichment

Table 8 The percentage (%), mean size, and summary of molecular functions of the specific modules of physical (P), functional (F)
and combined (C) PPIN

Network % Mean Size
(std.)

Specific molecular functions of modules

P 0.55 1523 (390) Module1: cytoskeletal protein binding; Module2: receptor activity; Module3: cation binding, dimerization/transcription
factor activity; Module4: cyclic compound/RNA/chromatin binding, Wnt-activated receptor activity; Module5: DNA
binding; Module6: pyruvate dehydrogenase (acetyl-transferring) kinase activity

P-
weighted

0.32 1215 (262) Module1: deacytylase activity; Module2: cyclic compound/nucleotide/ATP/nucleoside binding, kinase/transferase
activity; Module3: amide/peptide binding; Module4: transferase activity; Module5: protein domain specific binding;
Module6: DNA binding

F 0.36 2298(223) Module1: RNA binding; Module2:ssDNA/ nucleotide/nucleoside/GTP/Mg ion binding binding, oxidoreductase/
transferase/kinase/ activity, transmembrane transporter activity; Module3: ATPase/DNA helicase activity, chromatin
binding

F-
weighted

0.42 1036 (978) Module1: hydrolase/transferase activity, TF/transcription regulator/transcription coactivator/transcription cofactor/
transmembrane transporter activity, CCR5 chemokine receptor binding; Module2: ATPase/hydrolase activity,
transmembrane transporter activity; Module3: kinase activity, DNA binding; Module3: ATPase activity; Module4:
alcohol binding

C 0.38 4011 (2495) Module1: lamin binding; Module2: cyclic compound/ion/DNA/enzyme/small molecule/ATP/chromatin/protein
kinase/nucleotide/nucleoside binding, transcription regulator/protein dimerization/kinase/nucleoside-
triphosphatase/phosphotransferase activity; Module3: macrolide/FK506 binding

C-
weighted

0.14 6484(0) Module1: ion/cyclic compound/DNA/cation/enzyme/identical protein binding, catalytic/transferase activity
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more specific than functional ones (see Tables 6 and 7).
Thus topological modules are more specific and homo-
geneous when direct interactions are considered with in-
direct functional associations (such as derived from
co-expression or microarray based experiments).
A specificity score is introduced in this study that con-

siders both functional homogeneity and heterogeneity of
a module. Topological modules with specificity score
greater than 0.90 were labelled functionally specific mod-
ules and the others as general modules. Table 8 shows
that physical PPIN modules are more enriched in spe-
cific modules than functional PPIN. As seen in Fig. 6
and Additional file 1: Figure S3, the modules appear to
become smaller and the biological functions re-distrib-
uted into more number of highly specific modules when
edge weights are introduced to physical and functional
protein interaction networks. However, combining func-
tional interactions with physical interactions led to for-
mation of few and larger specific modules. This
limitation due to increasing module size can be handled
by optimizing modularizing algorithm for detecting

smaller modules of high functional specificity in future
and is beyond the scope of present study.
Biological relevance of top ranked specific modules in

physical, functional and combined PPIN was evaluated
on the basis of their enrichment with genes from experi-
mentally known biological pathways such as glycolysis,
transcriptional regulation, lung cancer and breast cancer.
As shown in Fig. 7, specific modules are overall found to
be more enriched than general modules for all four bio-
logical pathways, but the specific modules from binary
PPIN were observed to be highly enriched than those of
weighted PPIN. This indicates that the specific modules
obtained by using specificity scores of enriched functions
are highly enriched with known functional and disease
pathways. However, inclusion of weights did not im-
prove the enrichment of biological and disease pathways
in physical and functional networks.

Conclusions
We systematically analysed functional properties of topo-
logical modules in human proteome and investigated the

Table 9 The top enriched protein pathways in the specific modules of physical (P), functional (F) and combined (C) PPIN. Pathways
are mapped using PANTHER Pathway database (http://www.pantherdb.org/pathway/)

Network Specific pathways of modules

P Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway; CCKR signalling map; Heterotrimeric G-protein signalling pathway; Angiogenesis;
PDGF signalling pathway; Apoptosis signalling pathway; EGF receptor signalling pathway

P-weighted Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway; PDGF signalling pathway; Heterotrimeric G-protein signalling pathway; Angiogenesis;
Apoptosis signalling pathway; CCKR signalling map; Angiogenesis; EGF receptor signalling pathway; FGF signalling pathway; Huntington
disease; Cadherin signalling pathway; Alzheimer disease-presenilin pathway

F Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway, CCKR signalling map; Angiogenesis; EGF receptor signalling pathway; Huntington
disease; Alzheimer disease-presenilin pathway; TGF-beta signalling pathway; PDGF signalling pathway; Heterotrimeric G-protein
signalling pathway; Nicotinic acetylcholine receptor signalling pathway

F-weighted Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway, CCKR signalling map; Angiogenesis; EGF receptor signalling pathway; FGF signalling
pathway; Heterotrimeric G-protein signalling pathway; PDGF signalling pathway; Huntington disease; Alzheimer disease-presenilin
pathway; B-cell activation; Parkinson disease; Insulin/IGF pathway; Interleukin signalling pathway; Ionotropic glutamate receptor
pathway; Mannose metabolism; Pyridoxal-5-phosphate biosynthesis; PDGF signalling pathway

C Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway, CCKR signalling map; Angiogenesis; Heterotrimeric G-protein signalling pathway;
EGF receptor signalling pathway; PDGF signalling pathway; Huntington disease; FGF signalling pathway; Apoptosis signalling pathway

C-weighted Inflammation mediated by chemokine and cytokine signalling pathway; gonadotropin-releasing hormone receptor pathway; Wnt
signalling pathway; Integrin signalling pathway, CCKR signalling map; Angiogenesis; Heterotrimeric G-protein signalling pathway;
EGF receptor signalling pathway; FGF signalling pathway; Cadherin signalling pathway

Table 10 Details of biological pathways used for validation of functional modules

Biological Pathway No.
of
genes

Overlap with Source

Physical
PPIN

Functional
PPIN

Combined
PPIN

Glycolysis 262 203 187 229 KEGG [41], MSigDB [42]

Transcriptional regulation 1705 1554 1243 1640 Rolland et al. [40]

Lung cancer 300 286 219 288 Rolland et al. [40]

Breast cancer 363 347 260 349 Rolland et al. [40]
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effect of physical and functional interactions in PPIN on
functional specificity of modules. We also studied the contri-
bution of weighting edges with functional similarities on
topological modules. A specificity score was introduced to
identify more accurate biologically relevant and specific
modules. Functionally homogeneity was earlier used to
evaluate functional value of topological modules detected in
biological networks [24, 25] but failed to consider the hetero-
geneity of functional modules of biological networks due to
a protein or gene mapping to a number of cellular processes.
Thus, a set of proteins (in a module) are involved in more
than one function and also a biological function is mapped
to more than one module. In order to handle this, functional
specificity was introduced which considers both functional
homogeneity within the module and functional heterogen-
eity across the modules. The function specificity helps in
identifying functional modules or specific functions of topo-
logical modules and one may use our methods to confidently
map specific functions to topological modules of PPIN.

The topological modules detected using physical, func-
tional and combined PPIN are found to be homoge-
neous, highly specific, and enriched in a number of
significant biological functions, processes and cellular lo-
calizations (Fig. 5 and Additional file 1: Figure S2).
Though weighted edges do not affect the homogeneity
and heterogeneity of the modules, incorporating func-
tional similarities of edge do help in identifying compact
and highly specific functional modules based on topo-
logical properties.
Functional or indirect interactions are generally noisy

as they are determined using statistical inferences from
gene expressions based experiments and vary on tissue
and patient sample basis [40]. But functional interactions
encompass the whole interaction profile of genes in-
volved in a cellular function or a disease and thus im-
portant for systematic analysis and prediction of
functional modules. Present study provides a first hand
insight into the effect of these different type of

Fig. 7 Overlap of specific topological modules (specificity score > 0.9) and general topological modules (specificity score < 0.9) with experimentally known
biological pathways: glycolysis, transcriptional regulation, lung cancer and breast cancer. Bars represent overlap of genes involved in biologically validated
pathways with specific modules (brown colour) and general modules (green colour). Topological modules are detected via molecular function enrichment
for binary and weighted physical(P), functional(F) and combined (C) PPINs
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protein-protein interactions on topological modules of
human proteome. We conclude that instead of using
only co-expression based networks in identifying func-
tionally relevant topological modules, one should com-
bine the accuracy of physical interactions with the larger
coverage of interactome landscape by functional net-
works. Though our methodology provides an edge over
usual methods (like homogeneity, GO enrichment) for
functional validation of topological modules and helps in
identifying specific functions of these modules, it does
not identify core components of a biological pathway.
One limitation of our study is that our methods do not
handle the overlapping modules and consider overlap-
ping properties of functional modules. It would be inter-
esting to study overlapping sub-modules, core modules,
and the hierarchical organization of functionally specific
topological modules as future work of this study.

Methods
Datasets
In a cellular machinery, proteins function as enzymes, tran-
scription factors, receptors or structural proteins, and inter-
act with other biomolecules. Protein interactions are either
physical (direct) or functional (indirect). For studying the role
of these two types of interactions on detection of modules of
PPIN, three datasets were used: Physical, Functional and
Combined (see Fig. 1, Table 1). These three datasets were
prepared from HPRD (Human Protein Reference Database)
(version Release9) [43] and STRING database (version 10)
[44]; and include experimental information from other
well-known databases like BIND, DIP, GRID, HPRD, IntAct,
MINT and PID (updated till 14 May 2017). All the proteins
were mapped to their Entrez gene ids. Details of data
pre-processing are provided in Additional file 1.

1. Physical PPIN enlists curated binary interactions
of proteins, representing physical or direct
interactions that are determined using in vivo (e.g.
co-immunoprecipitation), in vitro (e.g. GST pull-
down assays) or yeast two-hybrid experiments.

2. Functional PPIN represents functional interactions
of proteins, i.e., these proteins may or may not
physically interact but they do participate in a
biological function by influencing each other
genetically through co-regulation or co-expression,
which are determined using experimental tech-
niques like microarray expression data analysis or
double mutant analysis.

3. Combined PPIN is the inclusive set of both the
physical and functional networks mentioned above.

Weights for protein-protein interactions
Weighted PPIN are obtained by assigning functional simi-
larities between proteins as edge weights, considering

different GO domains: molecular function (MF), bio-
logical process (BP) and cellular component (CC). We
used popular Wang’s semantic similarity measure [34, 45]
to evaluate the functional similarity between genes (i.e.,
weights of protein-protein interactions).

Module detection
Functional modules of PPIN correspond to communities
or sub-networks of proteins having specific and similar
biological functions [4, 46]. We chose the Louvain algo-
rithm modular detection algorithm to find topological
modules of PPIN because it has demonstrated excellent
performance and low computational complexity on
benchmark networks [20] (Lancichinetti & Fortunato,
2009). The Louvain algorithm finds the community or
modular structure by optimizing the modularity Q (the
quality function) of the network:

Q ¼
X

ij
eij− aið Þ2� � ð1Þ

where eij is fraction of edges between modules i and j,
and ai is the fraction of edges connected to the nodes in
module i. The modular structure is found by maximizing
the modularity in an iterative manner. All the nodes in
the network are assigned to independent modules in the
beginning and the algorithm progressively merges two
communities that best increase the modularity of the
resulting network structure. Merging of nodes and mod-
ules continues until there is no further increase in the
modularity of the network.

Functional enrichment analysis
The functional enrichment analysis was performed in
order to find the GO terms in MF, BP, and CC contexts,
which are significantly represented (enriched) by the
proteins in the predicted topological modules. The func-
tional enrichment analysis was implemented using R
package BioStats [47]. The statistical significance of a
GO term in a module was estimated by evaluating its
overrepresentation using a hypergeometric test. A func-
tionally enriched module signifies that the number of
genes observed to be annotated with a function (i.e., the
GO term) is more than the expected number of genes
annotated to that function. The ‘expected value’ for a
function is the number of genes having that specific
function in the given module, with respect to the refer-
ence list (whole list of human genes).

Functional homogeneity and specificity of topological
modules
In this section, we introduce measures to quantify func-
tional homogeneity and heterogeneity of topological
modules of PPIN. First, functional enrichment analysis is
performed on the modules to identify biological
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functions (GO terms) that are significantly enriched
(p-value < 0.0001) in the modules and the functions are
ranked according to their significance values. Systematic
estimation of p-value is done using a set of detailed ex-
periments explained in Additional file 1. We selected the
enriched functions for each module and identified the
set F of enriched functions in all the modules.
Homogeneity of a module with respect to a particular

function is computed by the proportion of genes anno-
tated by the function. That is, the homogeneity of a
function f ∈ F within a module is given by

homogeneity ¼ nf

N

where nf is the number of genes annotated by the func-
tion and N is the total number of genes in the module.
The functional homogeneity (H) of a module is defined
as the homogeneity of maximally enriched function in
the module. The heterogeneity of a function is defined as
the proportion of the modules where the function f ∈ F
is enriched. That is,

heterogeneity ¼ k f

K

where kf is the number of modules enriched with func-
tion f and K is the total number of modules detected in
PPIN.
Functional homogeneity measures functional coher-

ence of the modules while functional heterogeneity indi-
cates how exclusive the modules are for the function
across all predicted modules. To combine functional
homogeneity and heterogeneity of a module, functional
specificity for an enriched function is defined as follows:

specificity ¼ homogeneityþ 1
heterogeneity

ð2Þ

The values of specificity scores across all enriched
functions are normalized to a range between 0 and 1.
The functional specificity value measures how exclu-
sively the module is enriched by the specific biological
function. Modules are ranked using the functional speci-
ficity score and the top ranked modules are considered
as highly specific modules.

Additional file

Additional file 1: Supplementary information. (PDF 1521 kb)
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