
Sen et al. BMC Bioinformatics 2019, 19(Suppl 13):549
https://doi.org/10.1186/s12859-018-2552-0

RESEARCH Open Access

Understanding the evolutionary trend of
intrinsically structural disorders in cancer
relevant proteins as probed by Shannon
entropy scoring and structure network analysis
Sagnik Sen1*† , Ashmita Dey1†, Sourav Chowdhury3†, Ujjwal Maulik1 and Krishnananda Chattopadhyay2

From 17th International Conference on Bioinformatics (InCoB 2018)
New Delhi, India. 26-28 September 2018

Abstract

Background: Malignant diseases have become a threat for health care system. A panoply of biological processes is
involved as the cause of these diseases. In order to unveil the mechanistic details of these diseased states, we
analyzed protein families relevant to these diseases.

Results: Our present study pivots around four apparently unrelated cancer types among which two are commonly
occurring viz. Prostate Cancer, Breast Cancer and two relatively less frequent viz. Acute Lymphoblastic Leukemia and
Lymphoma. Eight protein families were found to have implications for these cancer types. Our results strikingly reveal
that some of the proteins with implications in the cancerous cellular states were showing the structural organization
disparate from the signature of the family it constitutes. The sequences were further mapped onto respective
structures and compared with the entropic profile. The structures reveal that entropic scores were able to reveal the
inherent structural bias of these proteins with quantitative precision, otherwise unseen from other analysis.
Subsequently, the betweenness centrality scoring of each residue from the structure network models was resorted to
explore the changes in dependencies on residue owing to structural disorder.

Conclusion: These observations help to obtain the mechanistic changes resulting from the structural orchestration
of protein structures. Finally, the hydropathy indexes were obtained to validate the sequence space observations
using Shannon entropy and in-turn establishing the compatibility.

Keywords: Shannon entropy scoring, Multiple sequence alignment, Structure network model, Hydrophobicity index

Background
Biological processes are the results of highly orchestrated
interactions among the biological macro-molecules. of A
majority of these processes occurring within the confines
of cell cytosol pivot around the coordinated functions
of protein molecules. Encoded by the one-dimensional
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code script of DNA, the biological relevance of pro-
tein molecules reside on their three-dimensional struc-
tures. These three-dimensional protein structures arise
after a series of sub-structural interactions primarily dic-
tated by sequence information of the protein molecules.
In many cases, proteins do not have a stable three-
dimensional structures. These proteins are broadly known
as Intrinsically Disordered Proteins (IDPs) [1, 2]. IDPs
become interesting for the researchers, due to their
diverse biological roles and apparent revocation of tra-
ditional structure-function paradigm. Regardless of the
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lack of three-dimensional structure, different biophysi-
cal techniques evidenced that IDPs actively participated
in various biological processes like control of cell cycle,
transcriptional activation, signaling, and they frequently
interacted with or functioned as central hubs in protein
interaction networks [3].

Proteins are being folded to perform specific functions.
Sometimes acquired orderded globular structure may be
accompanied by interaction with other proteins. The fold-
ing mechanism can be driven by different changes in
protein environment. Since proteins are actively involved
in different biological processes, a loss of protein struc-
ture and disruption in associated interactions can lead to
a series of metabolic disruptions in turn inducing a patho-
logical state [4]. A wide range of diseases are caused due
to the misfolding of proteins [5]. Misfolding or misfolding
function can develop from point mutation or an exposure
to internal or external toxins, impaired post-translational
modifications (PTMs) [6], an increased probability of
degradation, impaired trafficking, oxidative damage or
lost binding partners. These factors can act independently
or in associations with one another.

Misfolding may cause numerous neurodegenerative and
malignant diseases. Reports suggest [7–9], IDPs have an
evolutionary significance and correlation with complexity.
More elaborately, connection or changes in proteins from
most primitive species to modern species can be analyzed
depending on the transition from ordered to disordered
state or vice versa. The variation in protein residues in
protein sequences is responsible for the structural tran-
sition which are directly associated with sequence based
complexity of the proteins.

Multiple Sequence Alignment (MSA) of a protein fam-
ily can provide a consensus sequence of that family which
might be considered as family sequence representative
with the most evolutionarily conserved set of amino acids.
As the consensus sequences consist of evolutionarily con-
served amino acid residues, so the consensus sequence
of a protein family can represent the structural trait for
almost all individual members of that protein family.
Hence, the complexity score of a consensus in terms of
disorder and order can summarize the structural trend of
most of the individual proteins from a protein family.

In this article, four diverse cancer types are considered,
among which two are well known and frequent malig-
nant diseases viz., Prostate Cancer [10–12], Breast Cancer
[13–15], and two relatively less abundant forms viz. Acute
Lymphoblastic Leukemia [16, 17] and Lymphoma [17, 18]
respectively, along with the proteins responsible for these
diseases. Not only the human protein forms are consid-
ered, rather the whole family protein sequences are col-
lected in order to compute the MSA and its corresponding
consensus sequences. In order to analyze the evolution-
ary changes, all the sequences of a protein family are

studied in details. The Shannon entropy is calculated for
the consensus sequence of responsible proteins and also
for each sequence from those protein families. Depend-
ing on the entropic scores, the proteins were classified as
order or disorder in nature. In order to understand the
Shannon entropic impact, the sequences are mapped in
their respective structure. The hydropathic index is cal-
culated for each member of the protein family in order
to compare the sequence complexity in terms of entropic
scores. Hence the main motivation of this study is to find
the general traits of a protein family in terms of structured
and unstructuredness applying complexity scoring.

Methods
In this section, we have discussed the proposed frame-
work. Two different databases were used viz., (1) UniProt
[19] and (2) Pfam [20]. Initially, eight proteins which
were responsible for selected four diverse cancer types,
were selected for this study based on frequent occurrence.
Later, the sequences of those protein families were con-
sidered for further research. In Fig. 1, the flow of the
proposed framework is given. The proposed method is
discussed below:

Database information
UniProt
UniProt [19] is a cumulative set of sequences and anno-
tated information of these proteins. This database pro-
vides around 60 million protein sequences. Since 2014,
the database contains around 5631 proteomes. Along
with that, the protein family and domain information are
described at Uniprot.

Pfam
Pfam [20] is another database, consisting of protein fam-
ily information, multiple sequence alignment and profile
hidden Markov models. More than 3000 protein family
information is given.

Four cancer types were selected and their commonly
responsible protein families in human, depending on
the literature survey such as Heat shock protein beta-1
[21, 22], BAG family molecular [23, 24], Breast cancer
type 2 [25], Endophilin-B1 [26, 27], Apoptosis regula-
tor Bcl-2 [28, 29], Calpain-type cysteine [30, 31], Cellular
tumor antigen p53 [32, 33] and RNA-binding protein 38
[34, 35] were identified from UniProt database. Heat
shock protein beta-1 played a role as a molecular chaper-
one probably maintaining denatured proteins in a folding-
competent state. Similarly, BAG family molecular act as a
nucleotide-exchange factor, the breast cancer type 2 sus-
ceptibility protein (BRCA2) is a breast tumour suppressor
involved in double-strand break repair and/or homolo-
gous recombination Endophilin-B1 has been observed to
regulate the membrane dynamics of various intracellular
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Fig. 1 A flowchart to summarize the proposed frame of the work
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compartments, Apoptosis regulator Bcl-2 regulates cell
death by controlling the mitochondrial membrane perme-
ability, Calpain-type cysteine involved in epiderm devel-
opment, Cellular tumor antigen p53 acts as a tumor
suppressor in many tumor types; induces growth arrest or
apoptosis depending on the physiological circumstances
and cell type and RNA-binding protein 38 specifically
bind the 3’-UTR of CDKN1A transcripts, leading to main-
tain the stability of CDKN1A transcripts, thereby acting as
a mediator of the p53/TP53 family to regulate CDKN1A.
Using the Pfam database the aligned sequences of a par-
ticular protein family was identified. It was observed that
MSA played an important role in comparative functional
and structural analysis of biological sequences. In this
regard, seed alignment for FASTA format were selected,
which included tree ordering sequences and lower case
letters were considered with dashes as a gap characteris-
tics. Furthermore, this also provided a biological insight
regarding the relationship between the structural and
functional behavior of proteins [36]. Therefore, to analyze
the type of protein orchestration (i.e., order and disorder)
of protein families aligned sequences were considered.
Subsequently, a consensus sequence [37] was constructed
from the aligned results using Consensus Maker tool.
The MSA of each family were provided to this online
tool. This tool computed a consensus using customary
parameters. These sequences represented as a logo or sig-
nature of that protein family, shown in Additional file 1.
In this regard, based on the frequency of amino acid i.e
the highest frequency of amino acid was considered as
an entry of building consensus in that particular position.
A consensus sequence is a set of amino acids which are
evolutionarily conserved in protein family [38]. For the
analyses of the protein sequences present in a particu-
lar family, it was necessary to understand the structural
orchestration of sequences i.e. propensity towards order
and disorder. In this regard, the Shannon entropy (SE)
score was calculated for each consensus sequence. As it
was evidenced that entropy posses an idea of disorder.
Entropy was directly proportional to the rate of disorder
i.e. if the disorder increases it signifies higher entropy.
Shannon entropy was defined as follows:

SE(i) = −
N∑

i=1
Pilog2Pi (1)

where Pi was the probability of given amino acids and
N was the number of letters in a sequence. The summa-
tion run over the 20 residues that normally were present
in a protein sequence. The probability Pi represent the
composition of the consensus sequence. So the entropy
range lied between 0 and the log2(20) = 4.32. If the
Shannon entropy score of consensus sequences was less
than 2.9 then it signify that, particular protein family was

ordered [39], on the other hand, if the Shannon entropy
was very high then that protein family was disorder and
have an important impact on the cause of diseases. The
Shannon entropy of each sequence of each family was
also calculated in order to validate the results, reported in
Additional files 2-9. Moreover, one sample t-test was per-
formed on each protein of a particular family, in order to
understand the sample mean which was statistically dif-
ferent from a known or hypothesized population mean.
Statistical significance is determined by looking at the
p-value. The p-value gives the probability of observing the
test results under the null hypothesis. The lower the p-
value, the lower the probability of obtaining a result like
the one that was observed if the null hypothesis was true.
The One Sample t Test is a parametric test. It is defined as:

t = ā − μ

σ
(2)

Here, ā is the sample mean of entropy scores, σ is the stan-
dard deviation of list entropy scores of a family. μ is the
specified population mean of list of entropy scores of a
family. where,

σ =
√

S2

n
(3)

S2 is the sample variance, n is the sample size which
is total number of proteins from a family. Furthermore,
to understand this observation we tried to find the struc-
ture of these sequences [40]. These models were fur-
ther analyzed for structure network analysis. However,
complex systems have been analyzed with a help of net-
work models, the interaction between the components of
the machines were described through nodes and edges.
Generally, secondary structure and folding arrangement
mechanism were utilized to understand the protein struc-
tures. Another promising method for analysis of the
protein structure was through the network [41]. In this
network model the amino acid residues represented as
nodes and edges which represent the interaction among
them, the interaction was established based on the inter-
action energy or spatial distance. Interactions usually have
a weight, which characterized their strength. Depend-
ing on this strength the edges were drawn between
the two amino acid nodes. The equation was described
below.

Fij =
⎡

⎢⎣
xij√(

Xi ∗ Xj
)

⎤

⎥⎦ ∗ 100 ≥ Fc (4)

Fc was the threshold of interaction strength, the default
value is 4%. Here, xij was the number of side chain atom
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pairs of residues i and j. Xi and Xj were the normalization
factor for residues types i and j [42, 43].

In this paper, depending on the normal mode analy-
sis (NMA) a correlation matrix was obtained in order
to perform a cross-correlation matrix. Then by means
of correlation network analysis, we generated struc-
ture networks [41] of different protein depending on
their tertiary structure. The weight of the connec-
tion of nodes represented the value of cross-correlation
respectively. By means of correlation network analy-
sis, a full residue network was generated and it was
split into a highly correlated coarse-grained community
cluster network by using Girvan-Newman [44] cluster-
ing method where the highly interacting residues were
clumped together in the clusters. Here some lower
value elements in the raw correlation matrix from NMA
were excluded because of being lower than the cutoff
value 0.3.

The role of a particular node as a connector between
other nodes viz., the importance of a residue to a net-
work in its functioning as a bridging point can be man-
ifested by measuring the number of shortest paths pass-
ing through that particular node. Betweenness centrality
characterizes the regions of a protein that show differ-
ences in coupled motions between networks. Residues
having significant contribution to intrinsic dynamics of
the protein show high centrality value. Also depend-
ing on the centrality scoring, Euclidean distances among
the protein mutant types were calculated and the sub-
sequent hierarchical cluster was generated. The betwee-
ness centrality was performed to find the bottlenecks
in communication networks and community detection
whereas the NMA was performed to generate structure
networks of different protein depending on their tertiary
structure.

Results
Reports suggested that selected eight proteins (Endophilin-
B1 [26], Breast cancer type 2 susceptibility protein [25],
Heat shock protein beta-1 [21], BAG family molecular
chaperone regulator 1 [23], Apoptosis regulator Bcl-2
[28], Calpain-type cysteine protease DEK1 [30], Cel-
lular tumor antigen p53 and RNA-binding protein 38
[34]) were associated with four malignant diseases.These
proteins were found to have intimate connection with
metabolic cascades and interaction networks leading to
cancer states.We referred to protein families of these
selected proteins so as to understand the generic struc-
tural propensity of the protein families which these pro-
teins constitute. To understand the generic structural
trend of these protein families, we had performed the
Shannon entropy of the consensus sequences. Depend-
ing on the entropic score of the consensus sequences, the

protein families were being classified as order or disorder.
In Table 1, the entropy score of the consensus sequences
of each protein families was reported along with the
score of t-test [45]. In most of the cases, the protein
sequences from a disorder or order class were expected to
be disordered or ordered. However, few sequences were
reported to be disordered being a part of an ordered
protein family in terms of entropic scoring of the con-
sensus protein sequence and vice versa. It is to be noted
that, Endophilin-B1 is a responsible protein for breast can-
cer disease and the entropic score is 2.87. We reported
this protein as disorder even though the entropic score is
not high but the structural, as well as functional domain,
provides an evidence to this. From Protein Data Bank
(PDB), we found that the Solution structure of the SH3
domain of Endophilin B1 has higher loops and turns
than the number of Beta-coils (PDB Id:1X43). Moreover,
the literature studies [26, 27] show the nature of the
dynamic functionality of this protein. These evidences
supported the disorderedness of this protein as well as our
finding.

We observed the transition points of transformation
and considered those sequences for further analysis. In
Fig. 2, a representative of each protein families was iden-
tified where the sudden deviation from the entropic
score of consensus sequences occurred and reported their
Shannon entropic changes along with the structures. Also,
other two sequences of the protein families were mapped
in their respective structures. From these structures, the
deviation of structural changes along the entropic scores
was easily visualized. Figure 2a and b represented the two
proteins responsible for breast cancer. Similarly, Fig. 2c-h
represented selected proteins responsible for prostate
cancer, acute lymphoblastic leukemia and lymphoma
respectively. The hydropathy index of those sequences
was analyzed and validated with respect to entropic
score.

To provide a comprehensive understanding of men-
tioned changes, the PDB structures of those particular
sequences were also observed. Depending on the PDB,
structure networks were shown along with the commu-
nity cluster network and betweenness centrality plot. In
Figs. 3-8, the structure network analysis, Community clus-
ter network and betweenness centrality plots were shown
for four diverse cancer types. Though we had performed
the analysis of multiple proteins from multiple families,
most diverse samples were shown in this article. From
structure network analysis, the dependencies on residues
at different secondary structura orchestrations could
be observed. From the experimental outcomes, ordered
structures had a diverse set of community clusters based
on conservation of residue-residue interaction than dis-
ordered structure and also betweenness centrality graph
was well distributed than disordered structures. Each
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Fig. 2 Representing the change in evolutionary trend in a. Endophilin-B1, b. Breast cancer type 2 susceptibility protein, c. Heat shock protein beta-1,
d. BAG family molecular chaperone regulator 1, e. Apoptosis regulator Bcl-2, f. Calpain-type cysteine protease DEK1, g. Cellular tumor antigen p53
and h. RNA-binding protein 38 proteins reponsible for four cancer types such as breast cancer, prostate cancer, acute lymphoblastic leukemia and
lymphoma respectively

directly coupled pair, obtained from structure space anal-
ysis, were found to be situated either in common cluster
or in two densely connected clusters. The betweenness

centrality was calculated to unveil the influence of a
particular node on the internal dynamics of different
structure.
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Fig. 3 Structure network of Acute Lymphoblastic Leukemia for two spices such as a. Monodelphis domestica and b. Anolis carolinensis which
represent high and low entropic score respectively. Similarly, the Community cluster network of c. Monodelphis domestica and d. Anolis
carolinensis are shown

Fig. 4 Betweenness centrality plot of Acute Lymphoblastic Leukemia for a. Monodelphis domestica and b. Anolis carolinensis which represent high
and low entropic score respectively. Similarly, the plot is shown for two spices affected by breast cancer such as c. Xenopus tropicalis and d.
Drosophila melanogaster
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Fig. 5 Structure network of Breast Cancer for two spices such as a. Xenopus tropicalis and b. Drosophila melanogaster which represent high and
low entropic score respectively. Similarly, the Community cluster network of c. Xenopus tropicalis and d. Drosophila melanogaster are shown

Discussion
In case of sequence biology, scoring of hydropathic index
described the complexity of protein primary structure. It
helped to understand the propensity of protein in terms
of structural order or disorder. As mentioned before,
each of the structurally affected human proteins and
their family were chosen from four diverse cancer types.
Observing the trend of Shannon entropic score of the
consensus sequence of each family, structural transfor-
mation of the proteins could be considered as the rea-
son behind diseased conditions. In Table 1, the Shannon
entropic scores of all selected families were reported.
Among them, only breast cancer and leukemia have one
of each ordered family propensity. This fact justified the
number of conserved structural motif of the family had
ordered propensity. Hence most of the proteins of the
family were ordered. Subsequently, the proteins with dis-
ordered propensities in consensus sequence scores were
showing the disordered trend. Statistically, the entropic
scores for consensus were significant. In Table 2, entropic
scores of the human proteins were compared with their
average hydrophobic index. Mostly proteins with disor-
dered entropic scores were showing compatibility with

average hydrophobic index. Hydrophobic index was justi-
fying the spontaneous folding capacity of the protein. So
lower hydrophobic index was indicating towards higher
disordered propensity. Hence the compatibility between
two different scoring systems could be clearly observed
from Table 2.

Thereafter, the sequence specific information was com-
pared with the three-dimensional structures of proteins.
In Fig. 3, two proteins of the leukemia were shown in
terms of Gaussian network model based structure net-
works and their highly conserved community clusters.
Similarly, in Figs. 5, 6 and 8, the structure network and
community clusters were given for breast cancer, lym-
phoma and prostate cancer respectively. Depending on
the number of shortest path on each residue, between-
ness centrality plots were given in Figs. 4 and 7. From
Fig. 4, the distribution of residual dependencies in terms
of betweenness centrality for leukemia and breast cancer
were given. The residual for the random leukemia protein
sample in Fig. 4a, has justified the entropic score of its
family. In Fig. 4a, the residual distribution was highly
conserved at certain residual points whereas, in Fig. 4b,
dependencies in terms of centrality scores were well
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Fig. 6 Structure network of Lymphoma for two spices such as Lymphoma for a. Homo sapiens and b. Drosophila melanogaste which represent
high and low entropic score respectively. Similarly, the Community cluster network of c. Homo sapiens and d. Drosophila melanogaste are shown

Fig. 7 Structure network of Lymphoma for two spices such as Lymphoma for a. Homo sapiens and b. Drosophila melanogaste which represent
high and low entropic score respectively. Similarly, the Community cluster network of c. Homo sapiens and d. Drosophila melanogaste are shown
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Fig. 8 Structure network of prostate cancer for a. Aspergillus niger and b. Ricinus communis which represent high and low entropic score
respectively. Similarly, the Community cluster network of c. Aspergillus niger and d. Ricinus communis are shown

Table 1 The Shannon entropy and t-test value of four selected
diverse cancer types

Disease Protein Shannon Significant p-value
family entropy score

Prostate cancer Heat shock
protein
beta-1

3.36 True 7.3e-36

BAG family
molecular

3.39 True 3.4e-40

Breast cancer Breast cancer
type 2

4.01 True 1.0e-30

Endophilin-
B1

2.87 True 5.8e-38

Acute lymphoblastic
leukemia

Apoptosis
regulator
Bcl-2

3.34 True 1.9e-27

Calpain-type
cysteine

2.79 True 3.8e-25

Lymphoma Cellular
tumor
antigen p53

4.01 True 1.0e-07

RNA-binding
protein 38

3.38 True 3.8e-96

distributed throughout the sequence. Though the family
of Fig. 4b was maintaining ordered trend this particular
protein structure was showing a disordered trend in
terms of individual entropic score. That is why few higher
peaks in the plot have been seen. Similarly, in Fig. 4c
and d, the centrality plotting for breast cancer samples
were given which were following the similar trend like
leukemia samples. In Fig. 7, centrality distribution for
lymphoma and prostate cancer were shown. Comparing
with sequence information, the family with higher dis-
ordered propensity was showing conservation at certain

Table 2 The hydrophobic index value of the selected proteins
for four cancer types

Disease Uniprot Id Entropic score Average score of
hydrophobic index

Prostate cancer P04792 2.96 0.60

Breast cancer P38398 3.16 0.41

Acute
lymphoblastic
leukemia

Q8RVL1 2.94 0.58

Lymphoma P04637 3.17 0.37

Q9H0Z9 3.03 0.55
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residual points even in the ordered samples of the family.
Hence the path of evolutionary transformations of the
proteins from the family could be described from this
observations. In human samples, the sudden structural
changes were following the common mentioned path
of transformations by disrupting the amount of average
hydrophobic amino acids. Again the spontaneous folding
capacity of the structure could be affected.

Conclusion
In this article, we have proposed a method based on
sequence complexity calculation of each protein families
using Shannon entropic scoring for different malignan-
cies. For four different cancer types viz., prostate cancer,
lymphoma, acute lymphoblastic leukemia and breast can-
cer, eight different protein families were selected which
structurally involved with the diseases. The objective
was to observe the structural transformation of proteins
in an evolutionary timespan. It was successfully shown
that the entropic scoring based on amino acid distribu-
tions in the sequence helped to understand structured
or unstructured propensity of proteins and their families.
The results, obtained from entropic studies were com-
plemented by hydrophobic indexing of the sequences. To
map the sequence on structure, a structure space analy-
sis was also performed. For each structure, the changes
in residual dependencies were observed based on varia-
tion in betweenness centrality. Distribution of centrality
for the structures were showing a compatible pattern
with sequence dependent information. More precisely,
structural orchestrations of proteins were varying with
entropic scores accordingly. Finally, the experimental out-
comes and comparative analyses suggested the evolution-
ary path of transformation in protein structures which
could be comprehended by theoretical entropic scoring
based on the conserved residual distribution in protein
sequences.
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