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Abstract

Background: Hypothetical proteins [HP] are those that are predicted to be expressed in an organism, but no evidence
of their existence is known. In the recent past, annotation and curation efforts have helped overcome the challenge in
understanding their diverse functions. Techniques to decipher sequence-structure-function relationship, especially in
terms of functional modelling of the HPs have been developed by researchers, but using the features as classifiers for
HPs has not been attempted. With the rise in number of annotation strategies, next-generation sequencing methods
have provided further understanding the functions of HPs.

Results: In our previous work, we developed a six-point classification scoring schema with annotation pertaining to
protein family scores, orthology, protein interaction/association studies, bidirectional best BLAST hits, sorting signals,
known databases and visualizers which were used to validate protein interactions. In this study, we introduced three
more classifiers to our annotation system, viz. pseudogenes linked to HPs, homology modelling and non-coding RNAs
associated to HPs. We discuss the challenges and performance of these classifiers using machine learning heuristics
with an improved accuracy from Perceptron (81.08 to 97.67), Naive Bayes (54.05 to 96.67), Decision tree J48 (67.57 to
97.00), and SMO_npolyk (59.46 to 96.67).

Conclusion: With the introduction of three new classification features, the performance of the nine-point classification
scoring schema has an improved accuracy to functionally annotate the HPs.
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Background
Proteins that are predicted to be expressed from an open
reading frame, but for which there is no experimental evi-
dence of translation are known as hypothetical proteins
(HPs). Across the whole genome, approximately 2% of the
genes code for proteins, while the remaining are
non-coding or still functionally unknown [1]. These
known-unknown regions for which no functional links are
discovered, i.e. those with no biochemical properties or
obvious relatives in protein and nucleic acid databases are
known as orphan genes, and the end products are called
HPs [2]. These proteins are of great importance, as many
of them might be associated with human diseases, thus

falling into functional families. Despite their lack of func-
tional characterization, they play an important role in un-
derstanding biochemical and physiological pathways; for
example, in finding new structures and functions [3],
markers and pharmacological targets [4] and early detec-
tion and benefits for proteomic and genomic research [5].
In the recent past, many efficient approaches have existed
and the tools are publicly available to predict the function
of the HPs. One such widely used technique is
protein-protein interaction (PPI) analyses, which is con-
sidered valuable in interpreting the function of HPs [6].
While many proteins often interact with other proteins to-
wards expediting their functions, there are challenges that
are not just limited to their function but also to their regu-
lation [7]. Therefore, characterizing the uncharacterized
proteins helps to understand the biological architecture of

* Correspondence: chanusuba@gmail.com; prash@bisr.res.in
3Bioclues.org, Kukatpally, Hyderabad 500072, India
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ijaq et al. BMC Bioinformatics           (2019) 20:14 
https://doi.org/10.1186/s12859-018-2554-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2554-y&domain=pdf
https://orcid.org/0000-0002-5023-7618
http://orcid.org/0000-0002-8535-278X
mailto:chanusuba@gmail.com
mailto:prash@bisr.res.in
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


the cell [8]. While high-throughput experimental methods
like the yeast two-hybrid (Y2H) method and mass spec-
trometry are available to discern the function of proteins,
the datasets generated by these methods tend to be incom-
plete and generate false positives [9]. Along with PPIs, there
are other methods to identify the essentiality of proteins,
such as antisense RNA [10], RNA interference [11],
single-gene deletions [12] and transposon mutagenesis [13].
However, all these approaches are tedious, expensive and
laborious; therefore, computational approaches combined
with high-throughput experimental datasets are required to
identify the function of proteins [9, 14]. Different computa-
tional methods have been designed for estimating protein
function based on the information generated from se-
quence similarity, subcellular localization, phylogenetic pro-
files, mRNA expression profiles, homology modelling etc.
[15]. Very recently, Lei et al. predicted essential proteins
based on RNA-Seq, subcellular localization and GO anno-
tation datasets [16, 17]. Furthermore, tools such as “LOCA-
LIZER” [18], that predicts subcellular localization of both
plant and effector proteins in the plant cell, and IncLocator
[19] have been useful in predicting subcellular localization
for long non-coding RNAs based on stacked ensemble clas-
sifiers [19]. On the other hand, combined analysis of all
these methods or datasets is considered to be more predict-
ive in integrating heterogeneous biological datasets [9].
Genome-wide expression analysis, machine learning, data
mining, deep learning and Markov random fields are the
other prediction methods which are widely employed [20,
21], whereas Support Vector Machines (SVM) [22], Neural
Networks [23], Bayesian Networks [24, 25], Probabilistic
Decision Trees [26], Rosetta Stone [14, 27], Gene Cluster-
ing and Network Neighbourhood analyses [28] have been
used to combine different biological data sources to inter-
pret biological relationships. Although these have shown to
be successful in predicting protein function, annotation
based on feature selection for inferring the function of HPs
is wanting. Nevertheless, there has been a steady increase
in the use of imparting machine learning and information
theoretic features used for development of efficient frame-
work for predicting interactions between proteins [28–30].
In this paper, we present a machine learning based

approach to predict whether or not the given HP is func-
tional. This method is not based on homology comparison
to experimentally verified essential genes, but depends on
the sequence-, topological- and Structure-based features that
correlate with protein essentiality at the gene level. Features
are the observable quantities that are given as input to a ma-
chine learning algorithm. Data given across each feature is
used by the learning algorithm to predict the output vari-
ables. Therefore, selecting the relevant features that could
predict the desired outputs is important. There are various
features that define the essentiality of the proteins. In our
previous study [31], we selected six such features (orthology

mapping, back-to-back orthology, domain analysis, sorting
signals and sub-cellular localization, functional linkages, and
protein interactions) that are potentially viable to predict the
function of HPs. Although the prediction performance of
the selected features was shown to be acceptable, in this
present study we added data on pseudogenes, non-coding
RNA and homology modelling to increase the predictability
of functionality of these known-unknowns. The additional
features which we employed are extended to show the possi-
bility of pseudogenes linked to HPs, proteins that are essen-
tially structural ‘mers’ of the candidate proteins and presence
of non-coding RNA signatures. We discuss the performance
of newly introduced classification features from a machine
learning perspective to validate the function of HPs.

Results
We report the improved classification efficiency when
three additional features were introduced (Table 1) to our
earlier proposed six-point classification scoring schema.
When we analysed the data through 10-fold cross-valida-
tion using the WEKA machine learning package, the deci-
sion trees (J48) yielded an accuracy of 97%, with SVM
(SMO) performing high: 98, 93, 96 for Poly, RBF, npolyk
kernals respectively; MLP (neural network perceptron)
with 97.67% and Naive Baiyes multinomial with 98.33%
(Table 2). Among the classifiers that we evaluated using
WEKA, neural networks yielded the best performance with
a steady change in performance of the model. In addition,
one-way ANOVA with significance level (α) of 0.05 was
performed to ascertain the statistical significance of the
mean differences across the columns or groups based on
the p-value. The results were found to be statistically sig-
nificant and in agreement with p-value heuristics (positive
and negative p-value of 3.166E-290 and 0, respectively). To
check the similarity and diversity of the samples, Jaccard
index similarity coefficient was plotted, providing different
values ranging from perfect similarity (value 1) to low simi-
larity (threshold value). This was further augmented when
we compared the HPs from underlying similarity/distance
matrix scores for evaluation. Furthermore, Jaccard index
statistics revealed that the HPs annotated are inferential
with the first six classifiers, but the newly introduced clas-
sifiers tend to fall apart with the introduction of
non-coding elements (more details in Additional file 1:
Figure S2). Secondly, the negative dataset, which we call a
discrete dataset, is in principle a list of all known proteins
from GenBank falling under important types of HPs. The
194 proteins are probably scaled to only these types, gener-
ating bias with the rest of the features. Thus, we argue that
the negative dataset was largely more discrete and would
have a more stringent heuristic learning set. To further
check the redundancy, a pocket variant of perceptron algo-
rithm was used as a unit step function, starting with a ran-
dom w’ (weight) vector of length 9, eta (positive scale
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factor) as 0.2 and n as 1000. Invariably, perceptron gave
better validation across all classifiers. For example, with a
random split of 66% for the training and testing set, after
1000 iterations we obtained an average accuracy of 94.04%,
with a maximum 97.97% and a minimum of 60.60%. The
split performed was found to be random from all itera-
tions, with no data point from the learning set being used
in the testing set. While the SVM yielded an average accur-
acy of 97.36%, with a max of 100% and min of 88.13%,
Naive Bayes, on the other hand, gave an accuracy of
96.62%, with a max of 100% and a min of 88.13%.

Discussion
The statistical evaluation suggests that among the newly in-
troduced classifiers, non-coding RNAs and pseudogene

features show considerable impact, indicating that most of
the HPs are either the products of pseudogenes or linked to
ncRNAs (Table 3). Among the other six features, functional
linkages, pfam and orthology are highly significant, indicat-
ing that annotating the HPs across these features would
predict the probable function of HPs (Table 3). Feature se-
lection algorithms like Correlation-based Feature Selection
(CFS) and Principal Component Analysis (PCA) also
showed improved accuracy, whereas the accuracies on the
entire data (ALL) are highest among the three methods in-
dicating the importance of all the nine features in model
generation (Table 4). In addition, we derived the best data
subsets from the nine features by selecting top scores from
all combinations with an ALL subset combination method
“1 2 4 6 7 9” by functions_mlp (98.33) and PCA selected

Table 1 Description of annotation for the three newly introduced features

Feature Principle Scoring criteria Result

Pseudogenes
linked to HPs

It is generally believed that the majority of HPs
are the products of pseudogenes. Follow-up of
BLAST: if the hits do not have starting codon
ATG across six reading frames, then it may be
assumed to be a pseudogene.

Predicted and synthetic sequences, sequences
with end-to-end alignment are ignored.
Sequences from Homo sapiens with
E- value less than zero are considered.

Sequences starting without
methionine and meeting all the
above criteria were given 1,
otherwise 0.

Homology
Modelling

As sequence-structure implies function, it is
possible to assign function to HP if we could
model the protein to find any interacting
domains.

Based on % identity between query
and PDB template

If there is more than 30%
similarity, score = 1, otherwise 0.

Non-coding
RNAs
associated to
HPs

Most of the HPs from GenBank lack protein
coding capacity and some of them may
themselves be noncoding RNAs

The top three hits are considered for sequences
from Homo sapiens, while the top five hits are
considered when there is no considerable
difference between scores.

If the above criterion is met,
score 1, otherwise 0.

Table 2 Comparison of all accuracies of all features using multiple learning algorithms derived through WEKA (ver 3.8) with
additional 3 new features increasing accuracy of the model

Learning algorithms Accuracy with all 9 features Average accuracy Accuracy with all 6 features

trees_j48 97.00 95.85 67.57

trees_DecisionStump 86.33 45.95

trees_RandomForest 98.00 70.27

trees_REPTree 98.00 43.24

HoeffdingTree 96.67 Not reported

trees_LMT 98.33 70.27

trees_RandomTree 96.67 67.57

functions_smo_PolyK 98.33 96.33 78.38

functions_smo_RBFK 93.00 24.32

functions_smo_npolyk 96.67 59.46

functions_smo_Puk 97.33 Not reported

functions_RBFNetwork 96.67 97.11 48.65

functions_mlp 97.67 81.08

functions_VotedPerceptron 97.00 Not reported

bayes_nbay 96.67 94.83 54.05

bayes_NaiveBayesUpdateable 96.67 55.21

bayes_NaiveBayesMultinomial 93.00 Not reported

bayes_NaiveBayesMultinomialUpdateable 93.00 Not reported
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data subset “1 2 3 4 5 6 7 8” by functions_smo_npolyk
(97.00) and trees_j48 (97.00) as the best accuracies
(Table 5).
Overall, the combined methods of feature selection pro-

vided ample evidence that all nine features are essential
for a model generation. Correlation analysis has further
allowed us to improve our classification feature selection
pairs which tend to be positive for pfam and orthology (1
& 2); sub-cellular location and functional linkages (5 & 6);
functional linkages and homology modelling (6 & 8) (de-
tailed in Additional file 2). In addition, the two-tailed
p-values for the above-mentioned combinations (1 & 2; 5
& 6; 5 & 8) were much less than the correlation (R) values,
indicating that the association between those variables is
statistically significant. We further analysed the perform-
ance of our model using various performance evaluation
metrics which showed improved performance for the
nine-point schema (Table 6, Additional file 3).

Methods
Construction of datasets
Two datasets were prepared for this study, viz. positive
and negative datasets, with the former constituting the

HPs while the latter representing functional proteins.
The final dataset consisted of 106 positive instances and
194 negative instances of HPs. These proteins were con-
sidered from GenBank with keyword searches “Homo sa-
piens” AND “Hypothetical Proteins” and further filtered
with annotation across the tools (Additional file 4). The
negative dataset was used to override false positives,
thereby obtaining improved precision. Algorithms learn
the characteristics underlying the known functional pro-
teins from the given negative dataset. They are also used
to validate the predicted results by making a comparison
with known functional proteins. Finally, scores from all
the nine classifiers were summed up to give total reli-
ability score (TRS; Fig. 1).

Significance of the features
The six features from our earlier proposed six-point
classification scoring schema are pfam score, orthology
inference, functional linkages, back-to-back orthology,
subcellular location and protein associations taken from
known databases and visualizers [31]. Conservation is
one of the important features of essential proteins. Stud-
ies have proven that essential proteins evolve more

Table 3 Ranking to show the impact of each feature (Rank 1: High impact, Rank 9: Less impact)

Features Functions_ smo_npolyk trees_ j48 bayes_ nbay Functions_mlp Rules NNge

Pfam 5 5 5 5 5

Orthology 4 4 4 4 4

Pro_intercations 6 6 6 6 9

Bidirectional_best_blast_hits 7 7 7 7 8

Subcellular_location 7 7 7 9 7

Functional_linkages 2 2 2 2 3

Pseudogenes 3 3 3 3 1

Homology modelling 7 7 7 7 6

Non-coding RNAs 1 1 1 1 2

Table 4 Derived accuracies by learning algorithms with default parameters set by WEKA are listed above. Column 1 lists different
algorithms

Algorithms ALL Cfs PCA

Earlier study [25] Current study Earlier study [25] Current study Earlier study [25] Current study

Selected Features □ 1,2,3,4,5,6 1,2,3,4,5,6,7,8,9 1 2 5 6 1,2,3,6,7,9 1,2,3,4,5,6 1,2,3,4,5,6,7,8

bayes_NaiveBayesUpdateable 55.21 96.67 54.05 96.67 72.97 93.00

functions_smo_npolyk 59.46 96.67 54.05 96.00 51.35 97.00

rules_DecisionTable 48.65 96.00 54.05 96.00 70.27 92.33

functions_mlp 81.08 97.67 59.46 96.67 81.08 96.00

bayes_nbay 54.05 96.67 54.05 96.67 72.97 93.00

trees_j48 67.57 97.00 51.35 96.00 72.97 97.00

Average 97.39 96.26 94.53

Column 2 shows accuracies on the entire data through ten-fold cross-validation. Columns 3 and 4 show accuracies by different algorithms after applying feature
selection algorithms as per the column header (Cfs Correlation Feature Selection, PCA Principal Component Analysis). Cfs uses best fit method and PCA uses
Ranker method as set by WEKA
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slowly and are more evolutionarily conserved than
non-essential proteins [32]. While we used sequence-
based features like orthology, back-to-back orthology
and domain analysis to describe the essentiality of the
proteins from the perspective of evolutionary conserva-
tion [33], proteins often interact with each other to ac-
complish the biological functions of cells [34]. Apart
from this, functional linkages [35] and subcellular
localization [36] have been popular in predicting the es-
sentiality or what we call the known-unknowns of pro-
teins. Three new features that were considered in this
model are HPs linked to pseudogenes, homology model-
ling and HPs linked to non-coding RNAs. Pseudogenes
are the functionally deprecated sequences present in the
genome of an organism. These disabled copies of genes
are the products of gene duplication or retrotransposi-
tion of functional genes [37]. It is generally believed that
the majority of the HPs are the products of pseudogenes
[38]. This feature is employed to check if the HP is
actually a pseudogene by performing tBLASTn, a variant
of BLAST which considers proteins as a query and
searches against the nucleotide database. The homology
modelling feature was introduced to predict the essenti-
ality of the protein based on the model generated. As
the protein three-dimensional (3D) structure leads to
function, there is a possibility to assign biological
function to proteins, if one could generate the model to

find any interacting domains through structural
bioinformatics-based approaches [39]. Most of the HPs
from GenBank lack protein-coding capacity. Similarly,
non-coding RNAs by definition do not encode proteins.
This indicates that some of the HPs may themselves be
noncoding RNAs [40]. With this feature, we checked if
HPs are associated with non-coding RNAs and are influ-
enced by regulatory regions (detailed in Table 1).

Classifier design and training
Prediction of the function of HPs can be presented as a
binary classification problem. Each protein from both
datasets was annotated across nine selected features and
assigned a score of 1 if the protein met the criteria or 0
if it did not (Fig. 2). Criteria followed for scoring are
shown in Additional file 5: Figure S1. The classifier was
trained across the nine features according to the scores
assigned to the members of each dataset. We used four
major classifiers to train and test the model: (i) SVM (ii)
Naïve Bayes (iii) Decision trees and (iv) Perceptron. For
non-separable learning sets, a variant of perceptron
called pocket algorithm [41] was used, which arbitrarily
minimizes the error for the non-separable learning set
[42]. It works by storing and using the best solution seen
so far rather than relying on the last solution. These so-
lutions appear purely stochastic. 80% of the dataset was
used for training and the rest for testing. We performed

Table 5 Subset evaluation. Accuracies by learning algorithms with default parameters set by WEKA and best data subset by
combination (Column 3) and Feature selection method (column 5) are listed above

Algorithms Best combination Subsets
(from complete dataset)

Accuracy Feature selection subsets Accuracy

bayes_NaiveBayesUpdateable 1,6,7,9 96.67 Cfs 1,2,3,6,7,9 96.67

functions_smo_npolyk 1,2,4,6,7,9 98.00 PCA 1,2,3,4,5,6,7,8 97.00

rules_DecisionTable 6,7,9 96.00 Cfs 1,2,3,6,7,9 96.00

functions_mlp 1,2,4,6,7,9 98.33 Cfs 1,2,3,6,7,9 96.67

bayes_nbay 1,6,7,9 96.67 Cfs 1,2,3,6,7,9 96.67

trees_j48 1,2,4,6,9 97.67 PCA 1,2,3,4,5,6,7,8 97.00

Column 1 lists different algorithms. Columns 2 & 4 list the best data subsets and Columns 3 & 5 accuracies, respectively. (1: Pfam; 2: Orthology; 3:
Prot_interactions; 4: Best Blast hits; 5: Subcellular localization; 6: Functional linkages; 7: HPs linked to Pseudogenes 8: Homology modelling; 9: HPs linked to
ncRNAs). Accuracies shown by both the subset combinations are almost same, with subset combinations from the complete dataset showing a slightly
higher accuracy

Table 6 Individual nine-point schema data are subjected through learning algorithms and scoring metrics are derived, averaged
and tabulated. Values are compared with the six-point performance metrics

Algorithm Sensitivity/
Recall (%)

Specificity (%) Precision (%) F1 Score (%) MCC (%)

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Decision Tree (j48) 37 38 90 93 17 85 23 41 16 54

SVM (functions_smo_npolyk) 36 37 89 93 16 57 22 41 15 36

Neural networks(functions_mlp) 36 38 89 92 16 80 22 43 15 53

Naïve Bayes (Bayes_Naïve
BayesUpdateable)

37 37 89 93 16 81 22 40 17 53
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Fig. 1 Methodology adopted to generate the classification model

Fig. 2 Workflow to annotate HPs across each classifier (Details in Additional file 2: Figure S1)
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1000 independent iterations of SVM, Naïve Bayes and
Perceptron algorithms. Instead of a k-fold cross-valid-
ation, we considered 1000 independent iterations and
averaged their results so as to avoid over-fitting, assum-
ing that a k for such a problem is beyond the scope of
this work. Further, we analysed the data using the Wai-
kato Environment for Knowledge Analysis (WEKA) soft-
ware package (version 3.8) [43] where 37 other learning
algorithms were used along with the aforementioned
four major algorithms. WEKA was implemented for
classifier design, training and evaluation. Finally, Jaccard
indices followed by training the datasets using machine
learning algorithms were used to infer heuristics.

Performance evaluation
Evaluating the performance of learning algorithms is a
central aspect of machine learning. Several measures in-
cluding cross-validation as a standard method [44] and a
10-fold cross-validation using WEKA were applied to
test the performance of the predictive model. To miti-
gate the over-fitting problem, the following measures
were used to evaluate the performance of the classifiers:
accuracy, sensitivity, specificity, F1 score, Matthew’s
Correlation Coefficient (MCC) [45, 46]. Specificity, Pre-
cision, Sensitivity and MCC of 1 indicate perfect predic-
tion accuracy [47].
The measures are defined as follows:
Accuracy = (TP + TN) / (TP + FN + FP + TN).
Sensitivity (Recall) = TP / (TP + FN).
Specificity = TN / (TN + FP).
Precision = TP / (TP + FP).
F1 Score = 2(Precision * Recall) / (Precision + Recall).
Matthews Correlation Coefficient (MCC).
= ((TP x TN) - (FP x FN)) / (TP + FP) (TP + FN)

(TN + FP) (TN + FN).
where TP: True Positives (positive samples classified
correctly as positive), TN: True Negatives (negative
samples classified correctly as negative), FP: False
Positives (negative samples predicted wrongly as
positive) and FN: False Negatives (positive samples pre-
dicted wrongly as negative).

Conclusion
We have proposed a nine-point classification scoring
schema to help functionally annotate the HPs. While a
large number of heuristics were interpreted to introduce
such problems, there is a strong need to ensure that the
HPs in question are provided a function in silico. An at-
tempt has been made to close the gap of providing func-
tional linkages to HPs. The addition of classification
features would possibly serve as a valuable resource for
analysing data and for understanding the

known-unknown regions. The potential regulatory func-
tion of HPs could be determined if there are larger cu-
rated datasets. However, this is also influenced by how
the HPs interact with each other, given a new set of di-
mensions in the form of next-generation sequencing to
the scientific community.

Additional files

Additional file 1: Figure S2. Jaccard index plot showing the coefficient
distances for the HPs. The x-axis indicates the HPs while the y-axis indicates
the distance. (XLSX 20 kb)

Additional file 2: Tables showing correlation analysis (XLSX 150 kb)

Additional file 3: Learning algorithms results (XLSX 11 kb)

Additional file 4: List of HPs which we used for classification and
machine learning approaches (XLSX 23 kb)

Additional file 5: Figure S1. Workflow adopted for annotation and
scoring of HPs across each classifier (PDF 249 kb)

Additional file 6: Performance evaluation (PDF 152 kb)
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