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Abstract

Background: Accurate gene regulatory networks can be used to explain the emergence of different phenotypes,
disease mechanisms, and other biological functions. Many methods have been proposed to infer networks from gene
expression data but have been hampered by problems such as low sample size, inaccurate constraints, and
incomplete characterizations of regulatory dynamics. Since expression regulation is dynamic, time-course data can be
used to infer causality, but these datasets tend to be short or sparsely sampled. In addition, temporal methods typically
assume that the expression of a gene at a time point depends on the expression of other genes at only the immediately
preceding time point, while other methods include additional time points without any constraints to account for their
temporal distance. These limitations can contribute to inaccurate networks with many missing and anomalous links.

Results: We adapted the time-lagged Ordered Lasso, a regularized regression method with temporal monotonicity
constraints, for de novo reconstruction. We also developed a semi-supervised method that embeds prior network
information into the Ordered Lasso to discover novel regulatory dependencies in existing pathways. R code is
available at https://github.com/pn51/laggedOrderedLassoNetwork.

Conclusions: We evaluated these approaches on simulated data for a repressilator, time-course data from past
DREAM challenges, and a HeLa cell cycle dataset to show that they can produce accurate networks subject to the
dynamics and assumptions of the time-lagged Ordered Lasso regression.

Keywords: Gene network reconstruction, Network inference, Gene regulation, Lasso, Regularization, Penalized
regression, Time course data

Background
Amajor challenge in systems biology is understanding the
structure and function of the molecular interaction net-
works that regulate cellular processes. Gene regulatory
networks (GRNs) are abstractions of these networks [1]
in which nodes correspond to genes and edges to inter-
actions, providing a high-level overview of the topology
of gene-gene interactions and their purposes. A com-
prehensive GRN can improve our understanding of its
role in the emergence of different phenotypes, disease
mechanisms, and other biological processes and how it
may be perturbed for therapeutic purposes [2–5]. Despite
burgeoning research, constructing accurate GRN models
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remains a challenge. Because of the large number of genes
in a genome, experimental validation of every possible
interaction is an arduous task. Therefore, computational
methods are preferred to screen for probable dependen-
cies based on high-throughput expression measurements.
Elucidating edges from these datasets with GRN recon-
struction methods can involve a combination of ad hoc
heuristics and interaction criteria as well as imposing
modeling assumptions on the expression dynamics of a
GRN and inferring models that preserve those assump-
tions [6, 7]. Additional insights into these interactionsmay
be obtained by ascertaining the quantitative models that
describe the dynamics of these interactions [8–12]. Rather
than predicting edges, these methods attempt to estimate
the parameters that describe the stochastic kinetics of the
chemical reactions that underlie the connections between
genes to provide detailed models that govern the observed
expression dynamics. In both cases, accurate methods can
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offer new experimental directions to verify novel interac-
tions and identify deficiencies in currently known GRNs
and models.
However, computational approaches for GRN recon-

struction pose another set of challenges. Since every
ordered pair of genes presents the possibility of an edge,
an exponentially large space of GRNs needs to be con-
sidered. Furthermore, while high-throughput sequencing
technologies have advanced significantly and can simul-
taneously measure the expression levels of thousands of
genes in an efficient and affordable manner, dataset sam-
ple sizes still tend to be very small compared to the
number of genes. This disparity results in clusters with
many genes that have similar expression profiles, allowing
many GRNs to plausibly account for the observed patterns
of expression in a dataset. In addition to GRN reconstruc-
tion being an underdetermined problem, other issues such
as missing data, gene expression stochasticity, confound-
ing, and incomplete characterizations of the gene regula-
tory dynamics can also adversely affect GRN predictions.
While the wealth of gene expression data has been a
boon to understanding GRNs, there is still a demand for
accurate and interpretable GRN inference methods that
properly address these problems with promisingmodeling
assumptions and efficient algorithms.
Most GRN reconstruction methods can be broadly clas-

sified into two categories. De novo approaches attempt
to infer GRNs solely from expression data. Specifically,
edges between genes are inferred by deriving edge con-
fidence scores based on similarities between expression
profiles [13–15], statistical measures of causality [16], or
estimations of the strength of influence between genes
based on an assumed model for gene expression, includ-
ing regression-based methods that model the expression
of a gene as a linear function of its regulators [17, 18],
probabilistic graphical models that estimate the condi-
tional dependence between genes [19], Boolean networks
that discretize the expression data into binary states that
are used to learn Boolean functions and their associated
networks [20–24], and random forests that can learn non-
linear dependencies using ensembles of decision trees
[25]. Approaches to filter out false positive edges aris-
ing from confounding or indirect interactions have also
been proposed [26, 27]. The other major approaches are
semi-supervised methods, which incorporate information
about a network. For example, experimentally derived
evidence for regulatory dependencies between genes has
been compiled in databases such as KEGG [28, 29]
and REACTOME [30]. While these descriptions are
incomplete, they can be used to refine partially known
GRNs with additional evidence from transcriptomic data.
Unlike de novo approaches, semi-supervised methods
attempt to refine GRNs by leveraging knowledge of a par-
tially known GRN with an expression dataset in order

to identify concordances and discrepancies between an
expression model on the GRN and an observed expres-
sion dataset. One common approach to developing these
methods has been to modify a de novo algorithm to bias
the selection of known edges, which include methods
that extend regression-based approaches [31, 32], random
forest-based approaches [32], and Boolean network-based
approaches [33, 34]. Despite fewer developments, semi-
supervised approaches have the potential to reduce false
positive predictions and improve GRN reconstructions.
In both cases, most methods rely on static expres-

sion data. Alternatively, since expression regulation is a
dynamic process, time-course data can be used to infer
causality. However, temporal data tends to exhibit high
autocorrelation and is usually only gathered for a few time
points and subjects. In addition, many temporal methods
typically assume that the expression of a gene at a time
point depends on its regulators at only the immediately
preceding time point, while other methods include addi-
tional time points but do not impose any constraints to
account for their temporal distance. For instance, pairwise
Granger causality [16, 35] tests the predictive capabil-
ity of the past values of a predictor in estimating the
present values of a target variable by comparing regression
models with and without the predictor, but ignores the
influence of other potential predictors and does not dis-
criminate the effect of different lags. To account for mul-
tiple causes, Lasso-Granger [36] uses lasso regularization
to identify causal predictors, but also neglects temporal
distance when constructing linear models. These limita-
tions can result in predicted GRNs with many missing and
anomalous links.
In this paper, we first describe a de novo approach for

GRN reconstruction based on the Ordered Lasso [37], a
recently published regularizationmethod that uses mono-
tonicity constraints on the coefficients of a linear model
to reflect the relative importance of the model features
and has natural applications to time-lagged regression.
Since partial knowledge of the dependencies between
genes is available, we also describe a semi-supervised
method that embeds prior network information into the
Ordered Lasso to facilitate the discovery of novel edges in
existing pathways. These methods establish several novel
contributions and results. Notably, our methods are the
first to consider a time-ordered constraint on regulatory
influence for GRN inference. In addition, we can accom-
modate prior knowledge of regulatory interactions to infer
novel and anomalous edges in a semi-supervised manner.
The performance of our methods can also be shown
to increase monotonically with the maximum lag of an
expression model, thus obviating the need to find the
optimal lag parameter. Furthermore, our methods have
a demonstrated ability to make novel inferences that are
later validated by experiment.
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The organization of the rest of this paper is as fol-
lows. In the “Methods” section, we briefly review the
time-lagged Ordered Lasso and describe suitable assump-
tions for dynamic gene expression on a GRN. In partic-
ular, we assume that each gene linearly depends on the
lagged expression of its regulators at multiple preced-
ing time points and enforce a monotonicity constraint
on the lagged variables so that the regulatory influence
of a lagged variable on the gene decreases as the lag of
the variable increases. We then describe the adaptations
of the time-lagged Ordered Lasso for de novo and semi-
supervised GRN reconstruction. In the “Results” section,
we apply the methods to simulated data for a repressilator,
time-course datasets from past DREAM challenges, and
a HeLa cell cycle dataset that has been used for bench-
marking. We show that the de novo algorithm can derive
accurate GRNs that reflect the dynamics and assumptions
of the time-laggedOrdered Lasso while obviating the need
for heuristics that optimize the maximum lag of depen-
dence. We also show that by embedding a partially known
GRN into the dynamics of the time-lagged Ordered Lasso,
the semi-supervised method can accurately predict novel
edges that account for the discrepancies between the
prior knowledge of the regulatory connections and the
observed dynamics of a gene expression dataset. In the
“Discussion” section, we conclude and discuss possible
extensions.

Methods
Time-lagged Ordered Lasso
The main difficulties in fitting models for gene expression
are the high dimensionality and small sample size of an
expression dataset. Due to the large number of genes rela-
tive to the number of samples, fitting even simple one-lag
models in which the expression of a gene depends on the
expression of other genes at a previous time point may
be an underdetermined problem wherein many models
plausibly fit the dataset and result in overfitting or difficul-
ties withmodel selection and interpretation. Higher-order
lagged models in which the dependence extends to mul-
tiple preceding time points provide more flexibility by
accounting for long-range and multiple-lag dependen-
cies, but the additional variables that are introduced fur-
ther compound the problems encountered in the one-lag
model. Furthermore, the lagged variables of a predictor
tend to have high autocorrelation, especially when the
temporal resolution of the data is small. Therefore, addi-
tional reasonable modeling assumptions must be imposed
to ensure that accurate, interpretable models can still be
feasibly learned.
To this end, one useful approach to prevent overfit-

ting, improve model interpretability, and produce accu-
rate predictions is the lasso or �1-regularized regression
[38]. The lasso performs regularization and produces

sparse solutions by minimizing the mean squared error
of a regression model while also penalizing the sum of
the absolute value of the model coefficients. By impos-
ing constraints on the size of the coefficients, the lasso
forces many of the coefficients to zero, leaving a few non-
zero coefficients whose corresponding variables may be
deemed relevant to predicting the output variable. Conse-
quently, the lasso may be used for variable selection and
to reduce overfitting.
In certain regression problems, an order constraint may

be imposed to reflect the relative importance of the fea-
tures. Recently, the Ordered Lasso was introduced to solve
�1-regularized linear regression problems with mono-
tonicity constraints on the coefficients [37], with a pri-
mary application to time-lagged regression. Specifically, a
time-lagged order assumption may be imposed wherein
recent data is assumed to be more predictive of the future
than older data is; as the lag of a predictor increases, its
influence decreases. To reflect this attenuation, the mag-
nitude of a coefficient can be forced to monotonically
decay with increasing temporal distance from a response
variable. Additional algorithmic details about the Ordered
Lasso and time-lagged Ordered Lasso may be found
in [37].
Like the ordinary lasso, the time-lagged Ordered Lasso

can facilitate feature selection and model interpretability.
Since the �1 penalty forcesmany of the coefficients to zero,
a lagged variable may be considered relevant if it has a
non-zero coefficient. In addition, because of the mono-
tonicity constraint on the lagged features of a predictor, all
of the coefficients may be equal to zero beyond a certain
lag. Therefore, the time-lagged Ordered Lasso can also
provide insight into the maximum effective lag or range of
influence of each predictor on the response.

De novo reconstruction
To adapt the time-lagged Ordered Lasso for de novo
GRN reconstruction, we impose several assumptions on
the dynamic model for the expression of a gene. We
first assume that the expression of each gene is linearly
dependent on the expression of its regulators at mul-
tiple preceding time points, a common assumption in
many reconstruction methods for time series expression
data. Furthermore, to reflect the importance of recent
expression data, we assume that as the temporal distance
between a target gene variable and a lagged variable of
a predictor gene increases, the regulatory influence of
the lagged variable on the target decreases, a justifiable
assumption for many expression datasets. For example,
since expression data tends to be sparsely sampled at dis-
tant time points, it is unreasonable to expect expression
data at highly distant time points in the past to be strongly
influential on the current expression level of a gene. For
each gene i in a time-course expression dataset, we then
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fit an expressionmodel withmaximum lag lmax allowed by
the data and lasso regularization by solving the following
problem using the time-lagged Ordered Lasso:

min{
wji,k

}
1
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⎛

⎝xi(t) −
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lmax∑
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2

+ λ
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lmax∑
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∣∣
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∣∣ ≥ ∣∣wji,2
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∣∣ ,
(1)

where xi(t) is the expression of gene i at time t and
the monotonicity constraint

∣∣wji,1
∣∣ ≥ · · · ≥ ∣∣wji,lmax

∣∣
encodes the time-lagged order assumption of the expres-
sion model. We then predict an edge from gene j to gene
i if any of the coefficients wji,1, . . . ,wji,lmax of the lagged
variables of j are non-zero. Because of the monotonicity
constraint, in effect, this only requires checking that the
first lagged variable is non-zero. However, this does not
imply that the higher-order lagged variables have no bear-
ing on the edges that are predicted; the additional lagged
variables of one gene may better explain a target gene’s
evolution in expression than the lagged variables of mul-
tiple other genes in a lower-lag model will, thereby elim-
inating the corresponding edges and potentially lowering
the false positive rate in the higher-lag model.
Although a gene’s expressionmay in reality depend non-

linearly on its regulators, we use a simplified linear model
for several reasons. First, having too many terms may be
computationally restrictive; if p is the number of genes
in the network, for each term we wish to consider, plmax
additional lagged variables need to be added to the model.
In addition, the low sampling rates and time coverage of
a dataset may be insufficient to accurately characterize
these terms without overfitting or signal aliasing. There-
fore, linearity serves as a simplifying assumption, deter-
rent to prevent overfitting, and preemptive measure to
reduce computational overhead. We expect this approx-
imation to be adequate for most applications, especially
when detailed dynamics are difficult to observe due to the
short time coverage and sparse sampling of a dataset.
To assess prediction accuracy across different values

of λ, we test the method against known/synthetic net-
works and compute the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve as λ is
varied. Since edges may potentially enter, leave, and re-
enter a model as λ decreases, to ensure the ROC curve
increases monotonically, we consider an edge to be pre-
dicted at a given value of λ if it enters at that value or
larger. This can be viewed as applying a threshold on λ

and merging the predicted networks for that value and

larger. Here, the AUC may be interpreted as the probabil-
ity that a randomly chosen edge is ranked higher or enters
a model earlier than a randomly chosen non-edge. Addi-
tional details on choosing λ may be found in Additional
file 1: Section S-2.

Semi-supervised reconstruction
Since partial knowledge of the dependencies between
genes is available, we also consider GRN refinements
with semi-supervised adaptations. For most researchers,
the primary interest in GRN reconstruction is discover-
ing novel edges, or pairs of genes that are not previously
known to interact, but their existence can be supported
with evidence from transcriptomic data. On the other
hand, prior information may also contain incorrect edges
due to curatorial errors or differences between a canon-
ical GRN forming the prior and that which exists in a
particular phenotype. Thus, discovering both novel and
anomalous connections is of interest.
We modify the de novo approach for semi-supervised

reconstruction by embedding a prior GRN into the lasso
as follows. Rather than use one general penalty param-
eter λ, we replace it with two parameters, λedge and
λnon-edge, to separately regularize the prior edge and non-
edge coefficients, respectively. An expression model for
gene k with maximum lag lmax is fit by solving the follow-
ing problem with the time-lagged Ordered Lasso:
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where E denotes the set of edges in the prior GRN. If
λedge < λnon-edge, the magnitude of the coefficients of the
prior edges will be penalized to a lesser extent than those
of the prior non-edges, thereby allowing the former to
account for most of the evolution in expression of the tar-
get gene. As a result, the prior edge coefficients are more
likely to be non-zero, and the prior edges are more likely
to be recovered as posterior edges.
Since the prior edges will not necessarily account for

all of the output variance and the corresponding coeffi-
cients may still be fit with zero values (for λedge > 0),
this approach allows us to predict novel and anomalous
edges. For a gene j that is not known to regulate a target
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gene i, we predict a novel edge if any of the coefficients
wji,1, . . . ,wji,lmax are non-zero. On the other hand, if gene
j is previously known to regulate gene i, we predict an
anomalous edge if all of the coefficients wji,1, . . . ,wji,lmax
are zero. As in the de novo case, both tests only require
checking the first lagged variable because of the mono-
tonicity constraint.

Related methods
We first compare our method to two baseline approaches.
The first, Granger causality, is based on the notion that
the utility of the information in one time series in fore-
casting another may be a potential indicator of causality
[35]. A variable x is said to Granger-cause a variable y if
the past values of x and y combined are more predictive
of future values of y than just those of y alone are. For
GRN reconstruction, since sample sizes tend to be much
smaller than the number of genes, the most basic form of
Granger causality is typically used [16]. Bivariate or pair-
wise Granger causality fits two autoregression models to
predict y, one that includes the lagged values of x and the
other without, and uses an F-test to assess the explana-
tory gain of using x in predicting y. A GRN is predicted
by aggregating the F-test p-values across every ordered
pair of genes and thresholding with false discovery rate
correction procedures.
The second standard approach to which we compare

ourmethod is Lasso-Granger [36]. One of themajor draw-
backs of pairwise Granger causality is that it cannot be
used with short time series; lmax must be sufficiently
small relative to the number of sampled time points so
that the models used to assess causality can be fit with
non-zero residuals. In addition, since causality is only
tested on a pairwise-basis, multiple regulators are not
accounted for. Lastly, a dataset with n genes requires
O

(
n2

)
tests for Granger causality, which may be com-

putationally prohibitive when n is large. Lasso-Granger
attempts to address these problems by solving Eq. 1, but
without the monotonicity constraint.
We also compare our GRN predictions to those made

by the truncating adaptive lasso [39], grouped graphi-
cal Granger modeling [40], and CNET [41]; details of
these algorithms may be found in their respective publica-
tions. Like the time-laggedOrdered Lasso, Lasso-Granger,
and Granger causality, the truncating adaptive lasso and
grouped graphical Granger modeling assume that the
expression of a gene linearly depends on the expression of
its predictors at multiple preceding time points, but each
of the methods applies different modeling constraints to
fit the temporal model.

Datasets
A summary of the time-course datasets to which we apply
the method is given in Table 1; we provide further details
below.

Table 1 Evaluation datasets and information on the number of
network genes (G), time points (TP), and time series (TS)

Dataset Network # G # TP # TS

Repressilator (sim) Repressilator 3 5–2049 1

DREAM (sim) d2c4-{1–2} 50 26 23

d3c4-size-10-ecoli-{1–2} 10 21 4

d3c4-size-10-yeast-{1–3} 10 21 4

d3c4-size-100-ecoli-{1–2} 100 21 46

d3c4-size-100-yeast-{1–3} 100 21 46

d3c4-size-50-ecoli-{1–2} 50 21 23

d3c4-size-50-yeast-{1–3} 50 21 23

d4c2-size-10-network-{1–5} 10 21 5

d4c2-size-100-network-{1–5} 100 21 10

HeLa (real) Sambo et al. / BioGRID 9 47 1

The number of repressilator time points varies and depends on the time series
length and sampling rate (see “Repressilator” section)

Repressilator
When designing experiments, experimentalists need to
decide for how long and often data should be collected
while factoring in technical complexity, cost, and other
considerations. Since time series expression data tends
to be short or sparse, predicting accurate GRNs from
these datasets may be difficult. Therefore, we first analyze
and demonstrate the effect of using different time series
sampling rates and lengths on accuracy. To do so, we sim-
ulate data for a repressilator [42], a synthetic network of
three genes connected in a feedback loop in which each
gene represses the next to induce oscillatory patterns of
expression. The behavior of a basic repressilator may be
described using the coupled differential equations

ẋ = α

1 + zn
− x, ẏ = α

1 + xn
− y, ż = α

1 + yn
− z. (3)

For our simulations, we set α = 4 and n = 3; examples of
simulated time series data are shown in Fig. 1.

DREAM
To analyze the utility of the methods in recovering known
GRNs, we apply them to synthetic time-course data from
several DREAM challenges. In one of the DREAM2 chal-
lenges, 50-node networks were derived from Erdos-Renyi
and scale-free topologies with Hill-type kinetics driving
gene expression [43]. The DREAM3 in silico network
challenge contained 10-, 50-, and 100-gene subnetworks
extracted from E. coli and S. cerevisiae gene networks,
and expression values were simulated with ordinary dif-
ferential equations and added measurement noise using
GeneNetWeaver [44–47]. Finally, in the DREAM4 in silico
network challenge, GeneNetWeaver was used to simu-
late data from stochastic differential equations by applying
perturbations to 10- and 100-gene networks.
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(a) (b)

(c) (d)

Fig. 1 a Repressilator network, b simulated gene expression for α = 4 and n = 3, and examples of c densely sampled and d sparsely sampled gene
expression datasets

HeLa cell cycle subnetwork
While synthetic expression data can be used elucidate
the GRN inference properties of a method in a con-
trolled manner, models for generating these datasets do
not fully capture all of the nuances of real data and
GRNs. To assess empirical practicality, we consider appli-
cations to the HeLa cell cycle gene expression dataset
by Whitfield et al. [48]. This dataset was previously
used by Sambo et al. [41] to benchmark their algorithm
and has since been used to benchmark other methods
[16, 39, 40]. These methods focus on the third experi-
ment of the dataset, which contains expression values at
47 hourly time points; we also use the same data for our
applications.
The first reference subnetwork to which we compare

our results, shown in Fig. 2a, consists of nine genes with
interactions that were previously derived from BioGRID
[49] and treated as ground truth by Sambo et al. [41].
However, since this network may be incomplete, any mea-
sures of performance that are interpreted with respect to it
may not be indicative of a method’s true predicative capa-
bility. For that matter, the known interactions in BioGRID
have been updated since the analysis by Sambo et al.
We therefore update the network using the interactions
in the most recent release of BioGRID as of this writing
(Release 3.4.160). We also compare our reconstructions to
the updated network, shown in Fig. 2b, to evaluate our
method’s ability to make discoveries that were not known
when the original network was curated.

Results
Repressilator
We first evaluate our method using simulated data for a
repressilator. We primarily investigate the effect of using
different sampling intervals �t = 6π

2j , j ∈ {2, 3, . . . , 11}
and time series lengths T = 6π

2i , i ∈ {0, 1, . . . , 9} by sim-
ulating data using Eq. 3. In addition, we analyze the effect
of the model order lmax ∈ {1, 2, 3} when fitting Eq. 1. In
each case, AUCs are computed to analyze the prediction
accuracies.
In Fig. 3, the repressilator AUCs are shown for the time-

lagged Ordered Lasso at a subset of the aformentioned
parameter values (the remaining values may be found in
Additional file 1: Figure S-1). When T is large, many of
these AUCs are 1, indicating that the time-lagged Ordered
Lasso can correctly infer the network when an adequate
amount of regularization is used to learn the expression
models. As T decreases, the AUCs remain constant until
much less than a period of oscillatory behavior is sam-
pled. However, the AUCs remain above 0.5, so the method
still does better than chance at identifying the true edges.
When the time series is too short to observe any rele-
vant dynamics, the method effectively does no better than
chance. Therefore, using a time series that covers a suffi-
ciently long period of time is necessary to ensure that a
reliably accurate GRN is inferred.
However, low sampling rates can be detrimental. When

the time series are extremely sparse because �t is large
relative to T, the AUCs degrade considerably, in some
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(a) (b)
Fig. 2 HeLa cell cycle subnetwork. Shown are the a original Sambo et al. network and b BioGRID-updated network, with anomalous edges (present
in the original, removed in the update) in red and novel edges (absent in the original, added in the update) in blue

Fig. 3 AUCs for each combination of method (color) and model order
lmax (shape) when applied to simulated time series expression data
for a repressilator. Data are simulated for different time periods T and
sampling rates �t

cases to 0. However, when the time series are dense, the
time-lagged Ordered Lasso produces high AUCs. More-
over, beyond a sampling rate when the surplus of sampled
points do not provide any additional detail about the rele-
vant dynamics, the AUCs do not change, therefore becom-
ing robust to changes in�t. Accordingly,�t does not have
to be extremely small to infer an accurate GRN, but the
resulting time series should not be excessively sparse. (We
note that �t should not be an integer multiple of the sys-
tem’s oscillatory period; otherwise, the sampled data will
be constant, and edges will be predicted at chance.)
Lastly, the effect of lmax on the AUCs appears to be

negligible for large T and small �t. This suggests that
the time-lagged Ordered Lasso can accurately describe
the repressilator’s behavior with lmax = 1. Moreover,
for lmax > 1, the time-lagged Ordered Lasso is able to
suppress the effect of the additional lagged variables by
enforcing the monotonicity constraint. However, when T
is small or �t is large relative to T, the AUCs appear to be
sensitive to the choice of lmax. Since increasing lmax results
in fewer samples to learn from, the accuracy of the time-
lagged Ordered Lasso is expected to be robust to changes
in lmax when it is small relative to the number of time
points.
For comparison, Granger causality and Lasso-Granger

AUCs are also shown in Fig. 3. Granger causality generally
predicts edges at chance or worse, but performs compa-
rably to the time-lagged Ordered Lasso when T is small.
In addition, its AUCs are sensitive to changes in lmax and
vary unpredictably with changes in T and �t, making it
difficult to suggest experimental designs for other GRNs.
In contrast, Lasso-Granger tends to be on par with the
time-lagged Ordered Lasso. For a one-lag model, there
is no monotonicity constraint, so their AUCs match for
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lmax = 1. For lmax > 1, the AUCs deviate when �t
has sufficiently increased; when �t is large, the Lasso-
Granger AUCs tend to decrease with increasing lmax,
while the time-lagged Ordered Lasso AUCs are more
robust, remaining at 1 in some cases.
Based on these results, the time-lagged Ordered Lasso

has the potential to outperform other methods. Unlike
Granger causality, it can handle short time series and still
produce reasonably accurate networks. In addition, while
Granger causality and Lasso-Granger allow higher lags to
flexibly explain the repressilator’s expression dynamics,
they may correspond to false edges; in contrast, the time-
lagged Ordered Lasso enforces a reasonable assumption
about the diminishing strength of higher lags to mitigate
their presence. Therefore, the repressilator is an example
in which a better regression fit does not imply a more
accurate GRN. Lastly, using time series that cover long
periods of time can improve the time-lagged Ordered
Lasso’s ability to articulate the true edges, provided that
the sampling rate is not extremely low. However, sampling
over shorter periods with relatively high sampling rates to
observe sufficient changes in expression can still produce
fairly accurate networks. Therefore, the total number of
observations, rather than frequency or length alone, is a
major factor in inference accuracy.

DREAM
We next apply our method to the DREAM challenge
datasets. Since the networks are fully known, biologically
plausible, and endowed with detailed dynamical models

of gene expression, these challenges serve as a testbed
for benchmarking methods across different network sizes,
topologies, sample sizes, and stochasticity conditions. As
with the repressilator, we compute AUCs at different
model orders lmax.
We study the overall performance of each method

across the DREAM networks by considering the distribu-
tion of AUCs for each combination of method and lmax.
In Fig. 4, densities are fit to the AUCs for each combi-
nation. Unlike with the repressilator, the three methods
perform similarly across the DREAM datasets; their den-
sities largely overlap, so the time-lagged Ordered Lasso is
competitive with other methods on many of the datasets.
In addition, the densities concentrate around moderately
high AUC values, so the methods are capable of infer-
ring true edges at rates better than chance. However, the
median AUCs for Granger causality tend to be slightly
higher than those of the other methods, attributable to the
method having slightly better performance on a subset of
the networks.
Other crucial differences between the methods can be

identified. In particular, certain values of lmax can be used
to obtain slight improvements in the overall accuracy of
one method over another; based on the AUC density
curves and medians at the considered lmax values (Fig. 4),
the accuracy of the time-lagged Ordered Lasso appears to
improve as lmax increases, while the Granger causality and
Lasso-Granger AUCs peak at intermediate values of lmax.
This suggests that inferring the most accurate GRNs pos-
sible for Granger causality and Lasso-Grangermay require

Fig. 4 Densities fit to the DREAM AUCs for each combination of method and model order lmax. Vertical lines indicate empirical medians. Note that
the AUCs for the time-lagged Ordered Lasso increase monotonically with lmax, in contrast to the other methods
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optimizing lmax. However, since the GRNs are generally
not fully known beforehand, devising heuristics or meth-
ods to select lmax and maximize the prediction accuracy
may be difficult. In contrast, the time-lagged Ordered
Lasso results suggest that large values of lmax are prefer-
able to take advantage of automaticmaximum effective lag
selection through the monotonicity constraints. That is,
we do not need to optimally select lmax.

HeLa cell cycle subnetwork
Lastly, to evaluate its performance on real datasets, we
apply our method to the HeLa cell cycle gene expres-
sion dataset by Whitfield et al. [48]. To compute AUCs,
we first consider the subnetwork curated by Sambo et al.
[41] using then-known interactions from BioGRID as the
ground truth network. However, this network has since
been updated to include additional discoveries. Conse-
quently, AUCs computed with respect to the original net-
work are not indicative of a method’s true performance,
but they can be useful to illustrate the effects of treating
partially known networks as the gold standard and the
cautionary measures that are required. Therefore, we also
compute AUCs based on an updated network that con-
sists of interactions among the same genes from a recent

release of BioGRID (Release 3.4.160). Although this net-
work may still only be considered “partially” known as
there may still be edges among these genes that have yet
to be discovered, treating it as the “truth” will provide a
more reliable estimate of a method’s prediction accuracy
than the older version will.
In Fig. 5, AUCs computed with respect to the updated

network are shown for each method and model order
lmax ∈ {1, . . . , 6}; in the inset, AUCs computed with
respect to the original Sambo et al.-network are shown.
With the updated network, the time-lagged Ordered
Lasso AUCs tend to increase as lmax increases, eventu-
ally attaining the highest values across all methods and
at rates better than chance. In contrast, when they are
computed based on the original network, the AUCs sug-
gest that the time-lagged Ordered Lasso does no better
than chance at predicting the true network. Therefore,
the original network AUCs may be inaccurate and mis-
leading indicators of accuracy by virtue of the original
network’s relative incompleteness, and by considering the
updated network, our outlook on the utility and compara-
bility of the methods readjusts considerably. Likely due to
the high-ranking novel edges that were previously consid-
ered false positives with respect to the original network,

Fig. 5 Time-lagged Ordered Lasso, Granger-causality, and Lasso-Granger AUCs at different model orders lmax when applied to the HeLa cell cycle
expression dataset with the BioGRID-updated network and (lower inset) Sambo et al.-network treated as ground truth networks. ROC curves with
respect to the updated network are shown in the upper inset plots; the black diagonal line corresponds to predicting edges by pure chance
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incorporating the novel and anomalous edges generally
leads to higher AUCs that are respectable in light of the
low time resolution of the data, which consequently sug-
gests that the time-lagged Ordered Lasso can predict true
edges from sparsely sampled data at rates much better
than chance and certainly better than suggested by the
Sambo et al.-network. Importantly, this demonstrates that
the time-lagged Ordered Lasso can make discoveries that
were not known at the time that the original network was
curated.
While Granger causality and Lasso-Granger can outper-

form the time-lagged Ordered Lasso, they only do so at
particular values of lmax and, even then, do not achieve
the highest overall AUCs. In addition, at the larger values
of lmax, the Ordered Lasso is subject to the most restric-
tive regression constraints of the three methods, but still
achieves the highest AUCs, so we again see that a better
regression fit does not imply a more accurate GRN. Fur-
thermore, the AUCs of the competing methods may vary
unpredictably with lmax, making it difficult to optimize
when constructing GRNs. For example, with multiple
local minima and maxima in the Granger causality AUCs,
an arbitrary choice of lmax may not produce the best possi-
ble Granger causality-based network. The Lasso-Granger
AUCs trend somewhat more predictably, increasing as
lmax increases to 4 and decreasing afterwards, but it is
not apparent how lmax may be optimized to maximize
the AUC when the network is not known beforehand.
In contrast, the time-lagged Ordered Lasso AUCs appear
to increase monotonically with lmax and stabilize when
lmax ≥ 4, suggesting that the predicted networks barely
change beyond a certain lmax for a sufficiently long time
series; this is likely due to the monotonicity constraint
taking full effect and ignoring the additional lagged vari-
ables that are introduced. This attribute and the results
suggest that the time-lagged Ordered Lasso can optimally
recover the true GRN from an expression dataset without
a complicated heuristic to select lmax.
In summary, these results demonstrate several impor-

tant properties of the time-lagged Ordered Lasso’s GRN
inference capabilities. The AUCs computed based on the
updated subnetwork suggest that our method is able to
derive accurate GRNs from time series gene expression
data, even when it is sparsely sampled in time. In con-
trast, the AUCs computed against the original, incomplete
Sambo et al.-network are lower and more volatile, sug-
gesting that our method is able to discover relationships
that were not known when the original network was
curated. Furthermore, despite enforcing the most restric-
tive regression constraints of the three methods, the time-
lagged Ordered Lasso is able to utilize the monotonicity
constraint to outperform other methods. In particular,
the inferred networks and AUCs are robust to the model
order when it is sufficiently large, and these AUCs are the

highest across all methods. This suggests that an accu-
rate GRN may be efficiently inferred with the time-lagged
Ordered Lasso by simply choosing a sufficiently large
model order that is permissable given the length of a time
series to allow the constraint to optimize the maximum
effective lag; other methods may require intricate or com-
putationally intensive approaches to choose the model
order and may still not predict the most accurate GRN.
These features therefore make the time-lagged Ordered
Lasso a viablemainstay for additional reconstruction anal-
yses and approaches, and modifications such as an adap-
tive lasso [50] step to introduce specific source-target
penalties may further improve prediction accuracy.

Predicted network comparisons
We next compare our method to the truncating adaptive
lasso (TAlasso) [39], grouped graphical Granger mod-
eling (grpLasso) [40], and CNET [41], other algorithms
that have been applied the HeLa expression dataset. Since
these methods have no notion of an AUC (CNET) or have
been designed to select particular parameters (TAlasso,
grpLasso), we compare their predicted networks with
those of the time-lagged Ordered Lasso at a fixed value of
λ. To select λ, we use the same heuristic used by TAlasso.
We note that the guarantees provided by this heuristic
do not necessarily apply to our approach and that the
additional adaptive lasso weights of the TAlasso result in
larger effective penalties than are actually suggested by
the heuristic. In addition, other suitable heuristics could
have been chosen to select λ that may result in better true
and false positive rates, so this choice of heuristic is only
for comparative purposes. Since the parameter α for this
heuristic was not specified by the authors, we select the
customary α = 0.01 and compute λ following Eq. 9 of
[39]. Since we showed that the time-lagged Ordered Lasso
AUCs increased and stabilized with increasing lmax, we set
lmax = 6.
In Fig. 6, the predicted networks of the time-lagged

Ordered Lasso and the three reference methods are
shown. The networks of the reference methods have been
reconstructed from the results presented by the authors
[39] and updated to reflect the changes in BioGRID. Based
on the updated network, the time-lagged Ordered Lasso
is second to TAlasso in terms of precision, but achieves
the highest recall and F1 score amongst the four methods.
Since the F1 score is the harmonic mean of the preci-
sion and recall, the time-lagged Ordered Lasso is able to
best balance the ability to recover many true edges while
ensuring that many of the predicted edges are indeed true
edges. In contrast, while TAlasso has very high precision,
it recovers half as many true edges as the time-lagged
Ordered Lasso does, resulting in a lower F1 score and
overall weaker performance. Other methods are substan-
tially less accurate than both TAlasso and time-lagged



Nguyen and Braun BMC Bioinformatics          (2018) 19:545 Page 11 of 15

(a) (b)

(c) (d)
Fig. 6 Predicted networks and precision P, recall R, and F1 scores using the a time-lagged Ordered Lasso, b TAlasso, c grpLasso, and d CNET. True
positive edges are shown in black, false positives as solid red lines, and false negatives as dashed red lines

Ordered Lasso. Even though the TAlasso heuristic may
not be optimal with respect to the time-lagged Ordered
Lasso, our method still produces reasonably accurate net-
works, and further modifications such as choosing λ on
a per-gene basis or different heuristics that are more spe-
cific to the time-lagged Ordered Lasso may improve its
network predictions. In addition, these results can be
used to guide a choice between TAlasso and the time-
lagged Ordered Lasso, depending on the importance of
specificity versus sensitivity as well as predicting a sparse
network versus the potential to discover more novel edges
that may be verified with follow-up experiments, espe-
cially when the reference networks may only be partially
known.

Semi-supervised application
The availability of the original and updated networks also
presents an opportunity to analyze the semi-supervised
time-lagged Ordered Lasso adaptation. For illustrative
purposes, we evaluate themethod’s ability to predict novel
edges by treating the original Sambo et al.-network as the
input prior network and setting λedge to 0. We again com-
pute AUCs, this time by tracking the prior non-edges that
enter an expression model as λnon-edge decreases from a
sufficiently large value (corresponding to no prior non-
edges predicted as posterior edges). This AUC may be
interpreted as the probability that a randomly chosen true
novel edge is ranked higher or enters a model earlier than
a randomly chosen true non-edge.
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The novel edge prediction AUCs for model orders
lmax ∈ {1, . . . , 6} are shown in Fig. 7. Similar to the
de novo case, the AUCs tend to increase and level off as
lmax increases. More importantly, the AUCs at the larger
values of lmax are well above 0.5, indicating that the semi-
supervised method can predict novel edges at rates better
than chance using the described parameter settings. Since
all prior edges were unpenalized in these results, possible
improvements in accuracy can be made by choosing pos-
itive values of λedge, which can also facilitate anomalous
edge detection. Nevertheless, the time-lagged Ordered
Lasso already displays a strong potential for reliable novel
edge detection; even without these adjustments, the cur-
rent semi-supervised adaptation is still able to synthesize a
partially knownGRNwith an expression dataset to resolve
the inconsistencies between both inputs and accurately
identify the missing edges in the GRN.

Discussion
The time-lagged Ordered Lasso imposes a monotonicity
constraint based on temporal distance that is adequate for
many time series applications, performs model regular-
ization, and has a canonical feature selection mechanism,
making it well-suited for GRN reconstruction. We have

presented adaptations of the method for de novo and
semi-supervised reconstruction from time-course gene
expression data. To do so, we assumed that the expres-
sion of a gene depended linearly on the expression of its
regulators at multiple preceding time points and that the
regulatory strength of a predictor decreased for increas-
ing lags. A local model of gene expression is then learned
for each gene using the time-lagged Ordered Lasso, and
a GRN is predicted by applying the feature selection
mechanism on each gene’s model to determine the pre-
dicted regulators. To modify the de novo method for
semi-supervised reconstruction, we introduced a second
regularization parameter that allows us embed a prior
GRN into the model fitting procedure in order to predict
novel and anomalous edges.
In our applications, we showed that the time-lagged

Ordered Lasso enforces the monotonicity constraint to
accurately predict a variety of networks. In most cases,
the time-lagged Ordered Lasso performed on par with
or better than competing methods. Most importantly, we
showed that it can accurately discover novel network con-
nections and anomalous links using real data, as demon-
strated by the improved performance when compared to
the updated HeLa network. Specifically, the time-lagged

Fig. 7 Novel edge prediction AUCs for the time-lagged Ordered Lasso at different model orders lmax when applied to the HeLa cell cycle expression
dataset with the Sambo et al.-network as the prior network and BioGRID-updated network as the ground truth network. The red diagonal line
corresponds to predicting edges by pure chance
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Ordered Lasso predicted edges that were not known at
the time that the HeLa data was published and would
have been erroneously considered false positives with
the respect to the Sambo et al.-network, but were later
confirmed by further experiments. This is an important
validation of the time-lagged Ordered Lasso’s capabilities.
Our results illustrated several important properties of

the time-lagged Ordered Lasso adaptations. For instance,
provided that a time series covers a sufficiently long
period of time and is not extremely sparse, our method
was able to accurately recover GRNs from the data,
whereas other methods had more difficulty doing so
under the same conditions. In addition, predicting a GRN
from a fitted model only required checking the first lagged
variable of each predictor. However, because the addi-
tional lagged variables of one gene may better explain a
target gene’s evolution in expression than the lagged vari-
ables of multiple other genes in a lower-lag model will,
the higher order lags will still be important to the model
and reduce false positive edge predictions at adequately
chosen penalty parameters. Lastly, because of the mono-
tonicity constraint, the time-lagged Ordered Lasso can
automatically select the maximum effective lag of influ-
ence for each gene-gene pair, so the predicted GRNs are
expected to be robust to the model order if a time series is
sufficiently long and the model order is sufficiently large.
As a result, the monotonicity constraint precludes the
need for any complicated heuristics to choose the model
order that other approaches may require to optimally
reconstruct a GRN.
Our algorithms can be modified in several ways. Here,

we assumed that the expression of a gene depended
linearly on the lagged expression of its predictors. How-
ever, we included the lagged expression of the gene itself
as covariates, even if self-regulation was not evident;
one modification is removing them. Another common
modeling approach is using differential equations. Details
and results for these changes may be found in Additional
file 1: Sections S-1 and S-6. As with multiple linear
regression, the addition of non-linear and interaction
terms can improve the fit of a model and allow for more
complex, realistic dependencies. However, we observed
in our applications that an improved fit does not neces-
sarily imply a more accurate GRN. In addition, while this
extension only requires a straightforward specification
of new variables to include, having too many terms may
be computationally restrictive, so some knowledge of
which non-linear terms and interactions may be useful, in
light of the sparsity of the data, is required. Thus, using
linearity as a simplifying assumption serves to prevent
overfitting and reduces computational overhead while
remaining adequate for most applications, especially
when detailed dynamics are difficult to observe due
to the short time coverage and sparse sampling of a

dataset. By imposing monotonicity constraints in Eqs. 1
and 2, we also implicitly assumed that the influence of
a predictor on a target always began with the immedi-
ately preceding time point. Therefore, the expression
models can also be modified to account for larger delays
of dependence, but this may require new approaches
or substantial changes to the underlying time-lagged
Ordered Lasso method to automatically select the delay.
Alternatively, one may choose to measure expression
data at sparser rates or subsample an existing dataset,
but these approaches will require some knowledge of an
appropriate delay. In some cases, a monotonicity con-
straint may inaccurately explain the expression dynamics
and eliminate true regulatory genes from consideration,
such as when there is a large delay of dependence. In
fact, the relaxation to Lasso-Granger improved the
AUCs at certain lags for some of the DREAM networks.
Thus, the time-lagged Ordered Lasso may not always
be appropriate, so other modifications may involve
deciding when to relax the constraint. Furthermore,
we have not investigated the impact that the level of
noise has on the accuracy of our method, particularly
when the expression data is derived from low molecule
number measurements. The implicit assumption that
the data is collected using high molecule numbers is
currently a limitation of the method, so the stochasticity
that is incurred in the low copy number case may be
investigated in further detail, including the tolerance to
noise and what additional modifications and parameter
choices should be made, if any, to effectively deal with
considerable amounts of noise. Lastly, when comparing
the HeLa-predicted networks, we applied a heuristic
used by another method to choose the lasso penalty that
may not have resulted in optimal predictions for our
approach. Another avenue for extensions may therefore
involve designing new heuristics or employing commonly
used heuristics such as BIC optimization to improve
network predictions. Additional extensions include
adding different regularization parameters for different
genes, algorithms to automatically choose those param-
eters, and other feature selection procedures to infer
edges.

Conclusion
While GRN inference remains challenging, our approach
provides several advances. First, to infer GRNs, our
approach uses a time-ordered constraint on regulatory
influence, which we showed can accurately predict a
variety of networks. Our approach can also accommo-
date prior knowledge for semi-supervised GRN inference.
In addition, the performance of our methods increases
monotonically with the maximum lag of an expression
model, obviating the need to optimize that parameter.
Lastly, our methods also have the ability to make accurate
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novel discoveries, as demonstrated with the BioGRID
example.
Even without extensive modifications, our current algo-

rithm is still able to predict fairly accurate GRNs with
reasonable, basic assumptions for dynamic gene expres-
sion modeling. Thus, the GRNs that are inferred using
the time-lagged Ordered Lasso can be used as starting
points for further analyses and network refinements, and
the time-lagged Ordered Lasso can serve as a backbone
for additional GRN reconstruction algorithms.
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