
SOFTWARE Open Access

Accelerating a cross-correlation score
function to search modifications using
a single GPU
Hyunwoo Kim1* , Sunggeun Han2, Jung-Ho Um1 and Kyongseok Park3

Abstract

Background: A cross-correlation (XCorr) score function is one of the most popular score functions utilized to
search peptide identifications in databases, and many computer programs, such as SEQUEST, Comet, and Tide,
currently use this score function. Recently, the HiXCorr algorithm was developed to speed up this score function
for high-resolution spectra by improving the preprocessing step of the tandem mass spectra. However, despite the
development of the HiXCorr algorithm, the score function is still slow because candidate peptides increase when
post-translational modifications (PTMs) are considered in the search.

Results: We used a graphics processing unit (GPU) to develop the accelerating score function derived by
combining Tide’s XCorr score function and the HiXCorr algorithm. Our method is 2.7 and 5.8 times faster than the
original Tide and Tide-Hi, respectively, for 50 Da precursor tolerance. Our GPU-based method produced identical
scores as did the CPU-based Tide and Tide-Hi.

Conclusion: We propose the accelerating score function to search modifications using a single GPU. The software
is available at https://github.com/Tide-for-PTM-search/Tide-for-PTM-search.

Keywords: Peptide identification, Tide, Cross-correlation score function, High performance computing, PTM search

Background
Peptide identification is one of the most important prob-
lems in proteomics. Tandem mass spectra (MS/MS) are
generated by peptides cleaved from proteins and analyzed
using database search methods to identify the peptides [1].
An XCorr score function is used by SEQUEST [2], which
is the most popular software for peptide identification.
First, SEQUEST generates theoretical spectra using data-
base sequences, compares the theoretical spectra to an ex-
perimental spectrum (called the XCorr score function),
and finds the sequence most similar to the experimental
spectrum. Given that the XCorr score function is
time-consuming, this score function was developed to im-
prove performance capabilities. Most recently, the HiX-
Corr algorithm [3] was developed for high-resolution
spectra and implemented in conjunction with Tide [4] and

Comet [5], with these score function referred to as
Tide-Hi and Comet-Hi, respectively.
However, database search tools using XCorr score func-

tions are still slow because candidate peptides increase
when PTMs are considered in the search. A multi-thread
method exploiting CPU cores has been used to resolve this
problem. Recently, studies of high-performance computing
applications have used GPUs for parallelization. Using
GPUs, Tempest [6] improved the classical SEQUEST
XCorr score function and FastPaSS [7] accelerated the
spectral library search method. CPUs and GPUs have differ-
ent methods for data processing. The GPU is designed for
the simultaneous execution of a single instruction on many
threads. For this reason, it is a different problem to imple-
ment the XCorr score function for each tool using the
GPU, though it is an efficient method as a single GPU gen-
erally has more cores than a single CPU. In this paper, we
used the GPU to develop the score function derived by
combining Tide’s XCorr score function and the HiXCorr
algorithm.

* Correspondence: pardess@kisti.re.kr
1Research Data Hub Center, Korea Institute of Science and Technology
Information, Daejeon 34141, Republic of Korea
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kim et al. BMC Bioinformatics          (2018) 19:480 
https://doi.org/10.1186/s12859-018-2559-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2559-6&domain=pdf
http://orcid.org/0000-0001-6785-7760
https://github.com/Tide-for-PTM-search/Tide-for-PTM-search
mailto:pardess@kisti.re.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Implementation
Our method is implemented in C++ and NVIDIA’s
CUDA (Compute Unified Device Architecture). It ap-
propriately uses both the CPU and the GPU. The pre-
processing step of the experimental spectra applies the
HiXCorr algorithm using the CPU. Because the result
using HiXCorr algorithm is a sparse vector that in-
creases the time of the dot product step, this result is
mapped to a full vector using the GPU (Mapping step).
Each thread of the GPU processes a single bin of the
full vector in the mapping step. After this step, using
the CPU, our method extracts candidate peptide se-
quences (Extracting step); then, using the GPU, our
method creates the theoretical spectra (Creating step),
and takes the dot product between the experimental
spectra and the theoretical spectra (Dot product step).
In the creating step and dot product step, each block
and each thread of the GPU processes a single candi-
date peptide and a single peak of the theoretical
spectrum, respectively.

Results
For high-resolution spectra analysis, MS data were gener-
ated by CPTAC (Clinical Proteomic Tumor Analysis Con-
sortium). Peptide fragmentation was performed with the
high-energy collision-induced dissociation (HCD) method.
The data were acquired on a Thermo Q-Exactive instru-
ment. The first fraction of the Com-pRef_Proteome_BI_2
was used; it consists of 33,223 MS/MS data. For
low-resolution spectra analysis, HAP1 cell was used and
peptide fragmentation was collision-induced dissociation
(CID) [8]. Tandem mass spectra were acquired on a using
a linear trap quadrupole (LTQ) Orbitrap Velos mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA). The
first fraction of first replicate (M411-A01-O156-HS-
P4569–1 and M411-A01-O156-HS-P4569–2) was used; it
consists of 25,528 MS/MS data (PreoteomeXchange iden-
tifier: PXD006614). The MS/MS data were searched
against the SwissProt human-reference (released in July
2016) database. Our method is compared with Tide (Crux
version 3.1) [9] and Tide-Hi on a machine with an Intel
Core i7-7700 K CPU (4.20GHz), 32GB of RAM and an
NVIDIA GeForce GTX 1080 8GB GPU under CentOS 7.
Tide is generally used with parameters for specific

PTMs and, when many PTMs are used, the number of
candidate peptides is increased. Table 1 shows that the
number of candidate peptides is increased when CPTAC
data are searched with various PTMs for maximum
missed cleavages = 2, number of enzyme termini (NTT) =
2, and precursor tolerance = 0.1 Da (Dalton). Considering
many PTMs, Tide is slow because of the increase in the
number of candidate peptides. Recently, the Open Search
method [10] using 500 Da for precursor tolerance has

been proposed for blind search. If precursor tolerance =
500 Da, all PTMs for ±500 Da are considered for the data-
base search. Actually, the precursor tolerance is the PTMs
mass range. As such, we changed the precursor tolerance
to increase the number of candidate peptides instead of
considering PTMs. Table 2 shows that as the precursor
tolerance increases, the number of candidate peptides in-
creases for maximum missed cleavage = 2, NTT = 2.
We compared our method with Tide and Tide-Hi.

Fragment tolerance = 1 Da was used for low-resolution
spectra (HAP1), fragment tolerance = 0.02 Da was used
for high-resolution spectra (CPTAC), and the time of
tide-search excluding the tide-index time was measured.
When the number of candidate peptides is small, that

is, when the precursor tolerance is narrow, Tide is faster
than Tide-Hi for low-resolution spectra (Fig. 1 (a), (b)),
but Tide-Hi is faster than Tide for high-resolution spec-
tra (Fig. 1 (c), (d)), because Tide-Hi is implemented for
high-resolution spectra. However, as the number of can-
didate peptides increases, Tide-Hi becomes slower than
Tide. The time complexity of Tide is O(n) for prepro-
cessing time and O (mPt) for calculated time of XCorr,
where n is the size of the spectrum bin for the fragment
tolerance, m is the number of candidate peptides, and Pt
is the number of peaks in each theoretical spectrum. On

Table 1 Average numbers of candidate peptides for various
PTMs using CPTAC data

PTM Average number of
candidate peptides

Non-modified 1089.70

1 Oxidation (M) 1348.12

1 Oxidation (M) 1 Deamidation (NQ) 2769.45

2 Oxidations (M) 2 Deamidations (NQ) 3752.88

2 Oxidations (M) 2 Deamidations (NQ) 1
Phosphorylations (STY)

8616.11

Table 2 Average numbers of candidate peptides for various
precursor tolerances using CPTAC data

Precursor tolerance Average number of candidate peptides

0.1 1089.70

0.2 1537.49

0.5 1641.89

1 3275.70

2 6547.26

5 16,332.48

10 32,556.57

20 65,217.44

50 162,928.67

Kim et al. BMC Bioinformatics          (2018) 19:480 Page 2 of 5



a b

c d

Fig. 1 Comparison of total running time for Tide, Tide-Hi, and our method when 8-threads and various precursor tolerances were used. a, b Running
time for low resolution spectra (fragment tolerance = 1 Da). c, d Running time for high-resolution spectra (fragment tolerance = 0.02 Da). b and d show
enlarged results up to precursor tolerance = 5 Da in (a) and (b), respectively

a b

c d

Fig. 2 Comparison of total running time for Tide, Tide-Hi, and our method when various threads and low-resolution spectra (fragment tolerance = 1
Da) were used. a Single thread. b 2-threads. c 4-threads. d 8-threads

Kim et al. BMC Bioinformatics          (2018) 19:480 Page 3 of 5



the other hand, the time complexity of Tide-Hi is O (Pe)
for preprocessing time and O(m (Pe + Pt)) for calculated
time of XCorr, where Pe is the number of peaks in the
experimental spectrum. If m (the number of candidate
peptides) increases, O (mPe) becomes larger than O(n),
so that Tide-Hi becomes slower than Tide. For this rea-
son, Tide-Hi is slower than Tide as the number of candi-
date peptide increases.
Our method, utilizing a single GPU, uses the HiXCorr

algorithm to speed up the search for high-resolution
spectra even as the number of candidate peptides in-
creases. Figure 1 shows that the proposed method is
faster than Tide-Hi and Tide even as the number of
candidate peptides increases. Our method is faster than
Tide and Tide-Hi regardless of the number of candidate
peptides, or the resolution of the spectra. For low- and
high-resolution spectra, our method is 2.7 and 5.8
times faster than Tide and Tide-Hi at a 50 Da precursor
tolerance. Since Tide uses the multi-thread method, we
measured the times by changing the number of threads.
Figures 2 and 3 show that when using low- and
high-resolution spectra, our method is faster than Tide
and Tide-Hi, respectively, regardless of the number of
threads. Our GPU-based method produced identical
scores as did the CPU-based Tide and Tide-Hi.

Conclusions
We propose an accelerating score function to search
modifications using a single GPU. We used the GPU to
develop the accelerating score function, which was de-
rived by combining Tide’s XCorr score function and the
HiXCorr algorithm. For low- and high-resolution spec-
tra, our method is 2.7 and 5.8 times faster than the Tide
and Tide-Hi for 50 Da precursor tolerance. The software
is available at https://github.com/Tide-for-PTM-search/
Tide-for-PTM-search.

Availability and Requirements
Project name: Tide for PTM search.
Project home page: https://github.com/Tide-for-

PTM-search/Tide-for-PTM-search
Operating system(s): CentOS 7.
Programming language: C++, CUDA.
License: Apache license.
Any restrictions to use by non-academics: none.
Example data: available at project homepage.

Abbreviations
CPTAC: Clinical proteomic tumor analysis consortium; CUDA: Compute
unified device architecture; Da: Dalton; GPU: Graphics processing unit; MS/
MS: Tandem mass spectra; NTT: Number of enzyme termini; PTM: Post-
translational modification; XCorr: Cross-correlation

a b

c d

Fig. 3 Comparison of total running time for Tide, Tide-Hi, and our method when various threads and high-resolution spectra (fragment tolerance
= 0.02 Da) were used. a Single thread. b 2-threads. c 4-threads. d 8-threads

Kim et al. BMC Bioinformatics          (2018) 19:480 Page 4 of 5

https://github.com/Tide-for-PTM-search/Tide-for-PTM-search
https://github.com/Tide-for-PTM-search/Tide-for-PTM-search
https://github.com/Tide-for-PTM-search/Tide-for-PTM-search
https://github.com/Tide-for-PTM-search/Tide-for-PTM-search


Acknowledgments
Not applicable.

Funding
This research was supported by Korea Institute of Science and Technology
Information (KISTI) which played roles in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Software and dataset (MS/MS data and a database) are available at https://
github.com/Tide-for-PTM-search/Tide-for-PTM-search.

Authors’ contributions
HK conceived the project and designed the studies. HK, SH, JU, and KP
performed the analysis and wrote the manuscript. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Research Data Hub Center, Korea Institute of Science and Technology
Information, Daejeon 34141, Republic of Korea. 2KISTI Scientific Data School,
Korea Institute of Science and Technology Information, Daejeon 34141,
Republic of Korea. 3Super Computing Cloud Center, Korea Institute of
Science and Technology Information, Daejeon 34141, Republic of Korea.

Received: 28 February 2018 Accepted: 4 December 2018

References
1. Steen H, Matthias M. The ABC's (and XYZ's) of peptide sequencing. Nat Rev

Mol Cell Biol. 2004;5(9):699–711.
2. Eng JK, Ashley LM, John RY. An approach to correlate tandem mass spectral

data of peptides with amino acid sequences in a protein database. J Am
Soc Mass Spectrom. 1994;5(11):976–89.

3. Kim H, Jo H, Park H, Paek E. HiXCorr: a portable high-speed XCorr engine for
high-resolution tandem mass spectrometry. Bioinformatics. 2015;31(24):
4026–8.

4. Diament BJ, Noble WS. Faster SEQUEST searching for peptide identification
from tandem mass spectra. J Proteome Res. 2011;10(9):3871–9.

5. Eng JK, Jahan TA, Comet HMR. An open-source MS/MS sequence database
search tool. Proteomics. 2015;13(1):22–4.

6. Milloy JA, Faherty BK, Gerber SA. Tempest: GPU-CPU computing for high-
throughput database spectral matching. J Proteome Res. 2012;11(7):3581–91.

7. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB. Fast parallel
tandem mass spectral library searching using GPU hardware acceleration. J
Proteome Res. 2011;10(6):2882–8.

8. Lee SE, Song J, Bösl K, Müller AC, Vitko D, Bennett KL, Superti-Furga G,
Pandey A, Kandasamy RK, Kim MS. Proteogenomic analysis to identify
missing proteins from haploid cell lines. Proteomics. 2018;18(8):1700386.

9. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B,
Howbert JJ, Hoopmann MR, kall L, Eng JK, MacCoss MJ, Noble WS. Crux:
rapid open source protein tandem mass spectrometry analysis. J Proteome
Res. 2014;13(10):4488–91.

10. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP. A
mass-tolerant database search identifies a large proportion of unassigned
spectra in shotgun proteomics as modified peptides. Nat Biotechnol. 2015;
33(7):743–9.

Kim et al. BMC Bioinformatics          (2018) 19:480 Page 5 of 5

https://github.com/Tide-for-PTM-search/Tide-for-PTM-search
https://github.com/Tide-for-PTM-search/Tide-for-PTM-search

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Conclusions
	Availability and Requirements
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

