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Abstract

Background: Reverse engineering approaches to infer gene regulatory networks using computational methods are
of great importance to annotate gene functionality and identify hub genes. Although various statistical algorithms
have been proposed, development of computational tools to integrate results from different methods and
user-friendly online tools is still lagging.

Results: We developed a web server that efficiently constructs gene networks from expression data. It allows the
user to use ten different network construction methods (such as partial correlation-, likelihood-, Bayesian- and mutual
information-based methods) and integrates the resulting networks from multiple methods. Hub gene information, if
available, can be incorporated to enhance performance.

Conclusions: GeNeCK is an efficient and easy-to-use web application for gene regulatory network construction. It
can be accessed at http://lce.biohpc.swmed.edu/geneck.
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Background
A gene regulatory network (GRN) describes biologi-
cal interactions among genes and provides a systematic
understanding of cellular signaling and regulatory pro-
cesses. It depicts how a set of genes interact with each
other to form a functional module and how different
gene modules are related. A typical GRN approximates
a scale-free network topology with a few highly con-
nected genes (i.e. hub genes) and many poorly connected
nodes [1]. These hub genes are master regulators in a
gene network, and usually play essential roles in a bio-
logical system. Investigations of GRN can facilitate the
systematic functional annotation of genes [2] and help
identify the hub genes, whichmay lead to potential clinical
applications [3].
Reverse engineering approaches to construct gene net-

works from transcriptomic data have greatly facilitated
biomedical research. Statistical methods proposed for
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inferring network structure can be categorized into
four classes: 1) probabilistic network-based approaches,
mainly Bayesian networks (BN); 2) correlation-based
methods; 3) partial correlation-based methods; and 4)
information theory-basedmethods [4]. Comparative eval-
uation among different methods for constructing large
scale GRNs revealed the strengths and weaknesses of
each method with respect to different scenarios, with no
single method outperforming others universally [5]. An
ensemble-based network aggregation (ENA) method was
proposed to integrate different methods to improve the
accuracy of network inference [6]. Recent advancements
in statistical methods have extended algorithms to incor-
porate prior knowledge of hub genes [7]. Besides above
statistical methods that aim to infer the latent covariance
matrix of all the components in a graph using gene expres-
sion data, other algorithms like Petri Nets [8] and ordinary
differential equations (ODE) [9] focus more on simulating
the dynamics of specific pathways that involve important
disease genes.
Despite the development of various computational

methods and corresponding R packages for inferring
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gene-gene interactions, implementation of those algo-
rithms with graphical interface is still lagging. CoExp-
NetViz [10] is an online tool developed for constructing
co-expression networks in plant research, but its appli-
cation is limited by simple statistics and compulsory
“bait” genes input. To provide easy accessibility for the
network construction tool, we introduce a web server
called GeNeCK (Gene Network Construction Tool Kit,
see Fig. 1) which allows users to upload their own gene
expression data and choose their preferred method to
infer and visualize the network, as well as integrate differ-
ent methods to obtain a more confident result.

Implementation
GeNeCK is a web server (http://lce.biohpc.swmed.edu/
geneck) with a user-friendly graphical interface. A quick
user guide on how to upload data and submit jobs is pro-
vided on the website and in the supplementary material
(Additional file 1: Figure S9). GeNeCK offers the flexibility
for experienced users to select methods and set preferred
parameters. Using ENA is more straightforward for most
users since it generally performs well in all scenarios, does
not require choosing tuning parameters, and can provide a
p-value for each connection, which indicates the statistical
significance of the connection. The constructed network
will be displayed on the website once the job is finished
(Fig. 1). Genes with a high degree of connection (i.e. hub
genes) will be plotted with different colors. Users can
interactively explore the constructed network. Clicking on
a specific gene will highlight the gene itself along with its
connected neighbors, and the corresponding information
will be displayed at the bottom (Fig. 1).Although the cur-
rent version of GeNeCK does not provide a function for
users to download the figure, users can use screenshot
software tools to get the figure for the network structure.
We recommend that users download and import the con-
structed network structure into other visualization tools,
such as Cytoscape, for further visualization and analysis
(Additional file 2: Figure S10).

Methods
GeNeCK allows users to construct network using 11 diffe
rent methods (summarized in Additional file 3: Table S1).
Readers can refer to Yu et al. [7] for a comprehensive
review of the different network construction methods.

Network inference methods
Partial correlation-based methods calculate the inverse
covariance matrix � (also known as the precision matrix)
of gene expressions, in which ωj,h = 0 indicates gene
j and h given the expressions of all the other genes is
conditional independent. GeneNet [11] employs Moore-
Penrose pseudoinverse and bootstrap methods to obtain
a shrink estimate of �. Meinshausen and Bühlmann [12]

proposed the neighborhood selection (NS)method, which
converts the precision matrix estimation problem to a
regression problem by fitting a LASSO to each gene using
others as predictors. Sparse partial correlation estima-
tion (SPACE) is a joint spare regression model developed
by Peng et al. [13], which resolves a symmetrically con-
strained and L1-regularizated regression problem under
high-dimensional settings.
Likelihood-based approaches, such as graphical LASSO

(GLASSO [14]) and GLASSO with a reweighted strat-
egy for scale-free networks (GLASSO-SF [15]), optimize
a penalized maximum likelihood function to estimate �.
Bayesian graphical LASSO (BayesianGLASSO [16]) is a
fully Bayesian treatment of GLASSO that uses a double
exponential prior and employs a block Gibbs sampler for
exploring the posterior distribution.
Mutual information (MI) is a measure in information

theory of pairwise dependency between two variables.
Zhang et al. [17] proposed a path consistency algorithm
based on conditional mutual information (PCACMI) to
infer graphical structure, and further conditional mutual
inclusive information-based network inference (CMI2NI
[18]) method that improves the PCACMI method.

Hub gene incorporation
Gene networks usually have scale-free characteristics. In
other words, there are usually a few hub genes regulat-
ing many others. In practice, most of such hub genes
in biological pathways have been well studied and vali-
dated through biological experiments. To properly incor-
porate this prior knowledge, Yu et al. [7] proposed
extended sparse partial correlation estimation (ESPACE)
and extended graphical LASSO (EGLASSO) methods. In
these methods, during the covariance estimation of origi-
nal SPACE and GLASSO methods, hub gene information
can be incorporated to improve the network inferences.

Network integration
An ensemble-based network aggregation (ENA) method
[6] combines networks reconstructed from different
methods. The original ENA algorithm does not report the
confidence level of estimated edges. To derive the p-value
of an edge between a pair of genes, we adapted ENA by
implementing an additional permutation step to gener-
ate the distribution of null hypothesis. We first permute
the given gene expression dataset to obtain a resampled
dataset D(m). Then we implement the ENA algorithm to
get the ensemble rank matrix R̃(m) for this dataset. This
procedure is repeated M times. The empirical null distri-
bution Fnull of all possible pairwise connection for p genes
can be obtained based on all the harmonic means in the
M permutations, i.e.

{
r̃(m)

jh , m = 1, ...,M, 1 ≤ j < h ≤ p
}
.

Then the p-value of the estimated edge between gene j
and h is approximated by the quantile of r̃jh in the null
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Fig. 1 aWeb interface of GeNeCK analysis page. b Visualization of constructed network in GeNeCK results page
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distribution Fnull with Benjamini-Hochberg adjustment
[19] to avoid multiple comparison problems.

D
permutate−−−−−→

⎧⎪⎪⎨
⎪⎪⎩

D(1) ENA−−→ R̃(1)

...
...

D(M) ENA−−→ R̃(M)

⎫⎪⎪⎬
⎪⎪⎭

→ Fnull,

p − value(jh) = BHadjust
(

# of r̃jh ≤ permutated r value in Fnull

Total # of r̃jh ≤ permutated r value in Fnull

)
.

In the simulation studies, we ensembled the networks
constructed by NS, GLASSO, GLASSO-SF, PCACMI,
SPACE, and BayesianGLASSO. GeneNet and CMI2NI
were excluded because GeneNet performed the worst
in all the scenarios (Additional file 4: Figure S1-S8) and
CMI2NI produced the exact same results as PCACMI in
default settings. We run all the processes in a single node
of UT Southwestern BioHPC cluster (Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30GHz, 32GB RAM).

Results
To comprehensively evaulate different models, we simu-
lated co-expression data from four real protein-protein
interaction networks (Fig. 2) used in Allen et al. [5], which
was selected Keshava Prasad et al. [20]. See the download
link for the four real network structure in the Availabil-
ity of data and materials section. Details of the generative
model are discussed below. We investigated the perfor-
mance of each method for data with various noise levels
and sample sizes.

Generative model
We used Gaussian graphical models that are mainly used
to infer the gene association network to simulate expres-
sion data. Let yi = (yi1, . . . , yij, . . . , yip) denotes the col-
lection of expression levels for each gene observed in
sample i. This was simulated from a zero-mean multivari-
ate normal distribution yi = MN

(
0p, � + ε2Ip×p

)
, where

0p denotes the p-dimension zero vector and Ip×p denotes
the p-by-p identity matrix. For the covariance matrix �,

Fig. 2 The four real protein-protein interaction networks used in the simulation study
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we generated its concentration matrix � = �−1 following
Peng, et al. [13]. The initial matrix � was created by
setting

ωjh =

⎧⎪⎪⎨
⎪⎪⎩

1 , j = h
0 , j �= h, j � h
0.5Uniform(−1,−0.5) + 0.5Uniform(0.5, 1) , j �= h, j ∼ h

,

where Uniform(a, b) represents uniform distribution on
interval (a, b), j ∼ h indicates that there is an edge
between gene j and h, j � hmeans otherwise. The network
structure was chosen from one of the four real protein-
protein interaction networks [20, 21], each of which was
approximately scale-free (see Fig. 2). Then, the non-zero
elements in � were rescaled to assure positive definite-
ness. Specifically, for each row, we first summed the
absolute values of the off-diagonal elements, and divided
each off-diagonal entry by 1.5-fold their sum. Next, we
averaged this rescaled matrix with its transpose to ensure
symmetry. We then set 0.1 to those non-zero entries with
absolute value smaller than 0.1. After that, the inverse
of the final matrix was denoted by A = �−1. Each ele-
ment in the covariance matrix � was determined by δjh =
αjh/

√
αjjαhh. For the noise level ε, we considered three

cases: ε = 0, 0.1, 0.5.

Performance metric
We evaluated the result of each method by plotting its
operating characteristic curve (ROC) and calculating the
area under the ROC curve (AUC). As different methods
generate different outputs, we used their corresponding
approaches to plot ROC curves for a fair comparison.
GeneNet and BayesianGLASSO yield a continuous esti-
mate of each partial correlation ρjh. They do not require a
tuning parameter. Thus, an edge between gene j and hwas
determined if the absolute value of ρjh was greater than
a certain threshold. Then the ROC curves were obtained
by plotting false positive rates (FPRs) against true posi-
tive rates (TPRs) under different thresholds. For mutual
information-basedmethods, we choose the tuning param-
eter α = 0.03 as suggested by the authors [17, 18]. Then,
an edge between gene j and h was determined if the esti-
mated entropy was greater than a threshold. The ROC
curves were obtained by plotting FPRs against TPRs under
different thresholds. Note that we only included PCACMI
in the simulation, since CMI2NI produced the same result
as PCACMI did. For the other methods that need a tun-
ing parameter, the ROC curves were obtained by plotting
FPRs and TPRs under different choices of the tuning
parameter.

Result summarization
As shown in the result of simulation study (Additional
file 4: Figure S1-S8), BayesianGLASSO and ENA gener-
ally outperform other methods, which is consistent with

the literature [6, 16]. Besides, mutual information-based
methods also show competitive results. NS, GLASSO, and
GLASSO-SF, which share the same strategy, have simi-
lar accuracy. As the earliest developed method, GeneNet
has significantly lagged performance. Not surprisingly, all
methods lose power when either a higher level of noise
manifests or a smaller number of samples is generated.
We also logged the computational time of each method

in Table S2 (Additional file 5). The Bayesian method con-
sumed several orders of magnitude more time, and it
soon went beyond real applicability when the number of
genes in the network increased to hundreds. Most other
methods shared similar efficacy in the simulation settings,
with mutual information-based methods being a little
slower.

Discussion
GeNeCK infers a gene-gene connection based on the
expression pattern of the two genes. It can provide a hint
of their potential functional relationship, but does not
necessarily imply a real biological interaction. One should
be very cautious when interpreting the result, especially
when the tuning parameter is out of a reasonable range
(e.g. an almost fully connected network may be a sign
of choosing a problematic parameter value). As different
methods use different measurements to evaluate the con-
fidence of estimated edges (e.g. partial correlation, mutual
information), this may not be easy to interpret for users
with little statistical background. We suggest users choose
the ENA method, which outputs p-values to indicate the
significance of gene-gene connections. More importantly,
it generally achieves the best performance. For extended
methods (EGLASSO and ESPACE) that allow for the “hub
genes” specification, additional attention needs to be paid
when choosing the value for the confidence index α. The
α value can be selected by different statistical methods,
such as the generalized information criterion (GIC) [22].
In practice, we suggest an initial try with no or a very weak
prior brief to see if the genes of interest are picked up by
the algorithm. Usually a very small α value is not desired,
as the influence of hub genes should already be presented
in the data if the prior information is correct. Otherwise
this can lead to a biased result.

Conclusion
Reconstructions of gene networks from gene expression
data greatly facilitate our understanding of underlying
biological mechanisms and provide new opportunities
for drug and biomarker discoveries. GeNeCK, the online
tool kit presented in this paper, enables us to integrate
various statistical methods to construct gene networks
based on gene expression data. Furthermore, the infor-
mation of hub genes, which usually play an essential role
in gene regulation and biological processes, could be
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incorporated into GeNeCK to improve the performance
of the relatedmethods. It is believed that the tool will cater
to a wide audience in the field of biology.

Availability and requirements
Project name: GeNeCK
Project home page: http://lce.biohpc.swmed.edu/geneck/
Operating systems:Windows, Linux and Mac
Programming language: PHP, HTML, JavaScript and R
License: GPL

Additional files

Additional file 1: Figure S9. GeNeCK user guide. A simple tutorial on
how to run GeNeCK. (DOCX 195 kb)

Additional file 2: Figure S10. External visulization of GeNeCK inference
result. Example of how to import GeNeCK output to Cytoscape for
enhanced visulization. (DOCX 326 kb)

Additional file 3: Table S1. Summary of basic information of different
methods in GeNeCK. (DOCX 14 kb)

Additional file 4: Figure S1-S8. Comparison of model performance of
different methods in simulation studies. Network structures are based on
real protein-protein interaction networks. Expression data are simulated
under different noise levels. (DOCX 776 kb)

Additional file 5: Table S2. Summary of runtime of different methods in
GeNeCK. (DOCX 18 kb)
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