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Abstract

Background: DNA methylation of CpG dinucleotides is an essential epigenetic modification that plays a key role in
transcription. Widely used DNA enrichment-based methods offer high coverage for measuring methylated CpG
dinucleotides, with the lowest cost per CpG covered genome-wide. However, these methods measure the DNA
enrichment of methyl-CpG binding, and thus do not provide information on absolute methylation levels. Further, the
enrichment is influenced by various confounding factors in addition to methylation status, for example, CpG density.
Computational models that can accurately derive absolute methylation levels from DNA enrichment data are needed.

Results: We developed “MeDEStrand,” a method that uses a sigmoid function to estimate and correct the CpG bias from
enrichment results to infer absolute DNA methylation levels. Unlike previous methods, which estimate CpG bias based on
reads mapped at the same genomic loci, MeDEStrand processes the reads for the positive and negative DNA strands
separately. We compared the performance of MeDEStrand to that of three other state-of-the-art methods “MEDIPS,”
“BayMeth,” and “QSEA” on four independent datasets generated using immortalized cell lines (GM12878 and K562) and
human primary cells (foreskin fibroblasts and mammary epithelial cells). Based on the comparison of the inferred absolute
methylation levels from MeDIP-seq data and the corresponding reduced-representation bisulfite sequencing data from
each method, MeDEStrand showed the best performance at high resolution of 25, 50, and 100 base pairs.

Conclusions: The MeDEStrand tool can be used to infer whole-genome absolute DNA methylation levels at the same
cost of enrichment-based methods with adequate accuracy and resolution. R package MeDEStrand and its tutorial is
freely available for download at https://github.com/jxu1234/MeDEStrand.git.
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Background
DNA methylation of CpG dinucleotides is an essential epi-
genetic modification that plays a key role in transcription
regulation. Sequencing-based DNA methylation profiling
techniques include whole-genome bisulfite sequencing
(WGBS), reduced-representation bisulfite sequencing
(RRBS), and enrichment-based methods, such as
methylated DNA immunoprecipitation (IP) followed by
high-throughput sequencing (MeDIP-seq) and methyl
-CpG binding domain protein-enriched genome sequen-
cing (MethylCap-seq/MBD-seq) [1, 2]. WGBS and RRBS
are “gold standard” methods for DNA methylation studies

[3, 4]. RRBS provides substantial coverage of CpGs in CpG
islands but with lower CpG coverage genome-wide, while
WGBS offers greater CpG coverage genome-wide but at a
significantly higher cost. By converting unmethylated
cytosine to uracil (displayed as thymine following PCR
amplification), leaving methylated cytosine unconverted,
the ratio of C-to-T conversion allows quantification of
DNA methylation at single-base resolution on the scale
from 0 to 1. MeDIP-seq [5] and MethylCap-seq/MBD-seq
[6] are DNA enrichment-based methylation profiling
methods. MeDIP-seq utilizes an anti-methylcytosine anti-
body to immunoprecipitate methylated single-stranded
DNA fragments. MethylCap/MBD-seq utilizes the
methyl-CpG binding domain of MBD family proteins to
enrich for methylated double-stranded DNA fragments.
The samples enriched for methylated DNA fragments can

* Correspondence: yangdai@uic.edu
1Department of Bioengineering, University of Illinois at Chicago, Chicago, IL,
USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Xu et al. BMC Bioinformatics          (2018) 19:540 
https://doi.org/10.1186/s12859-018-2574-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2574-7&domain=pdf
http://orcid.org/0000-0002-7638-849X
https://github.com/jxu1234/MeDEStrand.git
mailto:yangdai@uic.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


then be used to infer regional methylation status, provid-
ing the lowest cost per CpG covered genome-wide [1].
However, the absolute methylation levels in these enriched
samples must be derived using computational models that
eliminate the effects of confounding factors.
It has been shown that MeDIP-derived data need to be

corrected for CpG density effects to obtain unbiased
methylation levels [7, 8]. “MEDME” is one of the earliest
methods developed to quantify the CpG density effect
based on microarray-derived MeDIP-ChIP enrichment
data from normal human melanocytes [8]. Acknowledg-
ing that methylation level and density of CpGs (within
the enriched DNA fragments) are the main factors that
affect the enrichment results, MEDME generates a fully
methylated control sample to establish a one-to-one re-
lationship between MeDIP-ChIP enrichment signals and
the corresponding CpG density. The enrichment signal
is explained by only one factor, i.e., the CpG density,
which shows a sigmoidal relationship. A four-parameter
logistic model is then used to fit the curve for CpG bias
correction. However, MEDME-inferred absolute methy-
lation level for a 1 kb window is at a low resolution.
“BATMAN” is another method for inferring CpG

methylation levels from array-based data [7]. It assumes a
linear CpG density effect and utilizes Bayesian inference
to estimate the posterior distribution of the methylation
parameters given the enrichment signals. BATMAN pro-
vides inferred absolute methylation values at high reso-
lution of 50 or 100 bp. However, the process has been
reported as time-consuming compared to other methods.
The “MEDIPS” method was subsequently developed

for inferring CpG methylation levels from MeDIP-seq
data based on a linear regression model [9, 10]. It as-
sumes a linear CpG density effect for all regions and uti-
lizes the information from the low CpG density region
of the enrichment data itself to estimate the CpG density
effect. MEDIPS has similar performance as BATMAN,
but with significantly reduced running time.
Other methods have incorporated additional experi-

mental data to make more accurate inferences of CpG
methylation levels from DNA enrichment data. “BayMeth”
is a Bayesian method that uses information from a fully
methylated control sample [11]. “MethylCRF,” a novel al-
gorithm based on Conditional Random Fields, integrates
additional MRE-seq data on genomic unmethylated re-
gions to predict DNA absolute methylation levels at
single-CpG resolution [12]. “QSEA” is a recently devel-
oped method that improves on BayMeth by providing a
built-in sigmoidal CpG density bias curve without the
need for additional experimental data [13]. QSEA(TCGA)
curates information on 172 samples from the TCGA lung
cancer study [14, 15]. Genomic regions from these sam-
ples with mean methylation > 90% serve as a fully methyl-
ated control sample. QSEA(blind) estimates CpG density

bias based on empirical knowledge. Both versions of
QSEA fit a sigmoidal CpG density bias curve, which is in-
corporated in a Bayesian model to derive the absolute
CpG methylation level.
Despite the extensive development of computational

methods for inferring absolute CpG methylation levels
from DNA enrichment data, there is still room for im-
proving accuracy.

Methods
Two aspects for improvement
MEDIPS estimates the CpG density effect from
MeDIP-seq data itself, without requiring an experimental
control sample. Because CpGs are mostly methylated at
low CpG density regions and are hypo- or un-methylated
at high CpG density regions, MEDIPS uses low CpG dens-
ity regions as its fully methylated control. For high CpG
density regions, the MeDIP enrichment signal decreases
significantly due to a decreasing methylation level that
overrides the CpG density effect. To estimate the CpG
density effect for all regions, MEDIPS fits a linear regres-
sion model for the means of the MeDIP enrichment signal
at low CpG density regions and extrapolates the fitted line
to high CpG density regions (Fig. 1a, green line). The fit-
ted line is the estimated CpG density bias curve.
However, application of MEDME reveals that the CpG

density effect is not linear but sigmoidal (Fig. 1b). The
assumption of a linear CpG density effect used in
“MEDIPS” does not take into consideration the satur-
ation effect of methyl-CpG binding at high CpG density
regions, which leads to overestimation and overcorrec-
tion of the CpG density bias at these regions. Therefore,
the incorporation of a nonlinear model for CpG density
estimation in MEDIPS is likely to improve the inference.
In addition, none of the current methods consider the ef-

fects of asymmetric CpG methylation, i.e., methylated cyto-
sine within “CG” dinucleotides on one DNA strand and
un-methylated adjacent cytosines within the “GC” context
(or still “CG” from 5′ to 3′) on the other DNA strand (Fig. 2).
Our investigation of RRBS data for the cell line GM12878
showed that cytosine methylation within CpG on the posi-
tive and negative DNA strands is different (Fig. 3). The
bin-wise discordance of methylation levels between the two
strands (by taking the mean of all cytosines within the bin)
increases with increasing bin size. Six chromosomes (1, 2, 11,
12, 21, 22) were selected to represent chromosomes of large,
medium, and small size (Table 1). The complete comparison
is provided in the Additional file 1: Table S1.
Based on the above analysis, we developed our

method, MeDEStrand (inferring genome-wide absolute
methylation level from DNA enrichment data utilizing
strand-specific processing), for the inference of absolute
methylation levels. MeDEStrand improves on the MED-
IPS approach in two ways:

Xu et al. BMC Bioinformatics          (2018) 19:540 Page 2 of 12



1. Uses a logistic regression model for the estimation
of CpG density effect. The upper asymptote of the
sigmoid function is more suitable for modeling the
saturation point of methyl-CpG-binding for high
CpG density regions.

2. Estimates and corrects CpG density bias from
enrichment bin reads for the positive and
negative DNA strands separately to take into

consideration the effect of asymmetric CpG
methylation of each strand.

Experimental data for evaluation
Hg19 mapped MeDIP-seq and RRBS data were down-
loaded from the ENCODE Consortium [16] and GEO [17].
RRBS data were used as a “gold standard” for method valid-
ation and comparison to previously published methods.

Fig. 2 Illustration of counting bin reads. A sliding bin of 100 bp divides the genome and the number of reads that fall in the bins are assigned as
bin reads. Bin reads measure fragmented DNA enrichment for loci. Mapped reads include DNA strand information and are usually combined for
bin counts for loci. In our method, bin reads are counted for the positive and negative DNA strands separately

Fig. 1 MEDME experiment versus MEDIPS calibration plot. a Calibration plot from the MEDIPS method to estimate CpG density bias. The
blue stripes indicate grouped bin reads vs. corresponding bin CpG counts. The relationship between the means of bin reads and bin
CpG counts are shown by the red bell-curve. The green line represents fitting a simple linear regression model of the relationship from
low CpG density regions. b The sigmoidal relationship between the MeDIP-ChIP enrichment signal and CpG density was revealed by
MEDME in log-scale. The red dots signify the median enrichment signal within a 1 k bp window across the dynamic range of numbers of
methylated CpGs
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Though several cell types have MeDIP-seq and cor-
responding RRBS data available, we chose to use data
from immortalized cell lines and primary cells to limit
variation in CpG methylation due to the heterogeneity
of tissue. We selected two immortalized cell lines
(GM12878 and K562) and two types of primary cells
(foreskin fibroblasts and mammary epithelial cells) for
our study to ensure high consistency in MeDIP-seq
and RRBS data. Since DNA methylation is a highly
dynamic and transient epigenetic event [18–20], cells
with closely matching datasets were selected to ensure
high confidence of our MeDEStrand results.
Unmapped raw RRBS data (i.e., the .sra format file) en-

abled us to retrieve the methylation value for every cyto-
sine within CpG dinucleotides so that the strand-specific
methylation information could be investigated. The SRA

Toolkit [21], samtools [22], Bismark [23], Bioconductor
packages methylKit [24] and IRanges [25], R package
stats [26] were used in the data analysis.

Model and the algorithm
We utilized the low CpG density regions of the
MeDIP-seq data as the fully methylated control. We
used a logistic regression model to describe the
means of the enrichment signal (in terms of bin
reads) as a function of the corresponding number of
CpGs. We let the upper asymptote be the maximum
mean observed, thus the bin reads corresponding to
the high CpG regions are not included in the model
fitting. The fitted curve that extended to high CpG
density regions was the estimated CpG bias curve for
all regions (Fig. 4, blue line).
We modeled the bin reads (y) to be the CpG

methylation-induced enrichment signal (MCpG)
multiplied by the CpG density effect (f(nCpG)). The
latter is a function of the number of CpGs within
the bin:

y ¼ MCpG: f nCpG
� � ð1Þ

f(nCpG) was estimated from MeDIP-seq data (see
details under the algorithm workflow section,
below). By dividing f(nCpG) from both sides of (1), we
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Fig. 3 Histograms illustrating the distribution of methylation levels of cytosine within CpG dinucleotides on the positive and negative DNA
strands (using RRBS data from cell line GM12878)

Table 1 Pearson correlation coefficients of bin methylation level
for positive and negative DNA strands at various bin sizes (bp).
Cell line: GM12878, Data: RRBS

bin size chr1 chr2 chr11 chr12 chr21 chr22

25 0.96 0.95 0.96 0.96 0.96 0.96

50 0.93 0.92 0.93 0.94 0.94 0.94

100 0.88 0.87 0.87 0.89 0.89 0.88

150 0.86 0.86 0.85 0.88 0.85 0.85

200 0.86 0.85 0.84 0.87 0.85 0.84
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obtained the corrected enrichment signal that is
related to the methylation level:

y0 ¼ MCpG ð2Þ

Heuristically, log-transformation before scaling further
improves the accuracy. We thus log-transformed y′ to
produce y":

y} ¼ log MCpG
� � ð3Þ

We normalized y" by y}−y}min

y}max−y
}
min

to generate values be-

tween 0 to 1 as the absolute methylation levels for
the bins. y}min and y}max correspond to the minimum
and maximum values of y", respectively. The above
steps were performed for the positive and negative
DNA strands separately to take into consideration the
effect of asymmetric CpG methylation of each strand.
The mean of the inferred absolute methylation levels
from both strands is reported as inferred absolute
methylation level for the loci.

The algorithm workflow
The complete steps of our method are as follows:
Input: MeDIP-seq data.
Output: bin-based absolute methylation levels.
For each DNA strand, do

Divide the given chromosome(s) into user-specified
bin size (recommend 50 or 100 bp). Count bin reads
for the positive and the negative DNA strand
separately.

1) Group bins with the same CpG counts and sort in
the ascending order.

2) Let bin CpG count nCpG of groups be the
explanatory variable and the mean bin reads yof the
groups be the response variable. Fit the logistic
regression model.

log(
y=ymax

1−y=ymax
) = β0 + β1 ∙ nCpG.

ymax: the maximum of y

3) Divide bin reads by corresponding estimated CpG
density effect

f nCpG
� � ¼ exp β0 þ β1∙nCpG

� �

1þ exp β0 þ β1∙nCpG
� �

from the fitted model in 2).

4) Log transform corrected bin reads from 3).
5) Scale bin reads from 4) to values between 0 to 1,

and report them as the inferred strand-specific
bin-based absolute methylation level.

Fig. 4 The fitted sigmoid function by MeDEStrand. A logistic regression model is fitted to estimate CpG bias using information from low CpG
density regions in MeDEStrand (blue line). The blue stripes indicate grouped bin reads vs. corresponding bin CpG counts. The relationship
between the means of bin reads and bin CpG counts are shown by the red line
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End
Merge inferred bin absolute methylation values from

the positive and negative DNA strands by taking the
mean. Report them as genome-wide bin-based absolute
methylation levels.
The function “glm()” from the R package “stats” was

used to fit the logistic regression model.

Results
Criteria for evaluation
To evaluate the accuracy of inferred methylation levels, we
used RRBS data as the gold standard, calculating the mean
of CpG methylation levels provided by RRBS within each
bin as the true methylation level for the bin. From the EN-
CODE protocol, each CpG from the RRBS data was cov-
ered by at least 10 reads. We kept all RRBS CpGs without
further filtering, since a 10-read coverage would give good
confidence. For the validation, we kept bins that had at
least 4 RRBS CpGs, as this would provide methylation in-
formation from at least two non-adjacent cytosines (Fig. 2).
We used the Pearson correlation coefficient (PCC) and

Spearman correlation coefficient (SCC) as the criteria to
measure the agreement between the inferred methylation
levels from the MeDIP-seq data and the true methylation
levels from the RRBS data. PCC and/or SCC were used as
the primary criteria for method evaluation and compari-
son to previous studies [2, 7, 9, 11, 12]. While PCC as-
sesses linear relationships between two sets of data, SCC
uses the ranks of the values and assesses monotonic rela-
tionships regardless linear or not. Higher PCC and/or
SCC indicated higher concordance. We included both
PCC and SCC in order to more fairly compare the
methods and make more reliable conclusions.

Comparison with other methods
To assess the performance of our method MeDEStrand, we
compared it with three other state-of-the-art methods
MEDIPS, BayMeth, and QSEA. For each method, we chose
the version(s) that could be run using the available data
(i.e., MeDIP-seq data) to infer absolute methylation levels.
For BayMeth, we used the version “SssI-free”, since a fully
methylated experiment control sample preferred by Bay-
Meth was not available. Of the three versions of QSEA, we
chose two, QSEA(TCGA) and QSEA(blind), which do not
require additional experimental data. The third version
QSEA(BS) requires a fully methylated experimental control
sample, which was not available. For MEDIPS and our
method MeDEStrand, no additional experimental data is
required. The method methylCRF was not included, as it
was designed for paired-end sequencing reads while the
data from ENCODE are from single-end sequencing.
We ran these methods on the 22 chromosomes (from

chromosome 1 to 22) of the MeDIP-seq data to infer ab-
solute methylation levels. Among the four cell types

included in our study, GM12878, K562, and mammary
epithelial cells were from female donors and cell type
foreskin fibroblasts were from male donors. To account
for gender differences, we did not include the Y chromo-
some data in our analysis. We also did not include the X
chromosome, since we found that the GM12878
MeDIP-seq data for the X chromosome was corrupted.
Bin size is an important parameter that limits the resolution

of inferred absolute methylation levels. In previous studies,
bin sizes of 50 bp or 100 bp were deemed high resolution.
Since all the methods in our comparison infer bin-based ab-
solute methylation levels, we chose bin sizes of 25 bp, 50 bp
and 100 bp to examine the accuracy of each method.
Figure 5 compares the performance of each method

based on PCC. BayMeth did not perform well at any bin
size for any of the cell types. This may be due to the lack
of a fully methylated experimental control sample needed
by the BayMeth model in order to make a good inference.
Comparing the results for all cell types and bin sizes, we
concluded that MeDEStrand has the best performance
with regards to the median value of PCCs across the 22
chromosomes. We also noticed that QSEA(blind) and
QSEA(TCGA) had a similar performance as MeDEStrand
at bin size 100 bp. However, the QSEA PCCs had greater
variation across the 22 chromosomes in most of the cases.
For mammary epithelial cells, QSEA(TCGA) performed
slightly better than MeDEStrand.
Figure 6 summarizes the performance of each ap-

proach based on SCC. MeDEStrand again showed the
best performance among all methods at all bin sizes for
all cell types. QSEA(blind) and QSEA(TCGA) had re-
duced performance at bin sizes of 25 bp and 50 bp. No-
ticeably, based on SCC, all methods have lower values.
Finally, the processing time for one sample (including

the time to import data) ranged from approximately 25
min to 3 h, when run on a MacBook Pro laptop with
2.5GHz quad-core Intel Core i7 and 16G RAM. MeDES-
trand had one of the shortest processing times among all
the methods (~ 25min). We deemed that the processing
time is not a key criterion for method comparison since
all methods provided reasonably fast processing.
Taken together, we demonstrated that, compared to

several other methods, MeDEStrand is a robust method
to infer genome-wide absolute methylation levels at bin
sizes of 25 bp, 50 bp, and 100 bp. Smaller bin sizes pro-
vided higher resolution. MeDEStrand has been imple-
mented as a R package and is freely available for
download from GitHub: https://github.com/jxu1234/
MeDEStrand.git.

Improving accuracy using strand-specific reads
processing and a sigmoid function to estimate CpG bias
As described previously, MeDEStrand uses a sigmoid
function to estimate CpG bias from the methylation
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enrichment signal. In addition, MeDEStrand estimates and
corrects CpG bias for the positive and negative DNA
strands separately, and then reports the average of the in-
ferred strand-specific absolute methylation levels as the ab-
solute methylation levels for the loci. We investigated the
unique contribution of these two aspects of MeDEStrand
to its observed performance in the comparative study.
We constructed a modified version of MEDIPS, namely,

“MEDIPS(strand-processing)” which uses the same algo-
rithm as MEDIPS except that process reads mapped to the
positive and negative DNA strands separately. To illustrate
the impact of this step on inferring CpG methylation in re-
gions of different CpG density, we divided all bins into four
categories based on their CpG counts. The first category
consisted of bins with CpG counts from the minimum to
the 1st quartile, corresponding to “low” CpG density re-
gions. The second category consisted of bins with CpG
counts from the 1st quartile to the median, corresponding
to “lower-medium” CpG density regions. The third category
consisted of bins with CpG counts from the median to the
3rd quartile, corresponding to “higher-medium” CpG dens-
ity regions. The last category consisted of bins with CpG

counts from the 3rd quartile to the maximum, correspond-
ing to “high” CpG density regions. These four categories
thus represented different DNA CpG density compositions
within the bins. We report here the results using cell line
GM12878 at bin size 100 bp as an example.
Figure 7 compares the performance of MEDIPS, MED-

IPS(strand-processing), and MeDEStrand at different CpG
density regions evaluated by the Pearson correlation coef-
ficient (PCC) and the Spearman correlation coefficient
(SCC). Noticeably, MEDIPS(strand-processing) had im-
proved performance compared to MEDIPS at all CpG
density regions based on the PCC but not the SCC criter-
ion. The result demonstrates that by merely adding the
procedure for strand-specific processing, we were able to
improve the overall performance of MEDIPS at least by
the PCC criterion. Meanwhile, MeDEStrand was more ro-
bust and improved the accuracy under both criteria. We
note that for all the previous methods, bin reads were
counted by combining reads mapped to the same loci,
which discounts any strand-specific information. However,
we showed that strand-specific processing improved the
accuracy of inference.
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Fig. 5 Comparison of the CpG methylation inference methods. Pearson correlation coefficient (PCC) between MeDIP-seq and RRBS data
calculated for four cell types: a GM12878; b K562; c foreskin fibroblasts; and d mammary epithelial cells. Y-axis shows the PCC values. X-axis shows
the varying parameter bin size from 25 bp to 100 bp. Boxplot illustrates the variation of PCC across the 22 chromosomes
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the varying parameter bin size from 25 bp to 100 bp. Boxplot illustrates the variation of SCC across the 22 chromosomes
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Fig. 7 Comparison of the methods MeDEStrand and MEDIPS as well as its modified version MEDIPS(strand-processing). a Pearson correlation
coefficient (PCC) is calculated for different CpG density regions. b Spearman correlation coefficient (SCC) is calculated for different CpG density
regions. The MeDIP-seq and RRBS data of GM12878 cells were used for the demonstration
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Our analysis also revealed that the highest correlation
values (both the PCC and the SCC) occur in
lower-medium CpG density regions and that the values
decrease when the regional CpG density either decreases
or increases. This may be because at low CpG density re-
gions, the inference of absolute methylation levels is often
more difficult when using enrichment-based methods
than when using bisulfite conversion methods. At lower
sequencing depth, the lack of methylation cannot be dis-
tinguished from the lack of coverage, due to the stochastic
nature of read coverage from the enrichment-based
methods. At the high CpG density regions, the perform-
ance of MEDIPS and MEDIPS(strand-processing) were
significantly deteriorated. We also saw the largest variation
in the correlation values across the 22 chromosomes for
these two methods. By comparison, MeDEStrand had
higher values, with much less variation. This category cor-
responds to the high CpG density regions where MeDES-
trand showed the most improvement compared to
MEDIPS and MEDIPS(strand-processing). These findings
demonstrate the advantage of a logistic regression model
over a linear model to estimate CpG bias, with its upper
asymptote taking into account the saturation effect of
methyl-CpG binding.
The MeDEStrand approach had a synergistic effect on

improvement of inferring CpG methylation levels, utilizing
strand-specific processing in addition to CpG bias estima-
tion and correction by a sigmoid function to achieve better
performance than MEDIPS(strand-processing). It should be
noted, however, that at the high CpG density regions, less
accurate inference is made by all of the methods tested.

A further look into strand-specific processing
We utilized MEDIPS and MEDIPS(strand-processing) to
further inspect how strand-specific processing improves
the overall performance. The latter differs from the former
only by the additional step to process reads mapped to the
positive and negative DNA strands separately.
As with previous methods, MEDIPS counts bin reads

by combining reads mapped to the same genomic loci,
and strand information is lost. For MEDIPS(strand-pro-
cessing), reads mapped to the positive and negative
DNA strands are counted separately, i.e., strand-specific
bin reads. The same loci bins may or may not have the
same reads for the positive and negative DNA strands
(Fig. 2). We observed that approximately 40% of gen-
omic coverage contains different bin reads for the posi-
tive and negative DNA strands. We wondered if the
asymmetric bin reads or merely the procedure of
strand-specific processing (i.e., irrelevant to the asym-
metry of the bin reads) contributes to the improvement
in inferring CpG methylation levels.
To investigate this question, we devised a counting

scheme that eliminates the asymmetric bin reads for the

positive and negative DNA strands. That is, we divided
each bin read of MEDIPS evenly and re-assigned the halved
bin reads for bins residing on the positive and negative
DNA strands. Note that this re-assignment had no effect
on the outcome of MEDIPS, since combined reads for the
loci remain the same. However, for MEDIPS(strand-proces-
sing), any asymmetry of the bin reads was eliminated. We
re-ran MEDIPS(strand-processing) and observed no im-
provement compared to MEDIPS. In fact, MEDIPS and
MEDIPS(strand-processing) had the same performance.
This result suggests that MEDIPS can be viewed as a spe-
cial case of MEDIPS(strand-processing), whereby bin reads
for the positive and negative DNA strands are equal.
We also investigated the correlations (both the PCC

and the SCC) for each DNA strand to see if the im-
provement of strand-specific analysis is attributed to the
strand difference of DNA methylation. To do so, we
used the same bins of size 100 bp (see Results section,
subsection Criteria for evaluation) without further fil-
tering to keep the bin numbers the same for each DNA
strand and between the methods, and we then calculated
the correlations between the inferred strand-specific bin
methylation level by MeDEStrand with the RRBS CpGs
that fell in the bins from the same DNA strand. Note
that the inferred strand-specific bin methylation level is
an intermediate result from MeDEStrand (see Methods
section, subsection The algorithm workflow). We com-
pared the correlations with those of MEDIPS and
MeDEStrand. Interestingly, we see the gradual incre-
ment of correlations in the order of MEDIPS, MeDES-
trand (strand-specific), and MeDEStrand, although the
improvement is not always statistically significant. The
result from the selected chromosomes of cell line
GM12878 (as representative) by the SCC criterion is
shown in Table 2. The complete result on 22 chromo-
somes of the four cell types by both the PCC and the
SCC criteria is provided in the Additional file 2: Table
S2 and Additional file 3: Table S3.
Thus, we demonstrated improvement in CpG methyla-

tion inference due to strand-specific processing, which
takes into account asymmetric bin reads for the positive
and negative DNA strands.

Table 2 Spearman correlation coefficients (SCC) between the
inferred bin methylation level from different methods and the
RRBS data. Cell line: GM12878, bin size: 100 bp

chr1 chr2 chr11 chr12 chr21 chr22

MEDIPS 0.7419 0.7599 0.7621 0.7566 0.8556 0.8127

MeDEStrand
(only positive strand)

0.7837 0.7814 0.7933 0.7913 0.8679 0.824

MeDEStrand
(only negative strand)

0.7827 0.7836 0.7939 0.7959 0.8667 0.8271

MeDEStrand 0.7858 0.7853 0.7943 0.7945 0.8719 0.8277
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Some additional investigation
In the procedure used in MeDEStrand to estimate CpG
density bias, the means of bin reads show a normal curve
(Fig. 4, red curve). However, MeDEStrand does not cor-
rect CpG density bias by the normal curve. In Additional
file 4, we explained why and proved our point by conduct-
ing a computational experiment. The result is shown in
Additional file 5: Figure S1 and Additional file 6: Figure
S2. Additionally, we re-evaluated the performance of the
methods using a WGBS data of cell line GM12878. The
result is shown in Additional file 7: Figure S3.

Discussion
We developed and demonstrated the improved
performance of MeDEStrand in inferring CpG methylation
levels based on MeDIP-seq enrichment data, compared to
various other computational approaches. MeDEStrand can
be applied to other enrichment-based sequencing data such
as MethylCap-seq/MDB-seq, where the main bias also
comes from CpG density.
The MeDIP-seq data from ENCODE was prepared

from non-strand-specific libraries; however, in the IP
step, an anti-methylcytosine antibody is used to pull
down methylated single-stranded DNA fragments. By
contrast, MethylCap/MBD-seq utilizes the MBD2 pro-
tein’s methyl-CpG binding domain to capture methyl-
ated double-stranded DNA fragment [1, 5, 27]. In this
sense, the IP step is “strand-specific” for MeDIP-seq
and “non-strand-specific” for MethylCap/MBD-seq.
We are unclear if the improvement in CpG methyla-
tion inference from strand-specific processing is re-
lated to this fact or merely a result of more accurate
estimation of the CpG density effect when data is
processed in a strand-specific way. The answer to this
question will require further study of datasets gener-
ated using “strand-specific” libraries.
Although MeDEStrand showed better performance

than MEDIPS at all CpG density regions, MeDEStrand
was less accurate at high CpG density regions (Fig. 7).
Future work will need to identify the cause and improve
accuracy for these regions.
As described previously, MEDME, QSEA, and MeDES-

trand all utilize sigmoid functions to describe the CpG
density effect. Although based on different platforms
(microarray vs. high-throughput sequencing), their main
differences lie in how a fully methylated control sample is
constructed for the estimation of the CpG density effect.
MEDME generates a fully methylated control sample ex-
perimentally, whereas QSEA constructs a virtual fully
methylated control sample based on curated information
from 172 samples from the TCGA lung cancer study.
MEDME and QSEA do not estimate a CpG density bias
curve for each sample; rather, the estimated CpG density
bias curve is built into the package and used generically

for all samples. Since our MeDEStrand method estimates
the CpG density effect from MeDIP-seq data itself, the es-
timation is sample-specific.
Previous methods showed a performance gain as a

consequence of explicitly modeling copy number vari-
ation (CNV), which directly affects read density [28, 29].
In a 2013 paper, 37 tools were reviewed to identify
whole-genome CNVs based on various computational
strategies [30]. Further improvement may be possible by
incorporating a suitable CNV modeling strategy into our
MeDEStrand approach.
DNA methylation occurs mainly at the C5 position of

cytosine within CpG dinucleotides in somatic cells and
non-CpG cytosine in plants and embryonic stem cells in
mammals [31, 32]. For the somatic cell lines, DNA methy-
lation occurs predominantly at CpG sites. By contrast, 25%
of DNA methylation in embryonic stem cells occurs at
CHG and CHH sites [33]. Unlike enrichment methods
based on the MBD protein, which only binds to the
double-stranded DNA methylated at CpG sites, the
antibody-based MeDIP-seq method also captures CHG and
CHH methylation sites. Current methods that infer DNA
absolute methylation only consider CpG methylation ef-
fects for the enrichment [8–13]. To our best knowledge, no
method has incorporated CHG and CHH methylation ef-
fects. For embryonic stem cells or those cells where a sig-
nificant amount of DNA methylation occurs at non-CpG
sites, CHG and CHH methylation should be taken into
consideration for further improvement in the inference of
DNA absolute methylation levels for MeDIP-seq data.

Conclusions
MeDEStrand outperformed the existing state-of-the-art
methods for CpG methylation inference from DNA en-
richment data at high resolutions (25 bp, 50 bp, and 100
bp bin sizes) based on evaluation of four independent
datasets. In addition, MeDEStrand achieved high accuracy
when only using MeDIP-seq data. Thus, MeDEStrand
does not require additional experimental data to achieve
good performance, unlike BayMeth method. We conclude
that MeDEStrand may be a particularly useful tool to
analyze data from the public repository where additional
experimental data are not always available. The observed
improvement in CpG methylation inference with MeDES-
trand compared to other methods was achieved by pro-
cessing asymmetric bin reads in a strand-specific manner.
Future studies will explore asymmetric bin reads as an
area of further methodologic development.

Additional files

Additional file 1: Correcting CpG density bias by the normal curve and
Using WGBS data for validation. (DOCX 16 kb)
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Additional file 2: Table S1. Pearson correlation coefficient of bin
methylation level for the positive and negative DNA strand at various bin
size (bp). Cell line: GM12878, Data: RRBS. (XLSM 32 kb)

Additional file 3: Table S2. Pearson correlation coefficient between the
inferred bin methylation level and the RRBS data, bin size: 100 bp. (XLSM 38 kb)

Additional file 4: Table S3. Spearman correlation coefficient between the
inferred bin methylation level and the RRBS data, bin size: 100 bp. (XLSM 38 kb)

Additional file5: Figure S1. Comparison of the methods
MEDIPS_normal and MEDIPS. Pearson correlation coefficient (PCC)
between MeDIP-seq and RRBS data calculated for four cell types: A
GM12878; B K562; C foreskin fibroblasts; and D mammary epithelial.
Y-axis shows the PCC. X-axis shows the varying parameter bin size from
25 bp to 100 bp. Boxplot illustrates the variation of PCC across the 22
chromosomes. (PDF 8 kb)

Additional file 6: Figure S2. Comparison of the methods
MEDIPS_normal and MEDIPS. Spearman correlation coefficient (SCC)
between MeDIP-seq and RRBS data calculated for four cell types. A
GM12878; B K562; C foreskin fibroblasts; and D mammary epithelial cells.
Y-axis shows the SCC values. X-axis shows the varying parameter bin size
from 25 bp to 100 bp. Boxplot illustrates the variation of SCC across the
22 chromosomes. (PDF 10 kb)

Additional file 7: Figure S3. Comparison of all methods for inferring
CpG methylation levels based on DNA enrichment data. A Pearson (PCC)
and B Spearman correlation coefficients (SCC) between the MeDIP-seq
and WGBS data for the GM12878 cell line are calculated. Y-axis shows the
PCC or SCC values. X-axis shows the varying parameter bin size from 25
bp to 100 bp. Boxplot illustrates the variation of PCC and SCC across the
22 chromosomes. (PDF 9 kb)
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