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Abstract

Background: Direct-coupling analysis (DCA) is a method for protein contact prediction from sequence information
alone. Its underlying principle is parameter estimation for a Hamiltonian interaction function stemming from a
maximum entropy model with one- and two-point interactions. Vastly growing sequence databases enable the
construction of large multiple sequence alignments (MSA). Thus, enough data exists to include higher order terms,
such as three-body correlations.

Results: We present an implementation of hoDCA, which is an extension of DCA by including three-body interactions
into the inverse Ising problem posed by parameter estimation. In a previous study, these three-body-interactions
improved contact prediction accuracy for the PSICOV benchmark dataset. Our implementation can be executed in
parallel, which results in fast runtimes and makes it suitable for large-scale application.

Conclusion: Our hoDCA software allows improved contact prediction using the Julia language, leveraging power
of multi-core machines in an automated fashion.
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Background
Thanks to rapidly growing sequence databases, the pre-
diction of protein contacts from sequence information has
become an promising route for computational structural
biophysics [1–4]. The so called direct-coupling analysis
(DCA) uses a multiple sequence alignment (MSA) to pre-
dict residue contacts in a maximum entropy approach.
Its high accuracy was shown in various studies [5–11]
and also made it suitable for protein structure prediction
software [12–14].
The DCA approach leads to a Potts model with prob-

ability for a sequence �σ = (σ1, . . . , σN ) given as
P(�σ) = exp

[−H(�σ)
]
/Z, with Hamiltonian H(�σ) =

− ∑N
i hi (σi) − ∑

1≤i<j≤N Jij
(
σi, σj

)
consisting of local

fields and two-body interactions and N being the length
of the sequences. Z = ∑

�σ∈AN P(�σ) is the partition func-
tion as the sum over all sequences where each position is
chosen from the alphabet A. After estimation of param-
eters

{
hi, Jij

}
from empirical sequences �σ (b), a contact
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prediction score for residue i and j can be obtained by tak-
ing the l2-norm

∥∥Jij
∥∥
2. In a recent study [15], an improved

prediction accuracy was shown by incorporating three-
body interactions Vijk

(
σi, σj, σk

)
intoH, obtaining a three-

body Hamiltonian

H(3)(�σ) = −
N∑

i
hi (σi)

−
∑

1≤i<j≤N
Jij

(
σi, σj

)

−
∑

1≤i<j<k≤N
Vijk

(
σi, σj, σk

)
.

Here, we present an implementation of this method,
which we call hoDCA.

Implementation
hoDCA is implemented in the julia language (0.6.2)
[16], and depends directly on a) the ArgParse [17] module
for command-line arguments and b) on the GaussDCA
[18] module for performing preprocessing operations
on the MSA and the implicit dependencies for those
packages. A typical command-line call is
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julia hoDCA.jl Example.fasta
Example.csv
-No_A_Map=1 -Path_Map=A_Map.csv
-MaxGap=0.9 -theta=0.2 -Pseudocount=4.0
-No_Threads=2 -Ign_Last=0

with input Example.fasta and output Example.csv.
The latter consists of lists of all two-body contact scores
Jij separated by at least one residue along the backbone.
The meaning of the remaining (optional) parameters will
become clear in the following.
General notes. For inference of parameters

{
hi, Jij,Vijk

}
,

we use the mean-field approximation as described in [15]
with a reduced alphabet for three-body couplings. This is
accomplished by a mapping

μ : {l|l ≤ q} → {
α|α ≤ qred

}
, (1)

with q being the full alphabet of the MSA and qred ≤ q.
On the one hand, this accounts for the so called curse
of dimensionality [19], occuring if the size of the MSA
is too small to observe all possible q3 combinations for
each Vijk . On the other hand, this significantly reduces
memory usage and allows for a faster computation of con-
tact prediction scores. The mapping μ can be specified by
Path_Map, which is a csv file with every row representing
a mapping. No_A_Map tells which row to choose. As the
bottleneck is still the calculation of three-body couplings,
it can be performed using parallel threads by specifying
the No_Threads flag.
In traditional DCA, the last amino acid q usually rep-

resents the gap character and is not taken into account
for score computation within the l2-norm. In hoDCA,
each two-body coupling state l ≤ q contains con-
tributions from {n ≤ q|μ(n) = μ(l)} due to the
reduced alphabet. We therefore take gap contributions
into account by default, which can be changed by the
Ign_Last flag.
MSA preprocessing. The MSA is read in by the

GaussDCA module, ignoring sequences with a higher
amount of gaps than MaxGap, and subsequently con-
verted into an array of integers. However, in contrast to
GaussDCA, we check for the actual number of amino
acids types contained in the MSA given. We, then,
reduce the alphabet from q = 21 to the number of
present characters (amino acid types). Afterwards, the
reweighting for every sequence �σ (b) is obtained by the
GaussDCA module via wb = 1/|{a ∈ {1, ...,B} :
difference

(�σ (a), �σ (b)) ≤ theta}|, where the differ-
ence is computed by the percentage hamming dis-
tance [6]. The aim of reweighting is to reduce potential
phylogenetic bias.

Frequency computation. Empirical frequency counts for
the full alphabet are computed according to [6]

fi(l) = 1
λc + Beff

(
λc
q

+
B∑

b=1
wb · δ

(
σ

(b)
i , l

))

fij(l,m) = 1
λc + Beff

(
λc
q2

+
B∑

b=1
wb · δ

(
σ

(b)
i , l

)
δ
(
σ

(b)
j , l

))

,

(2)

with δ being the Kronecker delta, B the number of
sequences in the MSA, Beff = ∑B

b=1 wb and λc =
Pseudocount · Beff . The Pseudocount parameter
shifts empirical data towards a uniform distribution. This
is necessary to ensure invertibility of the empirical covari-
ance matrix in the mean-field approach.
Frequency counts for the reduced alphabet are

computed via

f redi (α) =
∑

{l|μ(l)=α}
fi(l)

f redij (α,β) =
∑

{l|μ(l)=α}
{m|μ(m)=β}

fij(l,m)

f redijk (α,β , γ ) =
∑

{l|μ(l)=α}
{m|μ(m)=β}
{n|μ(n)=γ }

fijk(l,m, n).

(3)

The computation of three-point frequencies takes some
time and will be executed on No_Threads threads. For
this, we parallelized their calculation over the sequence
size N, meaning that the i-th process computes f redijk for
all k ≥ j ≥ i and fixed i. Besides the parallelization
scheme, three-point frequencies are preprocessed in the
same manner as one- and two-point frequencies.
Contact prediction scores. Contact prediction scores

follow directly from two-body couplings. Two-body cou-
plings are obtained within the mean-field approximation by

Jij(l,m) ≈ − gij(l,m)

+
N∑

k=1,
k �=i,j

q−1∑

n=1
gredijk (μ(l),μ(m),μ(n)) · fk(n), (4)

where gij(l,m) is the inverse of the empirical two-
point covariance matrix eij(l,m) = fij(l,m) − fi(l)fj(m).
gredijk (α,β , γ ) is given by a relation to the three-point
covariance matrix over the reduced alphabet
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eredijk (α,β , γ ) =f redijk (α,β , γ ) + 2f redi (α)f redj (β)f redk (γ )

− f redij (α,β)f redk (γ )

− f redik (α, γ )f redj (β)

− f redjk (β , γ )f redi (α)

(5)

via

gredijk (α,β , γ ) =−
N∑

a1,b1,c1=1

qred−1∑

a2,b2,c2=1

(
ereda1,b1,c1 (a2, b2, c2)

· gredi,a1 (α, a2)·gredj,b1 (β , b2)·gredk,c1 (γ , c2)
)
,

(6)

where gij(α,β) is the inverse of the two-point covari-
ance matrix over the reduced alphabet (see [15] for more
details). For the calculation of scores,

{
Jij

}
are transformed

into so called zero-sum gauge, satisfying
∑q

l Ĵij(l, .) =
∑q

m Ĵij(.,m) = 0, where "." stands for an arbitrary state via

Ĵij(l,m) =Jij(l,m) + 1
q

q∑

r=1

[

− Jij(r,m) − Jij(l, r)

+ 1
q

q∑

s=1
Jij(r, s)

]

+ 1
qred

N∑

k=1
k �=i,j

qred∑

η=1

[

V red
ijk (μ(l),μ(m), η)

+ 1
q

q∑

r=1

[

− V red
ijk (μ(r),m, η)

− V red
ijk (μ(l),μ(r), η)

+1
q

q∑

s=1
V red
ijk (μ(r),μ(s), η)

]]

(7)

The purpose of the gauge transformation is to shift local
bias from two-body couplings into local fields [8, 20].
Above calculations are the most time consuming parts
and run on No_Threads threads. The final scores result
from average product correction (APC) of l2 norm [21] via

Sij =
∥∥∥Ĵij

∥∥
∥
2
−

∥∥∥Ĵ:j
∥∥∥
2

∥∥∥Ĵi:
∥∥∥
2∥∥∥Ĵ::

∥∥∥
2

(8)

and
∥∥∥Ĵij

∥∥∥
2

=
√∑q

l,m=1 Ĵij(l,m)2.

Discussion
A performance benchmark on the PSICOV-dataset [10],
consisting of 150 proteins, is presented in [15]. For eval-

uating the performance of a single protein, the so called
area under precision curve

A := 1
C

C∑

i=1

pi
i

(9)

was used, where C is the total amount of contacts and
pi is the number of true positives of the first i predic-
tions. Figure 1 shows the predicted contact map of the
protein data bank entry 1fx2A as an exemplary case. For
this particular protein, the classical two-body DCA has
an A-value of A ≈ 0.5 while hoDCA shows a superior
A ≈ 0.72.
Interestingly, the majority of hoDCA’s false positives

are located in the lower and upper right corner of the
contact map. We hypothesize that this finding is due to
correlated gap regions in the corresponding MSA: For
this particular pdb entry, many sequences were too short
and had to be extended by gaps on both termini. This, in
turn, leads to intra and inter correlations between the left
and right termini. Figure 2 shows the two-point gap-gap
frequencies of the non-preprocessed MSA (i.e. without
sequence reweighting, pseudocount modification or dele-
tion of sequences). As can be seen, there is indeed an
accumulation of gap regions at the beginning and ending
of the protein, thus possibly leading to false correlations.

Results
Figure 3 shows the runtime behavior of hoDCA when
No_Threads are used for calculation of three-body

Fig. 1 Contact map of pdb entry 1fx2A (gray) with true positives
(green) and false positives (red) for a distance threshold of 7.5 Å.
Upper left: classical mean-field DCA. Lower right: hoDCA with a
mapping classification according to polarity [24]
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Fig. 2 Raw gap-gap frequencies for pdb entry 1fx2A

terms.We used entry 1tqhA for the benchmark, which has
one of the largest MSAs in the PSICOV dataset (N = 242,
B = 18, 170) and parameters as in Eq. (2). The over-
all speedup is about five-fold when executed on n ≥ 12
threads in comparison to a single CPU core. A fit of
Amdahl’s law T = T0 ·(1−p ·(1−1/n)), with T0 being the

Fig. 3 Runtime behaviour of hoDCA for PSICOV entry 1tqhA. The
benchmark system was a Debian-operating server with two
Intel(R) Xeon(R) CPU E5-2687W v2 @ 3.40GHz.
Runtimes were taken for julia-compiled code, thus potential
initalization overhead is omitted. The solid line shows a fit of Amdahl’s
law

single-threaded runtime and n = No_Threads, reveals
the proportion of parallelized routines as p ≈ 0.86. The
serial runtime proportion of ≈ 0.14 comes mainly due to
computation of two-body terms. Also note that we did not
modify the standard julia parameters, meaning, e.g., a
parallel computation of the matrix inverse by default.

Conclusions
Higher-order interactions have been shown to have a
strong influence on contact prediction in certain proteins
[15, 22, 23]. Here, we implemented hoDCA, an exten-
sion of DCA by incorporating three-body couplings into
the Hamiltonian. The accessible command-line user inter-
face and the significant speedup within parallel execution
make hoDCA suitable for contact prediction in a variety
of proteins, using biochemical inspired alphabet reduc-
tion schemes. We hope to have made this method easily
accessible for other researchers by this software release.

Availability and requirements
Project name: hoDCA
Project home page: http://www.cbs.tu-darmstadt.de/
hoDCA/
Operating systems: Linux, Windows, macOS
Programming language: julia (0.6.2)
Other requirements: julia packages Argparse, Gauss-
DCA
License: GNU General Public License v3, http://www.
gnu.org/licenses/gpl-3.0.html
Any restrictions to use by non-academics: Any com-
mercial use is subject to a contractual agreement between
involved parties.

Abbreviations
APC: Average product correction; DCA: Direct-coupling analysis; MSA: Multiple
sequence alignment
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