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Abstract

Background: A large number of computational methods have been proposed for predicting protein functions. The
underlying techniques adopted by most of these methods revolve around predicting the functions of an unannotated
protein p from already annotated proteins that have similar characteristics as p. Recent Information Extraction methods
take advantage of the huge growth of biomedical literature to predict protein functions. They extract biological
molecule terms that directly describe protein functions from biomedical texts. However, they consider only explicitly
mentioned terms that co-occur with proteins in texts. We observe that some important biological molecule terms
pertaining functional categories may implicitly co-occur with proteins in texts. Therefore, the methods that rely solely
on explicitly mentioned terms in texts may miss vital functional information implicitly mentioned in the texts.

Results: To overcome the limitations of methods that rely solely on explicitly mentioned terms in texts to predict protein
functions, we propose in this paper an Information Extraction system called PL-PPF. The proposed system employs
techniques for predicting the functions of proteins based on their co-occurrences with explicitly and implicitly mentioned
biological molecule terms that pertain functional categories in biomedical literature. That is, PL-PPF employs a combination
of statistical-based explicit term extraction techniques and logic-based implicit term extraction techniques. The statistical
component of PL-PPF predicts some of the functions of a protein by extracting the explicitly mentioned functional terms
that directly describe the functions of the protein from the biomedical texts associated with the protein. The logic-based
component of PL-PPF predicts additional functions of the protein by inferring the functional terms that co-occur implicitly
with the protein in the biomedical texts associated with it. First, the system employs its statistical-based component to
extract the explicitly mentioned functional terms. Then, it employs its logic-based component to infer additional functions of
the protein. Our hypothesis is that important biological molecule terms pertaining functional categories of proteins are likely
to co-occur implicitly with the proteins in biomedical texts. We evaluated PL-PPF experimentally and compared it with five
systems. Results revealed better prediction performance.

Conclusions: The experimental results showed that PL-PPF outperformed the other five systems. This is an indication of the
effectiveness and practical viability of PL-PPF’s combination of explicit and implicit techniques. We also evaluated two
versions of PL-PPF: one adopting the complete techniques (i.e., adopting both the implicit and explicit techniques) and the
other adopting only the explicit terms co-occurrence extraction techniques (i.e., without the inference rules for predicate logic).
The experimental results showed that the complete version outperformed significantly the other version. This is attributed to
the effectiveness of the rules of predicate logic to infer functional terms that co-occur implicitly with proteins in biomedical
texts. A demo application of PL-PPF can be accessed through the following link: http://ecesrvr.kustar.ac.ae:8080/plppf/

* Correspondence: kamal.taha@ku.ac.ae
Department of Electrical and Computer Engineering, Khalifa University, Abu
Dhabi, United Arab Emirates

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Taha et al. BMC Bioinformatics           (2019) 20:71 
https://doi.org/10.1186/s12859-019-2594-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2594-y&domain=pdf
http://orcid.org/0000-0002-6674-4614
http://ecesrvr.kustar.ac.ae:8080/plppf/
mailto:kamal.taha@ku.ac.ae
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Determining protein functions has been one of the central
objectives for bioinformaticians, especially after the
post-genomic era. This is because proteins have key roles
in many biological processes. Identifying protein functions
using experimental approaches is laborious and time con-
suming. Therefore, computational methods have been
used extensively as alternatives. The underlying tech-
niques adopted by most of these approaches revolve
around computing protein functions from already anno-
tated proteins. Most of them reference already annotated
proteins using their structures [22], sequences [33], and/
or interaction networks. The key limitation of these ap-
proaches is that they require highly reliable predictor algo-
rithms. Recent computational methods exploit the huge
growth of biomedical literature to predict protein func-
tions from the information of already annotated proteins
that appear within the literature. Some of them extract
from the literature texts any information that describes
proteins [12]. Others extract only information that de-
scribes the functions of proteins [2, 5, 7, 10, 28].
We observe that some important biological molecule

terms pertaining functional categories may implicitly
co-occur with proteins in texts. Therefore, the methods
that rely solely on explicitly mentioned terms in texts
may miss vital functional information implicitly men-
tioned in the texts. Towards this, we propose in this
paper an Information Extraction system called PL-PPF
(Predicate Logic for Predicting Protein Functions) that
employs techniques for predicting the functions of pro-
teins based on their co-occurrences in texts with expli-
citly and implicitly mentioned biological molecule terms
pertaining functional categories. PL-PPF infers the impli-
cit terms using the rules of predicate logic. It does so by
triggering protein specification rules recursively in the
form of predicate logic’s premises [14]. It extracts the ex-
plicit terms by employing Natural Language Processing
(NLP) techniques that compute the semantic relation-
ships among the biological terms in sentences.
Using known protein and biological characteristics,

PL-PPF composes rule-based protein specifications.
These specifications are known protein characteristics in
literature. PL-PPF composes these specifications in a
pattern similar to predicate logic’s premises [14]. It trig-
gers them by applying the standard inference rules for
predicate logic. It does so to deduce functional relation-
ships between proteins. Ultimately, these deduced rela-
tionships enable PL-PPF to predict the functions of
unannotated proteins. Let Pu be an unannotated protein.
Let Lc be a list of known protein characteristics repre-
sented in the form of predicate logic’s premises [14].
PL-PPF would first extract biological molecule terms re-
lated to Pu based on their co-occurrences in biomedical
texts. It extracts the semantically related biological

molecule terms to Pu in the sentences of the texts by
employing linguistic computational techniques. It would
then utilize these extracted terms as identifiers to serve
as triggers for the appropriate premises from the list Lc
using the standard rules of inferences [8, 16]. The con-
clusion of this process is a functional category term that
co-occurs implicitly with Pu in the texts.
Similar to our approach, a number of studies

employed logic-based approaches as complementary to
statistical approaches to perform some biological-related
tasks. For example, [20] demonstrated that logic models
can be used as complementary to statistical analysis
models to identify fundamental properties of molecular
networks and to perform biological inferences about the
dynamics of intracellular molecular networks. As an-
other example, [21] demonstrated that logic-based ap-
proaches are useful for improving static conceptual
models in molecular biology. The paper demonstrated
that adding logic-based approach can improve the Cen-
tral Dogma information flow.
Logic-based approaches have been successfully applied

to solve complex problems in bioinformatics by viewing
these problems as binary classification tasks. For ex-
ample, [3] achieved acceptable results for predicting pro-
tein structures using constraint logic programming
techniques. [4] presented a methodology that success-
fully predicted the tertiary structure of a protein using
constraint logic programming. [17] used logic based
multi-class classification method to accurately solve the
problem of protein fold recognition. It accurately
assigned protein domains to folds.
PL-PPF infers the functions of an unannotated protein

by going through the following sequential steps:

1. Using known biological characteristics, PL-PPF composes
rule-based protein specifications. It composes
these specifications in a pattern similar to predicate
logic’s premises [14]. “Representing protein specification
rules in a pattern similar to predicate logic’s premises”
section describes this process in detail.

2. PL-PPF employs computational linguistic
techniques to extract the biological molecule
terms that are semantically related to an
unannotated protein pu based on their explicit
co-occurrences in texts. If an extracted term de-
notes a functional category f, PL-PPF will assign
pu the function f. PL-PPF will also use the ex-
tracted term to serve as a given premise and
apply it as a trigger identifier for the appropriate
protein specification rules to identify additional
functions of pu. “Extracting biological molecule
terms that cooccur explicitly with an unannotated
protein in biomedical texts” section describes this
process in detail.
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3. PL-PPF will assign pu the functional terms that co-
occur implicitly with pu in the texts by recursively
triggering the appropriate premises constructed in
step 1 and the given premises extracted in step 2
using the standard rules of inference for predicate
logic. The conclusion will be a functional category that
co-occurs implicitly with pu in the texts. “Inferring the
functional terms that cooccur implicitly with an
unannotated protein in texts using predicate logic”
section describes this process in detail.

Methods
Constructing protein specification rules
Representing protein specification rules in a pattern similar
to predicate Logic’s premises
A predicate is a statement of one or more predicate vari-
ables. It can be transformed to a proposition by assign-
ing values to the variables. These values determine
whether the statements are true or false. The proposi-
tions are constructed by connecting the statements using
logical connectives. PL-PPF composes protein specifica-
tions in a similar fashion. Using known protein and bio-
logical characteristics, PL-PPF composes the protein
specifications from these known characteristics. It repre-
sents the specifications in a pattern similar to predicate
logic’s premises [14]. It uses these premises to find rela-
tions between an unannotated protein and protein func-
tional categories. The specification rules can be updated
periodically as new protein characteristics may be dis-
covered. However, the update intervals should not be
short, since new protein characteristics are discovered
infrequently. We present in Table 1 a sample of protein
specification rules in the form of predicate logic’s prem-
ises. It includes only the rules used in the examples pre-
sented in the paper to illustrate the proposed concepts.
We constructed the premises in Table 1 based on the
following well-known protein characteristics:

� Premise R1 is constructed based on the following
protein characteristics: (1) the folding of a protein
takes place after a sequence of structural changes
(the final stage of folding determines the structure of
the protein) [5], and (2) the structure of a protein
defines the function of the protein [5].

� Premises R2 and R3 are constructed based on the
following protein characteristic: each protein’s
sequence is unique and defines the structure and
function of the protein [1].

� Premise R4 is constructed based on the following
protein characteristics: (1) the covalent bonds of a
protein contribute to its structure [5], and (2) the
raw sequence of a protein’s amino acids determines
its structure [1].

� Premise R5 is constructed based on the following
protein characteristic: a protein’s non-covalent
interaction folding and dimensional structure can
define the protein’s biological function [5].

� Premises R6 is constructed based on the following
protein characteristic: protein-protein interactions
form complexes by interacting with one another [23].

� Premises R7 and R8 are constructed based on the
following protein characteristics: (1) a complex
assembly can result in a new function that neither
protein can provide alone (the combined
functionalities of the interacting proteins determine
the new function) [23], and (2) the interacting
proteins carry out their functions in the complex
(the functions of the individual interacting proteins
can be determined from the new complex assembly
function) [23].

� Premise R9 is constructed based on the following
protein characteristics: (1) proteins can be classified
based on the similarities of their structural domains
[1], (2) the structure of a protein reveals an insight
into its function [5], and (3) the function of a
protein p can be inferred from the functions of
proteins that fall under the same structural
classification as p [1].

� Premise R10 is constructed based on the following
protein characteristics: (1) proteins can be classified
based on the similarities of their amino acid
sequences [5], and (2) the function of a protein p
can be inferred from the structures of the proteins

Table 1 A sample of known protein characteristics represented in a
form similar to predicate logic’s premises and used as specification
rules. The abbreviations in Table 3 are used in the formation of these
premises. Ri denotes premise number i. The following Logic Symbols
are used: “∧” for Conjunction; “∨” for Logical Disjunction; “→” for
implies

R1: FD(Px) →(ST(Px) →F(Px))

R2: AAS(Px) → ST(Px)

R3: AAS(Px) → F(Px)

R4: CBND(Px, Ly) ∨ AAS(Px)→ ST(Px)

R5: (FD(Px) ∨ ST(Px)) → F(Px)

R6: PPI(Px, Py) → PCF(Px, Py)

R7: PCF(Px, Py)→(F(Px) →F(Py))

R8: PCF(Px, Py)→F(Px) ∨F(Py)

R9: (ST(Px) ∧ ST(Py)) → (F(Px) →F(Py))

R10: (AAS(Px) ∧ AAS(Py)) → (ST(Px) →F(Py))

R11: CBND(Px, Ly) ∧ F(Px) → AAS(Px)

R12: NCBND(Px ∧ Py) → PPI(Px, Py)

R13: ST(Px) → AAS(Px)
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that fall under the same amino acid sequence
classification as p [5].

� Premise R11 is constructed based on the following
protein characteristic: the sequence of a protein’s
amino acids is inferred from the combination of the
protein’s covalent interactions with ligands and the
protein’s function [1].

� Premise R12 is constructed based on the following
protein characteristic: non-covalent bonds between
proteins during their transient interactions lead to
Protein-Protein Interactions [18].

� Premise R13 is constructed based on the following
protein characteristic: the structure of a protein can
reveal an insight into its amino acid sequence [5].

Extracting biological molecule terms that co-occur explicitly
with an unannotated protein in biomedical texts
PL-PPF extracts the biological molecule terms that
co-occur explicitly with an unannotated protein pu in
the sentences of biomedical texts. If an extracted term
denotes a functional category f, PL-PPF will assign pu
the function f. PL-PPF will also use the extracted term
to serve as a given premise and apply it as a trigger iden-
tifier for the appropriate protein specification rules to
infer the functional category that co-occurs implicitly
with pu in texts. The co-occurrence of a biological mol-
ecule term and pu in a sentence does not guarantee that
this term and pu are associated. To be associated, the
term and pu have to be semantically related in the sen-
tence. We consider a term as semantically related to an
unannotated protein, if their co-occurrence probability
of being related is significantly larger than their
co-occurrence probability of being unrelated in texts.
PL-PPF computes the occurrence probabilities of terms
using Z-score [32]. For two terms in texts associated
with an unannotated protein to be semantically related,
the co-occurrences of the same terms in the training
dataset stored in PL-PPF’s database should be consid-
ered semantically related.
We use the term “training dataset” to differentiate be-

tween the following: (1) the set of biomedical texts stored
in PL-PPF’s database, and (2) the set of biomedical texts
associated with an unannotated protein, whose functions
need to be annotated. To differentiate between the two,
we call the texts stored in PL-PPF’s database a “training
dataset”. In order for two molecule terms in texts associ-
ated with an unannotated protein to be semantically re-
lated, they have to be semantically related in the texts
stored in the database (i.e., the training dataset).
We present below two of the key computational linguistic

techniques adopted by PL-PPF to extract the molecule
terms that are semantically related to an unannotated pro-
tein based on their explicit co-occurrences in the sentences:

� Based on linguistics, two nouns are considered
related within a sentence, if they are connected by a
pronoun (e.g., “that”, “who”, “which”) [19]. PL-PPF
adopts a semantic rule based on the above observation
for extracting semantically related biological molecule
terms.

� Based on linguistics, two nouns are considered
unrelated within a sentence, if they are connected by
a preposition modifier (e.g., “whereas”, “but”, “while”)
[13, 24]. PL-PPF adopts a semantic rule based on the
above observation.

Inferring the functional terms that co-occur implicitly
with an unannotated protein in texts using predicate
logic
PL-PPF computes the functions of an unannotated pro-
tein p implicitly using the following: (1) the protein spe-
cification rules (i.e., premises) described in “Representing

Table 2 The standard inference rules for predicate logic

Rule of inference Name

¬ q
p→ q
---------
∴¬p

Modus
Tollens

p
p→ q
---------
∴q

Modus
Ponens

p ∧ q
---------
∴p

Simplification

p
q
-------
∴p ∧ q

Conjunction

p ∨ q
¬p
-------
∴q

Disjunctive Syllogism

p
----------
∴p ∨ q

Disjunctive Amplification

¬p→ False
-----------
∴p

Contradiction

p ∧ q
p→ (q→ r)
----------------
∴r

Conditional Proof

p→ r
q→ r
---------
∴ (p ∨ q)→ r

Proof by Cases

p→ q
q→ r
---------
∴ p→ r

Law of Syllogism
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protein specification rules in a pattern similar to predi-
cate logic’s premises” section , (2) the biological mol-
ecule terms (i.e., given premises) that co-occur explicitly
with p in biomedical literature and described in “Extract-
ing biological molecule terms that cooccur explicitly
with an unannotated protein in biomedical texts” section
, and (3) the standard inference rules for predicate logic.
PL-PPF can infer the functions of p by recursively trig-
gering the protein specification rules using the premises
(i.e., extracted terms) and the standard inference rules
for predicate logic. At each recursion, an inference rule
is triggered and applied to the premises that have been
proven previously. This will lead to a newly proven
premise. The final conclusion will be a protein function,
which will be considered as the function of p. The con-
clusion is valid, if it has been deducted from all previous
premises [30]. Table 2 presents the standard inference
rules for predicate logic.
We now present case studies in Examples 1 to 4 to

show the effectiveness of the deductive inferencing
methodology presented in this section. The examples
use various biological molecule terms as given premises
for inferring the functions of unannotated proteins.

Example 1
Consider that PL-PPF extracted the following terms based
on their co-occurrences with an unannotated protein Pu in
biomedical texts after applying the techniques presented in
“Extracting biological molecule terms that cooccur expli-
citly with an unannotated protein in biomedical texts” sec-
tion: FD(Px) and ST(Px) (recall Table 3). Using inference
rules, we show how the co-occurrences of FD(Px) and
ST(Px) in texts can be indicative of an implicit mentioning
of the function of Px (i.e., F(Px)). Therefore, the
co-occurrences of FD(Px), ST(Px), and Pu can be indicative
of an implicit co-occurrences of F(Px) and Pu. Accordingly,
the functions of Pu is likely to be similar to F(Px). Table 4

shows the inference rules, which conclude that the given
premises FD(Px) and ST(Px) are indicative of F(Px).

Example 2
Consider that PL-PPF extracted the following terms
based on their explicit co-occurrences with an unanno-
tated protein Pu in biomedical texts: AAS(Px) and
AAS(Py) (recall Table 3). Using inference rules, we show
how the co-occurrences of AAS(Px) and AAS(Py) in
texts can be indicative of implicit mentioning of the
functions of Px and Py (i.e., F(Px) and F(Py)). There-
fore, the co-occurrences of AAS(Px), AAS(Py), and Pu
can be indicatives of implicit co-occurrences of F(Px),
F(Py), and Pu. Accordingly, the functions of Pu is
likely to be similar to F(Px) and F(Py). Table 5 shows

Table 5 Inferring the function of protein Pu described in
example 2

Step Reason

1. AAS(Px) Given premise (based on its co-
occurrence with Pu)

2. AAS(Py) Given premise (based on its co-
occurrence with Pu)

3. AAS(Px) ∧ AAS(Py) Conjunction using steps 1 & 2

4. AAS(Px) → ST(Px) Premise R2 from Table 1

5. ST(Px) Modus Ponens using steps 1 & 4

6. (AAS(Px) ∧ AAS(Py)) ∧ ST(Px) Conjunction using steps 3 & 5

7. (AAS(Px) ∧
AAS(Py))→((ST(Px)→F(Py))

Premise R10 from Table 1

8. F(Py) Conditional Proof using steps 6 & 7

9. AAS(Py) → ST(Py) Premise R2 from Table 1

10. ST(Py) Modus Ponens using steps 2 & 9

11. (AAS(Px) ∧ AAS(Py)) ∧ ST(Py) Conjunction using steps 3 &10

12. (AAS(Px) ∧
AAS(Py))→((ST(Py)→F(Px))

Premise M10 from Table 1

13. F(Px) Conditional Proof using steps 11&12

Table 4 Inferring the function of protein Pu described in
example 1

Step Reason

1. FD(Px) Given premise (based on its co-occurrence
with Pu)

2. ST(Px) Given premise (based on its co-occurrence
with Pu)

3. FD(Px) ∧ ST(Px) Conjunction using steps 1 and 2

4. FD(Px)→(ST(Px)
→F(Px))

Premise R1 from Table 1

5. F(Px) Conditional Proof using steps 3 and 4

Table 3 Notations and abbreviations of the terms used in the
formation of the premises presented in Table 1

Abb. Term

ST(Px) Structure of protein Px

FD(Px) Folding of protein Px

Ly Ligand y

F(Px) Function of protein Px

AAS(Px) Amino Acid Sequence of protein Px

CBND(Px, Ly) Covalent bond between Ligand y and protein Px

PPI(Px, Py) Protein-Protein Interaction of proteins Px and Py

NCBND(Px, Py) Non-covalent bond between proteins Px and Py

PCF(Px, Py) Protein Complex of Functions of proteins Px and Py
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the inference rules, which conclude that the given
premises AAS(Px) and AAS(Py) are indicative of F(Px)
and F(Py).

Example 3
Consider that PL-PPF extracted the following term based on
its explicit co-occurrences with an unannotated protein Pu in
biomedical texts: ST(Px) (recall Table 3). Using inference
rules, we show how the co-occurrences of ST(Px) in texts
can be indicative of implicit mentioning of the function of Px
(i.e., F(Px)). Therefore, the co-occurrences of ST(Px) and Pu
can be indicatives of implicit co-occurrences of F(Px) and Pu.
Accordingly, the functions of Pu is likely to be similar to
F(Px). Table 6 shows the inference rules, which conclude that
the given premise ST(Px) is indicative of F(Px).

Example 4
Consider that PL-PPF extracted the following terms based
on their explicit co-occurrences with an unannotated pro-
tein Pu in biomedical texts: NCBND(Px, Py) and F(Px) (re-
call Table 3). Using inference rules, we show how the
co-occurrences of NCBND(Px, Py) and F(Px) in texts can
be indicative of implicit mentioning of the function of Py
(i.e., F(Py)). Therefore, the co-occurrences of NCBND(Px,
Py), F(Px), and Pu can be indicative of implicit
co-occurrences of F(Py), and Pu. Accordingly, the func-
tions of Pu is likely to be similar to F(Py). Table 7 shows
the inference rules, which conclude that the given prem-
ises NCBND(Px, Py) and F(Px) are indicative of F(Py).

Results and discussion
We implemented PL-PPF in Java and used Prolog as the
logic programming language. We ran it on Intel(R) Cor-
e(TM) i7 processor and a CPU that has frequency equals
2.70GHz. The machine has 16GB of RAM. We ran PL-PPF
using Windows 10 Pro. We compared it experimentally with
the following five systems: DeepGO [15], IFP_IFC [29],
Text-KNN [31], Text-SVM [25], and GOstruct [9, 26].
DeepGO [15] uses deep learning to learn features from pro-
tein sequences for the purpose of predicting protein func-
tion. IFP_IFC is a system that we proposed previously for
predicting the functions of unannotated proteins by

employing random walks with restarts on a protein func-
tional network. The nodes of the network denote the func-
tional categories of proteins and the edges denote the
interrelationships between them. Text-KNN and Text-SVM
use characteristic terms, which are text features obtained
from biomedical texts to represent proteins. The two systems
assign an unannotated protein pu the functions of the set S
of already annotated proteins, if pu and S have similar char-
acteristic terms. The classifier employed by Text-KNN is
based on k-nearest neighbour and the classifier employed by
Text-SVM is based on support vector machine. In the frame-
work of GOstruct, an unannotated protein pu is annotated
with the functions of a Gene Ontology (GO) term, if this term
co-occurs in close proximity with pu in biomedical texts.
The complete list of specification rules used by

PL-PPF in the experiments and the abbreviations of the
terms included in the list can be accessed through the
following two links, respectively:http://ecesrvr.kustar.a-
c.ae:8080/plppf/rules.pdf
http://ecesrvr.kustar.ac.ae:8080/plppf/abbreviations.pdf

Compiling datasets for the evaluation
Gene ontology dataset
We compared the systems using GO dataset [11], which
contains GO terms as well as proteins annotated with
their functions. We extracted a fragment from the bio-
logical process ontology that has 70 GO terms. We also
extracted a fragment from the molecular function ontol-
ogy that has 30 GO terms. We downloaded the GO
dataset from [11]. The number of downloaded proteins
(which are annotated with the functions of the selected
terms) is shown in Table 8. We downloaded the PubMed
texts associated with the selected proteins based on their
entries in [6]. The number of downloaded texts was

Table 7 Inferring the function of protein Pu described in
example 4

Step Reason

1. NCBND(Px, Py) Given premise (based on its co-occurrence
with Pu)

2. F(Px) Given premise (based on its co-occurrence
with Pu)

3. NCBND(Px, Py)→PPI(Px,
Py)

Premise R12 from Table 1

4. PPI(Px, Py) → PCF(Px, Py) Premise R6 from Table 1

5. NCBND(Px, Py) → PCF(Px,
Py)

Law of Syllogism using steps 1 and 5

6. PCF(Px, Py) Modus Ponens using steps 6 and 7

7. PCF(Px, Py) ∧ F(Px) Conjunction using steps 2 and 6

8. PCF(Px, Py)→(F(Px)→F(Py)) Premise R7 from Table 1

9. F(Py) Conditional Proof using steps 7 and 8

Table 6 Inferring the function of protein Pu described in
example 3

Step Reason

1. ST(Px) Given premise (based on its co-occurrence with Pu)

2. ST(Px) →AAS(Px) Premise R13 from Table 1

3. AAS(Px) Modus Ponens using steps 1 and 2

4. AAS(Px) → F(Px) Premise R3 from Table 1

5. F(Px) Modus Ponens using steps 3 and 4
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577,486. PL-PPF will use these 577,486 texts as a train-
ing dataset for extracting the semantically related GO
terms to the selected proteins. We considered a term t
to be semantically related to an unannotated protein pu,
if the co-occurrence probability of t and pu using

Z-score [32] is greater than “-1.96” standard deviation
(with 95% confidence level).

Saccharomyces genome database (SGD)
We also compared the systems using the 6086 SGD
dataset [27]. The dataset is a complete information
about the yeast proteins. The functions of these proteins
have been experimentally determined by manual cur-
ation and verified using peer-reviewed process. We
downloaded 46,227 PubMed texts associated with the
SGD dataset based on their entries in [6].

Assessing the results returned by the systems through
5-fold cross validation
We divided each of the GO and SGD datasets to five
sets. The systems were assessed five times. At each time,

Table 8 Number of GO terms and proteins downloaded for the
experiments

Biological
Process

Molecular
Function

Number of GO terms 70 30

Number of proteins 584, 973 604,625

Number of proteins used in the
experimentsa

62,386 16,576

a We selected for the evaluations only proteins that satisfy the following: (1)
associated with at least one PubMed publication based on their entries in
UniProtKB [6], and (2) have experimental evidence code: IC, IDA, IPI, IEP, EXP,
TAS, IMP, IGI, or IC.

Fig. 1 The systems’ performances for predicting GO functions after applying 5-fold cross validation
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a different set of each of the GO and SGD datasets was
used for testing and the remaining four sets were used
to train the systems. We considered the testing proteins
as unannotated and assessed the systems for predicting
their functions accurately. We evaluated two versions of
PL-PPF: one adopts all the techniques described in this

paper and the other adopts only the explicit terms
co-occurrence extraction techniques (i.e., without the in-
ference rules described in “Inferring the functional terms
that cooccur implicitly with an unannotated protein in
texts using predicate logic” section). This will enable us
to determine the impact of the inference rules in inferring

Fig. 2 The systems’ performances for predicting SGD functions after applying 5-fold cross validation

Table 9 Number and percentage of valid and invalid co-occurrences identified by PL-PPF in the GO and SDG datasets

Dataset Number and percentage of proteins Biological Process Molecular Function

GO
dataset

Number of valid co-occurrences identified 39,928 9614

Number of invalid co-occurrences identified 22,458 6962

Percentage of valid co-occurrences identified 64% 58%

SGD
dataset

Number of valid co-occurrences identified 2152 858

Number of invalid co-occurrences identified 1986 1090

Percentage of valid co-occurrences identified 52% 44%
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implicit terms co-occurrences. We assessed the prediction
accuracy of each system for identifying the functions of
each unannotated protein p using the following standard
quality metrics shown in Eqs. 1, 2 and 3:

Recall ¼ Cp=Np ð1Þ

Precision ¼ Cp=Mp ð2Þ

F‐value ¼ 2Precision� Recallð Þ= Precision þ Recallð Þ
ð3Þ

� Cp: The number of correctly predicted functions for
protein p.

� Np: The actual number of correct functions of
protein p.

� Mp: The number of functions predicted for protein
p by one of the systems.

Figures 1 and 2 show the results achieved by each sys-
tem using the GO dataset and SGD datasets respectively.
Table 9 shows the number of valid and invalid
co-occurrences identified by PL-PPF in the GO and
SDG datasets.
We also assessed each system for accurately infer-

ring the functions of each GO term at different hier-
archical levels (depths) of the GO ontology. The size
of proteins annotated with the functional category of
a GO annotation term decreases as its hierarchical
level increases. We aim at investigating whether the
accuracy of a system for predicting the functional cat-
egories of GO annotation terms gets better as the
sizes of these terms increases. We randomly divided
the proteins annotated with each functional category
c into two sets. We considered the proteins in the
first set as unannotated, whose functions need to be
detected. We considered the biomedical texts associ-
ated with the proteins in the second set as a training
dataset. We computed the performance of each sys-
tem for predicting the functions of c at different

Fig. 3 The Recalls of the systems for predicting the functional categories of the set of GO terms positioned at the same hierarchical level of the GO ontology
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hierarchical levels. Figures 3 and 4 show the results
achieved by each system.

Assessing the results returned by the systems through
cumulative-validation
We ran each system ten times against the GO dataset. The
number of proteins, whose associate biomedical texts are
used as a training dataset, keeps accumulating at each run.
At each run, we randomly selected 1000 Biological Process
testing proteins and 500 Molecular Function testing pro-
teins as unannotated and assessed the systems for predict-
ing their functions. The first run was performed using: (1)
52,386 Biological Process proteins and 11,576 Molecular
Function proteins, whose associate biomedical texts are
used as a training dataset, and (2) 1000 Biological Process
proteins and 500 Molecular Function proteins, whose func-
tions are considered unannotated. At each run, thereafter,
the set of proteins, whose associate biomedical texts are
used as a training dataset, includes also the Biological
Process and Molecular Function proteins, whose functions

were annotated in the prior run. Figures 5 and 6 show the
results achieved by each system.

Comparing PL-PPF and DeepGO systems using protein
centric maximum F-measure
We compared PL-PPF with DeepGO [15] using protein
centric maximum F-measure. DeepGO uses deep learn-
ing to learn features from protein sequences for the pur-
pose of predicting protein function. It uses the
dependencies between GO Classes to construct the
learning model. We followed the same experimental set-
ting used for evaluating the DeepGO method as de-
scribed in [15]. We also compared the two systems
using the same dataset described in [15]. Specifically, we
compared the two systems using the following:

(1).The protein centric maximum F-measure,
which was used in evaluating the DeepGO
method.

Fig. 4 The Precisions of the systems for predicting the functional categories of the set of GO terms positioned at the same hierarchical level of
the GO ontology
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(2).The same GO dataset used in evaluating the
DeepGO method (the dataset is shown in
Additional file 1: Table S2 of [15]).

Figure 7 shows the protein centric maximum F-measure
of PL-PPF and DeepGO for predicting the functional cat-
egories of the GO dataset described in [15].

Discussion of the results
As Figs. 1, 2, 3, 4, 5, 6 and 7 show, PL-PPF outper-
formed the other systems. This is an indication of the
effectiveness and practical viability of PL-PPF’s com-
bination of explicit and implicit techniques (i.e., its
techniques for inferring functional terms that
co-occur implicitly with proteins using the rules of
predicate logic as well as its techniques for extracting
functional terms that co-occur explicitly with pro-
teins). As the figures show also that the complete

version of PL-PPF (i.e., which employs both of the ex-
plicit and implicit techniques) outperforms signifi-
cantly the version of PL-PPF, which employs only the
explicit techniques. This is attributed to the effective-
ness of the rules of predicate logic in inferring the
functional terms that co-occur implicitly with proteins
in biomedical texts.
As Fig. 7 shows, PL-PPF outperformed DeepGO in the

GO Biological Process and Cellular Components subontol-
ogies. However, DeepGO outperformed PL-PPF in the Mo-
lecular Function subontology. Actually, we observed that
PL-PPF performs better in the Biological Process dataset
then the Molecular Function dataset in all conducted ex-
periments including the ones described in “Assessing the
results returned by the systems through 5-fold cross valid-
ation” and “Assessing the results returned by the systems
through cumulative-validation” sections. We will investigate
the root cause of this in a future work.

Fig. 5 The Recalls of the systems for predicting the functional categories of GO terms using a cumulative set of proteins, whose associate
biomedical texts are used as a training dataset
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As Figs. 5 and 6 show, the Recall and Precision values of
the systems get better as the sizes of proteins, whose asso-
ciate biomedical texts are used as a training dataset, in-
crease. However, the Recall and Precision values of
PL-PPF and IFP_IFC increase at higher rates. When the
set of training texts is small, it would not have enough
sentence structures. As a result, PL-PPF cannot accurately
determine whether the sentences have solid relationships
between their terms. Therefore, as the size of training bio-
medical texts gets larger, the z-score values computed by
PL-PPF for determining semantically related terms be-
come more accurate. This is advantageous for PL-PPF,
since the size of biomedical texts associated with proteins
in real-world increases significantly over time. As Figs.3
and 4 show, PL-PPF predicts the functions of GO annota-
tion terms at lower hierarchical levels with better accuracy
than higher-level ones.

In general, we attribute the performance of PL-PPF over
the other five systems to the fact that PL-PPF employs a
combination of statistical and logic-based approaches
while the other five systems employ only statistical-based
approaches. That is, PL-PPF includes a combination of
statistical-based explicit term extraction component and
logic-based implicit term extraction component. Our hy-
pothesis is that important biological molecule terms per-
taining functional categories are likely to co-occur
implicitly with proteins in biomedical texts.
Table 10 shows the percentages of valid explicit and

implicit terms that PL-PPF identified in the datasets used in
the experiments. For each of the GO and SDG datasets used
in the experiments, Table 10 presents the percentages of
terms in the Biological and Molecular Function ontologies
identified by PL-PPF. As the table shows, the percentages of
implicit terms that PL-PPF identified are considerable.

Fig. 6 The Precisions of the systems for predicting the functional categories of GO terms using a cumulative set of proteins, whose associate
biomedical texts are used as a training dataset
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Conclusions
Some important biological molecule terms pertain-
ing functional categories may implicitly co-occur
with proteins in biomedical texts. Most current in-
formation extraction approaches do not take advan-
tage of such implicitly inferred terms and focus
solely on explicitly mentioned terms in texts. In this
paper, we introduced an information extraction sys-
tem called PL-PPF. The system predicts protein
functions based on both explicitly and implicitly
mentioned functional terms in biomedical texts.
PL-PPF extracts explicitly mentioned functional
terms in texts using computational linguistic tech-
niques that identify semantically related terms in
differently structured forms of sentences. It extracts
implicitly mentioned functional terms by recursively
triggering protein specification rules using the

standard inference rules for predicate logic. We
compared PL-PPF experimentally with the following
five systems: DeepGO [15], IFP_IFC [29], Text-KNN
[31], Text-SVM [25], and GOstruct [9, 26]. Results
showed that PL-PPF outperformed the other systems
in terms of inferring the functions of proteins from
both the GO [11] and SGD [27] datasets. We also
evaluated the impact of inference rules in inferring
implicit functional terms by comparing two versions
of PL-PPF: one adopts only the explicit techniques
and the other is a complete version (i.e., adopts
both of the explicit and implicit techniques). Results
revealed that the complete version outperformed
significantly the other version. This is attributed to
the effectiveness of the rules of predicate logic in
inferring implicitly mentioned functional terms in
texts.

Fig. 7 The protein centric maximum F-measure of PL-PPF and DeepGO [15] for predicting the functional categories of the GO dataset described in [15]

Table 10 The percentages of valid explicit and implicit terms that PL-PPF identified in the datasets. For each of the GO and SDG
datasets used in the experiments, the table presents the percentages of valid terms in the Biological Process and Molecular Function
Ontologies identified by PL-PPF

GO SDG

Biological Process Molecular Function Biological Process Molecular Function

% of explicit terms 72% 64% 62% 76%

% of implicit terms 28% 36% 38% 24%
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Additional file

Additional file 1: The data presented in Tables S1 and S2 is the Biological
Process and Molecular Function GO annotation terms used in the experiments
as well as the randomly selected sets of training and testing proteins annotated
with the functions of these GO terms. (DOCX 56 kb)
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