
SOFTWARE Open Access

pblat: a multithread blat algorithm
speeding up aligning sequences to
genomes
Meng Wang and Lei Kong*

Abstract

Background: The blat is a widely used sequence alignment tool. It is especially useful for aligning long sequences
and gapped mapping, which cannot be performed properly by other fast sequence mappers designed for short
reads. However, the blat tool is single threaded and when used to map whole genome or whole transcriptome
sequences to reference genomes this program can take days to finish, making it unsuitable for large scale
sequencing projects and iterative analysis. Here, we present pblat (parallel blat), a parallelized blat algorithm with
multithread and cluster computing support, which functions to rapidly fine map large scale DNA/RNA sequences
against genomes.

Results: The pblat algorithm takes advantage of modern multicore processors and significantly reduces the run
time with the number of threads used. pblat utilizes almost equal amount of memory as when running blat. The
results generated by pblat are identical with those generated by blat. The pblat tool is easy to install and can run
on Linux and Mac OS systems. In addition, we provide a cluster version of pblat (pblat-cluster) running on
computing clusters with MPI support.

Conclusion: pblat is open source and free available for non-commercial users. It is easy to install and easy to use.
pblat and pblat-cluster would facilitate the high-throughput mapping of large scale genomic and transcript
sequences to reference genomes with both high speed and high precision.

Keywords: Sequence alignment, Genome annotation, Parallel computing, Cluster computing

Background
Blat [1] is a sequence alignment tool designed to map DNA,
RNA and protein sequences to reference genomes. It is
commonly used to locate sequences in a reference genome,
find homologous sequences from genomes of closely related
species, identify exon-intron boundaries from mRNA se-
quences and determine gene structures, and to help assem-
ble and annotate genome and transcriptome sequences [2].
Although many fast sequence aligners, like BWA [3] and
Bowtie [4], have been developed to map short sequence
reads generated by high-throughput sequencing, they are
not capable of mapping long reads or sequences with abun-
dant gaps or spliced sequences from discontinues genomic

regions [5]. In contrast, blat is an ideal tool for such applica-
tions with its high sensitivity and precision [6, 7].
However, with the increasing quantity of sequences

generated by high throughput sequencing projects, blat
cannot meet the speed requirements needed for
large-scale analysis and regularly updated annotations.
For example, when used to map the whole transcriptome
sequences of vertebrates to a reference genome, it would
take days to finish using blat. This is due to the blat al-
gorithm being single threaded and, thus, not taking full
advantage of modern multicore processors. One might
use the GNU parallel [8] tool to execute multiple in-
stances of blat in parallel using one or more computers.
However, each blat process would load a copy of the
whole reference genome and build and store the index
of the genome into memory, which might exceed the
available physical memory of conventional computers if
multiple blat processes run simultaneously.

* Correspondence: kongl@mail.cbi.pku.edu.cn
Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene
Research, School of Life Sciences, Peking University, Beijing 100871, People’s
Republic of China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wang and Kong BMC Bioinformatics (2019) 20:28
https://doi.org/10.1186/s12859-019-2597-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2597-8&domain=pdf
mailto:kongl@mail.cbi.pku.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

To overcome these limitations, we present pblat (paral-
lel blat), which functions to speed up blat alignments by
implementing multiple thread and cluster computing sup-
port. With pblat, all threads share the same memory copy
of the whole reference genome and the index. As such,
pblat utilizes almost the same amount of memory as blat.
The run time is reduced with the number of threads used,
and the output results of pblat are identical with that of
blat. The cluster version of pblat (pblat-cluster) runs on
computer clusters with MPI (Message Passing Interface)
support, which is able to help reduce the run time of blat
from days to minutes.

Implementation
pblat extends the blat algorithm with multiple thread sup-
port by employing POSIX threads via the C programming
language. pblat employs data-level parallelism. The input
query file in FASTA format is virtually divided into the
same number of parts as the number of threads specified
using the ‘-threads’ command line option. Each part is
comprised of the same number of query sequences to load
balance among threads. Each thread takes one part of the
input sequences and performs the blat algorithm to align
the sequences to the genome. Only one copy of the gen-
ome sequences is loaded into memory and all the threads
share this memory to query the input sequences against
the genome. This makes the memory consumption of
pblat keep to the minimum no matter how many threads
are used. The outputs of each thread are written to an in-
dependent temporary file. After all the threads finish, all
of the temporary output files are combined to form the
final output file. This ensures that the order of output re-
cords corresponds to the order of query sequences in the
input file no matter how many threads are used. All of the
global variables and static variables in the original blat
program are localized to ensure all the variables and sub-
routines are thread safe.

The cluster version of pblat extends the multithread ver-
sion of pblat with MPI support. The master process of the
pblat-cluster distributes the virtual input query file parts
to all of the spawned processes in each computing node
via MPI. The spawned processes running in the same
computing node are automatically merged and switched
to the multithread mode of pblat, sharing the same mem-
ory copy of the reference genome and index to minimize
the memory requirement per computing node. After all
the spawned processes in each computing node finish, the
master process combines all of the output files generated
by each process to form the final output file.

Results
Performance evaluation of pbalt
We evaluated the performance of pblat using different
number of threads and compared to the results of the
original blat. All analyses were performed on a Linux
machine with 4 Intel Xeon E7–4830 @ 2.13GHz CPUs
(32 cores in total, 2 threads per core) and 128G memory.
We employed the nucleotide sequences of all human
protein-coding transcripts with length range from 1 kb
to 5 kb in the GENCODE release 26 [9]. We aligned
these sequences to the GRCh38.p10 human reference
genome sequences with blat and pblat. The test data
consisted of 42,286 transcript sequences. The mean
length of the test transcripts was 2440 and the median
length was 2226. The blat and pblat analyses, with 2, 4,
8, 16, 24, 32, 40, 48, 56 and 64 threads, were executed to
map all the transcripts to the genome.
The results showed that pblat reduced the run time

relative to the increasing number of threads used
(Fig. 1a). Blat took more than 7 h to map all the test
transcripts to the reference genome, whereas pblat with
16 threads only required approximately 39 min to finish,
which was 10.97x speedup than the blat. From 2 threads
to 32 threads, the speedup of pblat increased with the

a b

Fig. 1 Performance evaluation of pblat. a timing benchmarks of blat and pblat using different thread numbers (from 2 to 64). Each time
represents the mean of three independent executions performed with the same arguments and on the same machine. b Speedup of
pblat with different number of threads, compared to blat

Wang and Kong BMC Bioinformatics (2019) 20:28 Page 2 of 4

increasing number of threads used (Fig. 1b). When using
2 to 8 threads, the speedup increased almost linearly
with the number of threads. But the speed of acceler-
ation decreases when using more threads and the run
time did not further reduce after 32 threads. The final
speedup of this test was 18.61 when using 48 threads.
Due to the channel and bandwidth limitation of memory
accessing, the acceleration was not proportional to the
number of threads used. The memory usage for pblat
with any number of threads tested was almost the same
as that of blat. The results generated by pblat were com-
pletely identical to the results of the blat analysis. Based
on these results, we suggest to use half of total CPU
cores to get the maximum acceleration, or setting the
number of threads as the total number of memory chan-
nels to get a high acceleration with economic CPU re-
source consumptions.
To evaluate the performance of pblat on real

long-read sequencing data with sequencing errors lead-
ing to abundant mismatches and gaps, we adopted the
mouse single-cell full length transcript RNA-seq data se-
quenced on the long-read single-molecule Oxford Nano-
pore MinION sequencer (ONT) [10]. The dataset was
downloaded from NCBI Sequence Read Archive (SRA)
with accession number SRR5286960. For a single murine
B1a cell, 104,990 reads were generated by ONT with the
maximum length 6296 bp, mean length 1868 bp and me-
dian length 1787 bp. Fast spliced read aligners including
HISAT2 [11], STAR [12] etc., were not compatible with
such long reads with high error rates [10]. In the original
study [10], the blat was employed to align these nano-
pore long reads to the mouse genome and successfully
helped identify novel transcript isoforms. We replicated
the aligning step using blat and pblat with 8 and 16

threads. The blat program took 935min to align all these
reads to GRCm38 genome (primary assembly), while pblat
with 8 threads used 149min and pblat with 16 threads
took 86min to finish. The speedup for pblat with 8 and 16
threads relative to blat was 6.28 and 10.87, respectively.
The speedup was consistent with results in the last ana-
lysis. These results showed pblat could significantly accel-
erate aligning long sequencing reads generated by the
Oxford Nanopore and PacBio SMRT (Single Molecule
Real-Time) sequencing platforms.

Performance evaluation of pblat-cluster
The performance of pblat-cluster was evaluated on a
high-performance computing cluster with 15 nodes.
Each node had 24 CPU cores @ 2.30GHz (1 thread per
core) and 128GB memory. All the nodes were connected
by the InfiniBand network and shared a GPFS file sys-
tem. All the nodes ran Linux system with OpenMPI
3.0.0. The test data was the same as that used in the
evaluation of pblat. We evaluated the pblat-cluster with
1, 3, 6, 9, 12 and 15 computing nodes. Each node ran 12
threads. Results indicated that the run time decreased
significantly with the increasing number of computing
nodes employed (Fig. 2). The blat program took 6.4 h
with one thread on one node to align all the test se-
quences to the reference genome. The pblat-cluster with
one node (12 threads) used 44min. When using 15
nodes, pblat-cluster reduced the time consumption to
6.8 min, which was 6.47x speedup than pblat with 12
threads in one node and 51.18x speedup than blat. The
speedup would further increase with more computing
nodes, but as pblat the acceleration would not be pro-
portional to the number of nodes employed and there is
a roof for the maximum speedup. The run time of

a b

Fig. 2 Performance evaluation of pblat-cluster. a timing benchmarks of pblat-cluster using different number of computing nodes (from 1 to 15),
with 12 threads per node. Each time represents the mean of three independent executions performed with the same arguments and on the
same cluster. b Speedup of pblat-cluster with different number of computing nodes, compared to pblat with one node 12 threads

Wang and Kong BMC Bioinformatics (2019) 20:28 Page 3 of 4

pblat-cluster is determined by the slowest node. When a
node has an extremely long sequence to align which
takes much longer time than the other sequences, the
total time consumption would be determined by the
time used to align this sequence no matter how many
nodes are used.
We then compared the time consumption when run-

ning pblat with 12 threads and that when running
pblat-cluster with 12 nodes (1 thread per node). The
pblat with 12 threads took 44min to align all the test
transcripts to the reference genome. The pblat-cluster
with 12 nodes used 39.8 min. As expected, pblat-cluster
is faster than pblat using the same number of threads,
because for pblat-cluster the threads run on different
computing nodes, with each node using its own memory
of genomes and indexes, they do not compete to access
the memory.

Conclusion
pblat is open source and the source code is easy to com-
pile by simply typing ‘make’ to generate the binary pro-
gram on Linux or Mac OS systems. pblat is also easy to
use, and all the command-line options are the same as
blat, with only the addition of the ‘-threads’ option to
specify the number of threads to use. Pipelines employ-
ing blat could directly switch to using pblat. pblat en-
ables users to take advantage of both the high precision
of blat and the high speed available with other popular
sequence aligners. Overall, pblat facilitates the rapid ana-
lysis and annotation of whole genome and whole tran-
scriptome sequences.

Availability and requirements
Project name: pblat
Project home page: http://icebert.github.io/pblat,

http://icebert.github.io/pblat-cluster
Operating systems: Linux, Mac OS X
Programming language: C
License: The source code and executables are freely

available for academic, nonprofit and personal use. Com-
mercial licensing information is available on the Kent In-
formatics website (http://www.kentinformatics.com).
Any restrictions to use by non-academics: license

needed

Abbreviations
GPFS: General parallel file system; MPI: Message passing interface

Acknowledgements
We appreciate the early users of pblat for their valuable feedback towards
improving the program. Part of the analysis was performed on the
Computing Platform of the Center for Life Science, Peking University.

Funding
This work was supported by the National Key Research and Development
Program of China (2017YFC1201200, 2016YFB0201700, 2017YFC0908400) and
the International Collaboration Program for Proteome Biological Big Data

and Standard System (2014DFB30030). MW was supported in part by the
Postdoctoral Fellowship of Peking-Tsinghua Center for Life Sciences.

Availability of data and materials
Not applicable

Authors’ contributions
LK and MW conceived the project. LK and MW designed the program. MW
implemented the software and performed evaluations. MW and LK wrote
the manuscript. Both authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 March 2018 Accepted: 3 January 2019

References
1. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):

656–64.
2. Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation.

Nat Rev Genet. 2012;13(5):329–42.
3. Li H, Durbin R. Fast and accurate short read alignment with burrows-

wheeler transform. Bioinformatics. 2009;25(14):1754–60.
4. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol.
2009;10(3):R25.

5. Fonseca NA, Rung J, Brazma A, Marioni JC. Tools for mapping high-
throughput sequencing data. Bioinformatics. 2012;28(24):3169–77.

6. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP,
Stoeckert CJ, Hogenesch JB, Pierce EA. Comparative analysis of RNA-Seq
alignment algorithms and the RNA-Seq unified mapper (RUM).
Bioinformatics. 2011;27(18):2518–28.

7. Borozan I, Watt SN, Ferretti V. Evaluation of alignment algorithms for
discovery and identification of pathogens using RNA-Seq. PLoS One. 2013;
8(10):e76935.

8. Tange O: GNU Parallel - The Command-Line Power Tool. ;The USENIX
Magazine 2011(2):42–47.

9. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski
F, Aken BL, Barrell D, Zadissa A, Searle S, et al. GENCODE: the reference
human genome annotation for the ENCODE project. Genome Res. 2012;
22(9):1760–74.

10. Byrne A, Beaudin AE, Olsen HE, Jain M, Cole C, Palmer T, DuBois RM,
Forsberg EC, Akeson M, Vollmers C. Nanopore long-read RNAseq reveals
widespread transcriptional variation among the surface receptors of
individual B cells. Nat Commun. 2017;8:16027.

11. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low
memory requirements. Nat Methods. 2015;12(4):357–60.

12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15–21.

Wang and Kong BMC Bioinformatics (2019) 20:28 Page 4 of 4

http://icebert.github.io/pblat
http://icebert.github.io/pblat-cluster
http://www.kentinformatics.com

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Performance evaluation of pbalt
	Performance evaluation of pblat-cluster

	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

