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Abstract

Background: Clustering molecular network is a typical method in system biology, which is effective in predicting
protein complexes or functional modules. However, few studies have realized that biological molecules are

spatial-temporally regulated to form a dynamic cellular network and only a subset of interactions take place
at the same location in cells.

Results: In this study, considering the subcellular localization of proteins, we first construct a co-localization
human protein interaction network (PIN) and systematically investigate the relationship between subcellular

ClusterONE and MCL.

module detection from protein interaction networks.

module

localization and biological functions. After that, we propose a Locational and Topological Overlap Model
(LTOM) to preprocess the co-localization PIN to identify functional modules. LTOM requires the topological
overlaps, the common partners shared by two proteins, to be annotated in the same localization as the two
proteins. We observed the model has better correspondence with the reference protein complexes and
shows more relevance to cancers based on both human and yeast datasets and two clustering algorithms,

Conclusion: Taking into consideration of protein localization and topological overlap can improve the performance of

Keywords: Protein interaction network, Network clustering, Subcellular localization, Topological overlap, Functional

Background

Biological networks have received much attention over
the last two decades because they systematically model
the complex interactions occurring among different
components in cells [1-6]. Protein Interaction Network
(PIN) is the most common biological networks where
the cellular components are proteins [1, 6]. Specifically,
the nodes correspond to proteins and the edges corres-
pond to interactions between proteins. Interacting pro-
tein pairs often participate in the same biological
processes or associate with specific molecular functions.
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In system biology, clustering PIN is a typical and effect-
ive operation to predict protein complexes or functional
modules, where a module is a cluster of densely con-
nected proteins in a PIN. The detection of modules
using biological networks can help in understanding the
mechanisms regulating cell life and predicting the bio-
logical functions of the uncharacterized proteins [7-11].

This type of problems can be computationally ad-
dressed using clustering techniques and quite a number
of approaches are available [7-9]. However, practically
all the existing clustering models emerge from analysis
at the global cellular level, leading to challenges when
considering the context of subcellular localization, as the
protein interactions take place in the same locations of
cells [5, 6]. For example, eukaryotic cells are organized
into a number of compartments that are specialized for
various biological functions. Park et al. indicated that er-
roneous localization of proteins is able to result in cell
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abnormality and human disease [12]. Furthermore, pro-
teins change their localizations frequently and it is an ef-
ficient regulation mode in cells. A good example is the
pivotal cancer gene, p53, which mainly functions as a
transcriptional factor when localized in the nucleus,
while upon stimulation it activates several of cellular
programs including autophagy, a cellular process of
self-eating [13, 14]. In contrast, when translocated from
nucleus to cytoplasm, p53 amazingly acts as a master re-
pressor of autophagy [15, 16]. These biological facts are
hard to be reflected based on the analysis of the global
cellular network, but rather through exploring the
co-localization protein interaction networks.

While the protein pairs are generally regarded as inde-
pendent in a PIN, the topological overlap not only con-
siders the direct interaction between proteins but also
considers their indirect connections with all the other
proteins in the network [17, 18]. Specifically, a high
topological overlap between a pair of proteins refers to
they share a large fraction of partners in the network. It
has been well studied that two substrates with a high
topological overlap tend to be functionally similar [19,
20]. However, in the co-localization protein interaction
network, the overlapping partner of the interacting pro-
teins may not have the same localization as them. For
instance, a common partner may share a location (such
as nucleus) with one protein while belonging to another
location (such as membrane) of the other one. Hence,
the overlapping partners of two interacting proteins
should be annotated in locations the same as the two
interacting proteins.

In this study, we first constructed a co-localization
protein interaction network (CLPIN) and demonstrated
that proteins in the CLPIN are engaged in interactions
with high experimental confidence. Then, we applied the
proposed Locational and Topological Overlap Model
(LTOM) and its old version to impute the missing inter-
actions of CLPIN, producing two new networks, Loca-
tional and Topological Overlap PIN (LTOPIN) and
Topological Overlap PIN (TOPIN), respectively. Our re-
sults show that the LTOM inferred network outperforms
the counterparts in module identification based on the
human and yeast datasets and two clustering methods,
ClusterONE and MCL. Finally, the biological functions
of the identified modules were further investigated by
associating with human cancer genes.

Materials and methods

Subcellular localization information

The information of protein localization in cells was obtained
from the Universal Protein Resource (UniProt) [21, 22]. It
contains 15,950 proteins and 20,565 interaction relation-
ships in 12 subcellular locations, i.e., extracellular, plasma
membrane, cytoplasm, mitochondria, Golgi apparatus,
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endoplasmic reticulum, endosome, peroxisome, lysosome,
vacuole, vesicles, and nucleus. The same as Veres et al.,, we
merged mitochondria, Golgi apparatus, endoplasmic
reticulum, endosome, peroxisome, lysosome, vacuole and
vesicles into a major location “secretary-pathway” [23]. As a
result, proteins were efficiently annotated to six major sub-
cellular localizations, ie., nucleus, cytoplasm, membrane,
extracellular, mitochondria, and secretary-pathway.

Protein interaction networks

Both human and yeast protein-protein interaction (PPI)
datasets were studied in this study. The non-redundant
relationship of human PPIs was collected from the Hu-
man Protein Reference Database (HPRD, Release 9) [24]
and the Biological General Repository for Interaction
Datasets (BioGRID, 3.4.150) [25], respectively. HPRD is
a well-accepted resource of curated proteomic informa-
tion including only experimental verified interactions.
BioGRID is an interaction repository with data compiled
through comprehensive curation efforts. As described in
Yong et al. [26], the yeast PPIs were obtained by incorp-
orating three databases, BioGRID, IntAct, and MINT.
Hereafter, global protein interaction network (GPIN)
was used to represent the original PPI networks without
filtering interactions.

Then, we obtained the co-localization protein inter-
action networks (CLPIN) by integrating each GPIN
with the subcellular localization information. The
interacting protein pairs in CLPIN were required to
share at least one location and the interactions do
not meet the requirement were filtered out. After
that, Topological Overlap PIN (TOPIN) and Loca-
tional and Topological Overlap PIN (LTOPIN) were
constructed based on CLPIN, but only potential inter-
actions were added in and no extra external proteins
were recruited, so they contain the same number of
proteins as CLPIN. Please see more details in the fol-
lowing sections and Fig. 1.

The topological overlap matrix model (TOM)

In this part, we introduce the model of Topological
Overlap Matrix (TOM) based on the work of Yip et al.
[8]. The idea behind TOM is that given the direct inter-
action information between proteins, we can predict the
indirect interaction between proteins by counting the
shared intermedia between them. Suppose G is the
one-step adjacency matrix, and its element a; =1 when
there is an interaction between protein i and protein j,
and ;=0 otherwise. For protein i, let K; denote the
connection degree of protein i (which is the sum of the
i row or column in G). We can see the number of
neighbors shared by protein i and j is
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Fig. 1 The flowchart of module identification. For a given protein
interaction network, GPIN, it is first filtered to CLPIN by the context
of cell localization, and then it is imputed to form LTOPIN using
both the locational and topological information. After that, ClusterONE
is used to identify modules. Finally, the modules are evaluated using
three functional categories, biological process, molecular function and
cancer gene set. LTOM, Locational and Topological Overlap Model; Sn,

Sensitivity; PPV, Positive Predictive Value; Acc, Accuracy
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So the connectivity between protein i and j through at
most one inter media should be

(2.1)

Zu;:i,/’aiua”j + ajj (22)

To define a measure for the topological overlap, the
above equation can be used as the numerator of the
measure. For the denominator, it should satisfy two con-
ditions: first, no less than the numerator, and second,
greater than zero, so that the topological overlap should
fall in [0,1].

In TOM, we define the denominator as min(K;, Kj) + 1
- a;. Since the elements in G is 0 or 1, so it’s easy to see
that min(K;,K;) + 1-a; > Z iy + aj, and min(K;,

u#i,]

K) +1-a;> 0. Finally, the TOM is defined as follows:

Doyl + Ay
min (k,’, k/) + 1—61,'/

TOM(i, j) = (2.3)

The computation TOM based on G is straight for-
ward. As we have defined the interaction between a pro-
tein to itself to be one, the numerator of TOM is GG,
the denominator is also a matrix, whose elements in

position (i, j) should be Z iy + 1-aj.
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The locational and topological overlap matrix model
(LTOM)

The interaction information in TOM has been proved to
be very useful and has been used in several published
works [8, 27, 28]. In this paper, we aim at integrating the
localization information into TOM to improve its power
in detecting biological modules and named it as Loca-
tional and topological overlap matrix model (LTOM, see
Fig. 2).

Suppose we have an additional localization matrix L,
the rows of which represent proteins and columns repre-
sent locations. In L, its elements b;=1 means the
localization of protein i is j, and b;; = 0 otherwise.

We maintain the denominator of LTOM the same as
TOM, and multiply the numerator with a factor indicat-
ing the influence of the cell localization. Specifically, the
LTOM is defined as:

LTOM(i, j) = 2=nintuills . ]) + a0’ (G )
’ min (k;, k;) + 1-a;

(2.4)

where o is a Boolean function indicting whether three
proteins recorded in some same locations, since the con-
nected two interactions of them are required to be in
common locations in LTOM. In particular, function ¢ is
defined on two proteins instead of three. The rest of the
notations are defined the same as TOM.

Global Protein Interaction Network (GPIN)

Localizationannotation
Co-Locolization Protein Interaction Network (CLPIN)

LTOM

Locational and Topological Overlap
Protein Interaction Network (LTOPIN)

ClusterONE

Identified Modules

Sn, PPV, Acc Overrepresentation Score

Module evaluation

Known protein complexes Cancer gene set

Fig. 2 The locational and topological overlap model. A toy network
is used to demonstrate the calculation steps. Nodes denote proteins
while edges denote interactions. Different colors represent distinct
subcellular localizations. Protein A and B share three overlapping
partners. P1 and P3 have common localizations with both A and B
whereas P2 does not. Specifically, the localizations of A-P2 and B-P2

are different (green edge vs brown edge)
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Given the localization matrix L, ¢ and ¢ are easy to
calculate. For o, it outputs 1 when 1 appears in the

same column for two rows in matrix L, so ¢'(i, j) = sgn
(Z biuby,). For o, it outputs 1 when 1 appears in the
u

same column for two rows in matrix L, so o(i,u,j)

= Sgﬂ(z bikbukbjk)-
k

For the computation, please note that ¢ is a special
case of g, where two of the three indices are the same.
So, the two parts in the numerator of LTOM can be cal-
culated together and stored in a three-dimension matrix.

Scale-free assessment
To assess whether a generated network has a scale-free
topology, we used the power law distribution to fit the
empirical data as follows,
p(k) ~ kY (2.5)
where k is the degree of a given protein and y is the de-
gree exponent. Degree is defined as the number of part-
ners that are connected to a given protein. p(k) refers to
the probability that a protein has k interactions follows a
power-law degree distribution. y is larger than 0, where
the smaller the value of y, the larger fraction of the high-
degree proteins [27, 28].

Module identification and module benchmarks

Cluster with Overlapping Neighbourhood Expansion
(ClusterONE) [7] was applied to identify protein mod-
ules for a series of protein interaction networks (PIN),
including Global PIN (GPIN), Co-Localization PIN
(CLPIN), Topological Overlap PIN (TOPIN) and Loca-
tional and Topological Overlap PIN (LTOPIN). Cluster-
ONE is executed using a greedy growth algorithm to
detect densely connected clusters from small seeds su-
pervised by a fitness function. The quality of a cluster is
evaluated by the number of internal interactions divided
the number of theoretically possible interactions in the
cluster. Given a module V, the number of interactions in
the module is w”(V), and the number of interactions
coming out of the module is wP"14(1/) then the score of
cohesiveness is calculated as follows:

B Win(v)
f(V) - Win(\/) + Wb"””d(V) +p | 4 |

(2.6)

where p | V| is a penalty term to model the network in-
completeness considering the fact that a considerable
number of interactions have not yet been detected.
Modules are defined as the identified clusters with the
size larger than 10 and network density larger than 0.25.
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To evaluate the performance of module identification,
we estimated the predicted modules to a reference set
collected from Munich Information Center for Protein
Sequences (MIPS) [29]. The latest version of the MIPS
catalog of protein complexes was used as benchmarks in
the study. The MIPS catalog was organized hierarchic-
ally and modules may involve submodules. We consid-
ered all MIPS categories with module size ranging from
three to 100 as protein modules. MIPS category with
550 proteins and its descendants were excluded, since
these are the predicted modules with low confidence.

Three measurements, clustering-wise sensitivity (Sn),
positive predictive value (PPV), and accuracy (Acc) were
used to evaluate the performance of different networks
in identifying known protein complexes. The three mea-
surements are defined as follow:

Sl’l _ Esjzl maXj—1 rtu (2 7)
Z?:IWJ .
r 4: tii
PPV = —Zima; . (2:8)
=12
Acc = VSn x PPV (2.9)

where r and s denote the number of predicted and
known complexes, respectively, and t; denote the num-
ber of proteins in both of the predicted complex i and
the reference complex j.

Cancer proteins

We obtained the cancer genes from Cancer Gene Cen-
sus (CGC, release v81) database [30]. It only collects
cancer-associated genes with experimental evidence.
This database contains 547 cancer-associated genes,
among which 376 genes are annotated to the cell. The
mapping from genes to proteins was curated between
Ensemble gene ID and the UniProt Swiss-Prot accession
number [21, 22]. Proteins encoded by cancer genes were
simply referred to as cancer proteins.

Enrichment analysis and the overrepresentation score
Hypergeometric test was used to test whether a module
(a set of interesting proteins, say M) is overrepresented
within a cancer gene set, say X.

e () ()
=)

where N is the number of proteins in PIN, # and T de-
note the module size of M and the size of X, respect-
ively. ¢t is the number of proteins in the module that is
included in set X. P outputs the probability of observing

(2.10)
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t or more proteins of set X in module M of size n. It is
then adjusted by the Benjamini & Hochberg False Dis-
covery Rate (FDR) correction. We say cancer genes are
enriched in module M if the adjusted P is less than a
threshold of 0.01.

We use the Overrepresentation Score (ORS) [7] to
measure the performance of our method to find cancer
modules that are significantly enriched of cancer genes.
ORS is the ratio of the number of cancer modules over
the number of all the modules. Mathematically, it is de-
fined as follows:

Z[LI sgn (Pcutoﬂ_PM,->

ORS =
u

(2.11)

where U is the total number of predicted modules and
Py, represents the adjusted P value for module M and
the cancer gene set. P,y is the user-specified threshold
of 0.01 by default.

Results

The co-localization protein interaction network has high
confidence

Co-localization of the interacting proteins has provided
an essential clue for their physical interaction. Here we
conducted co-localization protein interaction networks
(CLPIN) for HPRD [24] and BioGRID [25], respectively,
in which all the interacting protein pairs are required to
belong to at least one common location. Since all the in-
formation in the HPRD database has been manually ex-
tracted from the literature by expert biologists and it is
frequently regarded as the reference of interactions, the
proportion of co-localized protein pairs in HPRD is ex-
pected to be larger than the other PPI datasets. As
shown in Table 1, the ratio of co-localized interaction in
HPRD is as high as 62.46% (23,135/37,039) while the ra-
tio of BioGRID is only 35.28% (94,780/268,684). The
co-localized interactions are significantly overrepre-
sented in the most reliable database (p-value < 2.2e-16,
Hypergeometric Test), suggesting that the interacting
protein pairs are prone to share the same subcellular

Table 1 Network reliability comparison
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localization. Not surprisingly, after co-localization filter-
ing, interactions in the BioGRID database cover a signifi-
cantly higher proportion of interactions in HPRD in
comparison to the unfiltered dataset (data not shown).

Additionally, the interactions in CLPIN are well sup-
ported by literature (PubMed) and have significantly bet-
ter experimental evidence. For HPRD, the average
number of the supportting literature of the interactions
in CLPIN is 1.23 whereas the number is 1.13 for GPIN
(p-value <2.2e-16, RankSum Test). Moreover, 54.83%
(12,686/23,135) interactions out of the CLPIN have been
verified in vivo, the ratio is also significantly higher than
the counterpart (40.31%, 14,930/37,039) of the unfiltered
interactions (p-value <2.2e-16, Hypergeometric Test).
For BioGRID, similarly, CLPIN has a significantly larger
number of multiple publication-supported interactions
with an average of 1.27, compared with the unfiltered
GPIN of 1.14 (p-value < 2.2e-16, RankSum Test).

To assess the reliability of CLPIN, we also constructed
a test set with positive and negative PPIs from another
database Hippie (v2.1) [31]. Like Peng et al., we defined
the interactions with top 5% highest confidence score as
the positive set and randomly sampled the same number
of interactions as the negative set [32]. As shown in
Table 1, the scores of precision and MCC for CLPIN are
higher than those of GPIN for both the HPRD and Bio-
GRID datasets and the scores of recalls are comparable.
These findings indicate that the protein pairs physically
interacting with each other tend to localize in common
cell compartments. In other words, the interacting part-
ners annotated in the same location may have higher
biological relevance.

Construction of CLPIN, TOPIN, and LTOPIN

Since all the protein-protein interactions in HPRD are
based on experimental evidence, we focus our analysis
on HPRD. By combining the GPIN with localization
annotation, we achieve a CLPIN covering 22,103 interac-
tions that occur among 6794 human proteins. Topo-
logical Overlap PIN (TOPIN) and Locational and
Topological Overlap PIN (LTOPIN) were constructed

Network Protein Interaction Avg No. of literature Verified Precision Recall MCC
in vivo
HPRD
GPIN 8136 37,039 1.13 4031% 0.8755 0.2058 0.2242
CLPIN 6882 23,135 1.23° 54.83% ° 0.9025 0.1900 02339
BioGRID
GPIN 12,289 268,684 1.14 - 0.7842 0.2347 0.1741
CLPIN 9749 94,780 1.27° - 0.8369 0.2211 0.2050

?Significant difference by RankSum test, p < 0.001. PIN Protein Interaction Network, CLPIN Co-Localization Protein Interaction Network. Avg No. of literature The
average number of literature supported the interaction, Verified in vivo The percentage of protein interactions that have been verified in vivo in the

HPRD database
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based on CLPIN, but only potential interactions were
added in and no more external proteins are recruited, so
they also contain 6794 proteins. After processed by the
models of TOM and LTOM, a total of 26,473 and
25,007 interactions are included in TOPIN and LTOPIN,
respectively.

Previous investigations have indicated that PIN pos-
sesses “scale-free” network features in different eukaryotic
species, which also applied to other types of cellular net-
works, such as regulatory and metabolic networks [2—4].
Mathematically speaking, the “scale-free” property means
the degrees of nodes in these networks follow a power law
distribution. Biologically speaking, it suggests that there
are a few highly connected nodes (also known as hubs) in
the network, which are strongly associated with the bio-
logical function [27, 28]. To verify whether the four gener-
ated networks have a scale-free topology, we fit the power
law distribution with empirical data for each of them. As
shown in Table 2, we observed the frequency of the pro-
tein connectivity follows a power-law degree distribution,
as the calculated degree exponents are all around 2.6. Al-
though the number of interactions varies widely, these
networks share similar degree distribution.

We have also systemically calculated other typical net-
work parameters including network density, average
shortest path length, and average clustering coefficient
for the four networks. Since the TOPIN and LTOPIN
are topologically extended on the CLPIN, the former
two networks have relative larger networks with 26,473
and 25,007 interactions, respectively, as well as higher
average clustering coefficients of 0.2687 and 0.2453
(Table 2). For the CLPIN, it is the smallest subnetwork
with small average clustering coefficient (0.1539) and
large average path length (4.4730). All of these results
indicate that compared with the CLPIN, the TOPIN and
LTOPIN networks contain more proteins with high con-
nectivity. On the contrary, the network parameters such
as density and clustering coefficient for GPIN are con-
sistently low, suggesting that the overall connection in
the network is relatively sparse and proteins in this net-
work are less prone to form modules.

Performance comparison on protein complexes

Protein module prediction is one of the most typical ap-
plications for protein interaction network. As illustrated

Table 2 Overview of the HPRD protein interaction networks
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in Fig. 1, we used ClusterONE to identify functional
modules from GPIN, CLPIN, TOPIN, and LTOPIN, re-
spectively. 10, 8, 51, and 34 modules are separately iden-
tified with module size greater than ten using these four
networks. To assess the performance of module identifi-
cation, we considered the complexes included in MIPS
as the benchmark and a total of 932 complexes of sizes
no less than three were defined as the reference. Our
finding shows that LTOPIN outperforms the other net-
works in identifying modules regarding the three evalu-
ation measurements, the clustering-wise sensitivity (Sn),
positive predictive value (PPV), and their geometric ac-
curacy (Acc) (see methods). Specifically, in Table 3, the
LTOPIN inferred module set has the maximum Sr of
0.1354 and Acc of 0.1424, although the PPV (0.1497) is
the second highest. Similar results can be obtained when
identifying modules with other thresholds of module size
ranging from 5 to 9 (Table 3 and Additional file 1: Table
S1). These findings demonstrate that the clustering-wise
sensitivity can be significantly improved by applying the
LTOM model with the trade-off of PPV.

In addition, the same conclusion can be drawn using a
yeast PPI dataset with good completeness. The yeast
dataset has broader coverage of interactions than HPRD
and the inferred modules score higher across all network
models, i.e.,, GPIN, CLPIN, TOPIN, and LTOPIN. As
shown in Table 3, the LTOPIN inferred module set
achieves the highest sensitivity and accuracy, 0.6256 for
Sn and 0.5651 for Acc, respectively. Loosening the mod-
ule size threshold to five, more modules are produced
and all the evaluation scores are improved substantially
in each PIN, while LTOPIN still outperforms the others.
In particular, the Acc is as high as around 0.65 for the
LTOPIN-modules, whose Su (around 0.75) is the highest
across all the produced networks. Overall, in comparison
with the GPIN, CLPIN, and TOPIN, the LTOPIN con-
sistently has a superior performance in identifying
known protein complexes, indicating that the LTOM
model helps reveal the biological relation over interacted
proteins.

The LTOPIN inferred modules overrepresent cancer genes
To further detect the biological functions of the pre-
dicted modules, we associated these modules with hu-
man cancer genes, since accumulated evidences have

Network Protein Interaction Average path length Average clustering coefficient Network Degree exponent
density

GPIN 7969 30,157 4.2425 0.1428 0.0009 26559

CLPIN 6794 22,103 44730 0.1539 0.0010 26118

TOPIN 6794 26473 43919 0.2687 0.0012 26687

LTOPIN 6794 25,007 44165 0.2453 0.0011 26138
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Table 3 Performance comparison on known protein complexes
PIN Module module size >=5 Module module size >=10
Number Sn PPV ACC Number Sn PPV ACC
HPRD
GPIN 336 0.277 02143 0.2436 10 0.081 0.1259 0.101
CLPIN 252 0.2488 0.2095 0.2283 8 0.0691 0.1207 0.0913
TOPIN 376 0.2981 0.2144 0.2528 51 0.1109 0.1754 0.1395
LTOPIN 355 0.3292 0.1966 0.2544 34 0.1354 0.1497 0.1424
Yeast
GPIN 614 06148 0.5984 0.6066 112 0.5495 0.5504 0.55
CLPIN 344 0.717 05592 06332 106 0.5939 0.5046 05474
TOPIN 492 0.7151 0.5678 06372 143 0.5977 0.5124 0.5534
LTOPIN 490 0.7456 0.5663 0.6498 141 0.6256 0.5104 0.5651

Modules were identified using ClusterONE with module size no less than five and ten, respectively. Bold values denote the best scores corresponding to specific
criteria. Sn Sensitivity, PPV The positive predictive value, ACC The geometric accuracy

shown that proteins encoded by cancer genes tend to
work together as modules to execute their functions [3,
33, 34]. As expected, we found that cancer proteins are
more likely to be involved in the extended-network in-
ferred modules, TOPIN and LTOPIN, when compared
with the modules generated from other networks, GPIN
and CLPIN. Table 4 shows that cancer genes are strik-
ingly enriched within the modules of TOPIN and LTO-
PIN, 49.02 and 44.10% among them involve cancer
genes, whereas the ratios are 25% for CLPIN and 20%
for GPIN, respectively. When using a stricter measure-
ment, overrepresentation score (ORS, defined in Eq.
2.11), LTOPIN-modules achieves the highest ORS of
0.1765, suggesting the LTOM model is able to produce
more cancer modules that are overrepresented cancer
genes.

Please note that ClusterONE may produce overlapping
modules and some cancer genes may appear in more

Table 4 Overrepresentation scores of cancer genes in HPRD

PIN Module Cancer ORS Cancer gene
number module ratio ratio (number)
module size > =10
GPIN 10 02 0 0(0)
CLPIN 8 0.25 0.125 0.0133 (6)
TOPIN 51 04902 0.098 0.0399 (18)
LTOPIN 34 0441 0.1765 0.0421 (19)
module size >=5
GPIN 336 0273 0.0504 0.0887 (40)
CLPIN 252 0.3004 0.0593 0.0931 (42)
TOPIN 376 03528 0.0504 0.1242 (56)
LTOPIN 355 03539 0.0702 0.1441 (65)

ORS Overrepresentation Score, Cancer module ratio The ratio of modules
containing cancer genes, Cancer gene ratio The ratio of cancer genes over
genes in cancer modules

than one module. To avoid double counting, we also cal-
culated the ratio (number) of cancer genes involved in
the cancer modules. As shown in Table 4, the LTOPIN
produced cancer modules contain a total of 19 cancer
genes (4.21%), which is slightly higher than the cancer
modules of TOPIN (18) and much higher than the other
two (0 and 6). The advantages of LTOM are even more
apparent when focusing on modules larger than five
(Table 4). The LTOPIN inferred cancer modules involve
65 unique cancer genes, accounting for 14.41% of the
entire cancer gene list, which is much higher than the
others (12.42, 9.31, and 8.87%, respectively). These find-
ings suggest that the LTOM imputed networks are able
to identify modules that are more relevant to cancer
genes when compared with the traditional model of
TOM and other non-modeled networks.

Conclusion

In this paper, we firstly demonstrated that the
co-localized interacting proteins have higher experimen-
tal confidence in their interactions. Then, we proposed a
Locational and Topological Overlap Model (LTOM) to
impute the potential interactions taking both the loca-
tional and topological information of proteins into ac-
count. The model was demonstrated to improve the
performance of module identification for the raw protein
interaction networks of human and yeast.

In general, a protein module in a network should be
the one that has dense interactions between the inside
proteins and well-separated from the outside proteins.
ClusterONE models the properties using the cohesive-
ness score and can identify overlapping protein modules
from the PPI networks by the guidance of cohesiveness.
That is why we use ClusterONE to identify modules.
However, LTOM is a general imputation step of protein
interaction networks that can be embedded in any
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appropriate module identification approach depending
on the user preferences. So, another commonly used
clustering method, Markov Clustering Algorithm
(MCL), was also applied to the processed networks and
its performance was improved considerably when using
LTOM (Additional file 1: Table S2). Overall, our results
show that LTOM constantly improves the performance
of existing clustering methods for protein module pre-
diction. In addition to the protein interaction networks,
the model can readily be used for the other types of cel-
lular networks, such as gene coding-non-coding
co-expression networks, RNA-protein regulatory net-
works, or RNA-RNA interaction networks [35-41].

Additional file

Additional file 1: Table S1. Performance comparison on known protein
complexes using ClusterONE. Table S2. Performance comparison on
known protein complexes using MCL. (DOCX 22 kb)
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