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Abstract

Background: Selection of interesting regions from genome wide association studies (GWAS) is typically performed
by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a
need for tools that can automatically detect genomic regions that correspond to what the experienced researcher
perceives as peaks worthwhile of further study.

Results: We developed Manhattan Harvester, a tool designed for “peak extraction” from GWAS summary files and
computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and
a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool

source and freely available.

Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is
used to validate and visualize the regions detected by Manhattan Harvester.

Conclusions: We conclude that our tools fill the current void in automatically screening large number of GWAS
output files in batch mode. The interesting regions are detected and quantified by various parameters by
Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open
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Background

For over a decade the genome-wide association studies
(GWAS) have been a powerful tool in the arsenal used for
unraveling the information present in the genome [1]. Des-
pite certain skepticism this approach is not showing signs
of fatigue. Quite to the contrary, the number of GWAS car-
ried out is increasing, returning useful information for un-
derstanding the genome and predicting and helping to cure
disease [2]. All this paves the road for personalized medi-
cine — bound to become the backbone of the medicine in
the future. With the increasing number of genotyped and
sequenced individuals as well as advances in high perform-
ance computing the GWAS projects undertaken have
grown in size and technological complexity [3]. There are
reports out that have boosted the number of individual
phenotypes in some cases to tens of thousands or more [4].
It is not rare to combinatorially generate even more pheno-
types (e.g. metabolite ratio phenotypes) and analyze in one
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go [5]. These results can no longer be individually evaluated
by a researcher. Automatic screening of results is much
needed for a quick summary of the findings and to rank
them in the order of significance. Yet well documented spe-
cific tools for this purpose are still missing to the best of
our knowledge. We present Manhattan Harvester (MH)
that uses the GWAS output files and detects the signals
(peaks) of potential interest from them by mimicking the
eye of a researcher. The software computes a list of param-
eters for each peak and a quality score based on these. MH
is supplemented by another original tool — Cropper. Crop-
per is a visual aid for viewing, zooming, cropping and sub-
setting GWAS results. It can be used in combination with
MH when studying the findings of MH.

Implementation

Scripting and properties

Both MH and Cropper are written in C++/Qt [6]. They are
open source and can be downloaded from www.geenivara-
mu.ee/en/tools. It is possible to compile them for all major
computational platforms. Both tools are fully documented
and accompanied by instructions and examples.
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Manhattan harvester (MH)

MH is a command line tool working on GWAS output files.
It is able to analyze all chromosomes together or one at a
time and can operate in single file or batch mode. MH pro-
vides the user with a table containing all physical position re-
gions (peaks) detected in the GWAS output, the peak
parameters and their general quality scores (see below). It
utilizes original and efficient algorithms to handle the GWAS
files. MH starts by reading rows with valid position numbers
and p-values under a certain threshold (p-value< 0.001 as the
default). Two copies of the data sets are handled in parallel —
one remains unchanged (Reference Branch), the other one
(Test Branch) is modified by various functions required for
signal detection. Later the information from the two
branches is merged to get the final annotations (Fig. 1). The
modifications performed in the test branch standardize the
input so that the peaks (nearby data points representing local
regions of low p-values) can be separated from the back-
ground noise. The test branch data undergo the following
modifications:

a) Signal smoothing. The data are smoothed using a
sliding window. Linear regression is performed
sequentially for each data point by making use of 5
data points (2 before and 2 after). The middle data
point is replaced with its prediction from linear
regression (Fig. 2, a-b).

b) Height-based compression. The spaces between
data points are compressed based on the average
-log(p-value) of their flanking data points multiplied
by a constant (default value = 2). This step ensures
that the points with small p-values (and hence
more likely to belong to the peaks) are compressed
closer to one another than the points
corresponding to the intermediate space between
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Fig. 1 Workflow of MH
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the peaks (Fig. 2, c). As an example to illustrate this
step: points A (-logP, =4) and B (-logPg = 10) that
are originally 1000 bp apart become 100 bp apart (

1000 bp / ).
(24 (4+6)/2)
Local-range re-distribution. From this step forward
the p-values of the points are ignored as the algo-
rithm continues only with a one dimensional pro-
jection of the compressed (see step b) physical
position values. In this step all points are evenly dis-
tributed between their neighboring data points. This
is done in two stages so that each point is slid along
the position axis relative to two secure anchor
points. This means that every other point is relo-
cated using its neighbors as anchors, then the an-
chors themselves are relocated using their own
flanking points as anchors. For example consider se-
quential points 1, 2, 3, 4, 5 that have variable dis-
tances between them. In the first stage point 2 is set
to equal distance from 1 and 3 and point 4 is set to
equal distance from 3 and 5. In the second stage
point 3 is set to equal distance from 2 and 3. This
re-distribution ensures that the distances between
points are more evenly distributed - a prerequisite
for the next step. The points in the regions falling
between the peaks relocate much more than those
in the peak regions because the latter are locked
tight between their neighbors and they have less
space to relocate (Fig. 2, d). The order of points is
never altered. As a result the difference between the
largest gap found inside the peaks and the smallest
gap found in the inter-peak region is widened; es-
sentially the peak points become more distinguish-
able from the background. This is relevant because
the peak regions are now differentiated from the
inter-peak regions only by the data point density in
the one-dimensional array.
Vector fragmentation. We modified the framework
of univariate clustering [7] for our specific needs.
Our vector fragmentation procedure is searching
for the optimal clusters within the physical position
values space of the chromosome. It is a carried out
on the standardized input (step c) and the outcome
is the genome regions that constitute Manhattan
Plot peaks. These regions are separated from the
flanking regions by sequential fragmentation of the
position values array. The chunks are created by
iteratively breaking the vector where the distances
between the points are the largest, gradually moving
to the smallest. Always the chunk with more data
points is carried over to the next round of
fragmentation (Fig. 3). During such fragmentation
there is a termination point that optimally
corresponds to the peak with the densest point
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Fig. 2 The key steps of data processing in the Test Branch of MH. a: original (raw) data, b: smoothing, c: height-based compression, d: local range
re-distribution. The Y axis is -log(p-value), the X axis is physical position. The absolute position values can be different between different panels of
the graph, they were scaled based on the first and last data point position
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Fig. 3 The order of chunk creation during vector fragmentation by MH. The numbers indicate the order of gaps by size. The first fragmentation round
(1) yields 8 points, (2) yields 6 points, (3) is not executed because the corresponding area was lost after step (1), and (4) yields 5 points — the densest
area of the plot
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distribution. To pinpoint the best stopping point
the mean inter-point gap size (meanG) and the
maximal inter-point gap size (maxG) are recorded
for each fragmentation step. Two parameters are

. . _maxG;
computed forGeaCh chunk: a) stopl; = meanG? b)
_ maxG; .. .
stop2; = <o G where i is the fragmentation step

index. The optimal chunk was found to correspond

to the index i of max stopl;, or else max stop2; if
1en 1en

stopl; — stop2;> 2. This empirical solution to choose
the best fragmentation stopping point eliminated
the need for more complicated decision making
structures and proved fully adequate for analyzing
real data. Larger stopl and stop2 values generally
correspond to the inter-peak regions whereas small
values are indicative of fragmentation cuts in the
middle of the peaks. Hence the borders where these
values turn from large to small align with the peak
borders. In addition to this detection system MH
also applies several “sanity check” filters such as the
maximal height to width ratio, chunk size etc. to
narrow down the options space for the stopl/stop2
fragmentation termination system. The last filter in
the algorithm is a function that tests the left and
right p-values of the newly detected peak candidates
to decide whether the next smallest chunk size has
more fitting left and right peak termini in terms of
p-value (as decided relative to the smallest peak
height and baseline p-values); in which case the
next smallest chunk is selected instead. MH comes
optimized with regard to the analytical parameters
as the default values. However, all key parameters
can be changed by the user via command line flags
as the need arises (see MH manual).

e) Peak characterization and re-looping. Once the
peak borders are identified the peak is characterized
by a number of parameters. This includes for ex-
ample General Quality Score (GQS, see below),
maximal slope, height to width ratio and more (see
Table 1 of Additional file 1). These parameters can
be used to let the user filter and prioritize the find-
ings. After this step the data points corresponding
to the peak are removed from the data and the al-
gorithm loops back to step d for the next round of
vector fragmentation and the identification of the
peak with the second highest point density (Fig. 1).
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The cycle between vector fragmentation,
characterization of the created fragments and re-
moval of the characterized fragments continues
until data points are depleted.

Cropper

Cropper is a GUI tool using standard data visualization logic
and patterns. It is specifically designed for handling Manhat-
tan Plots. Cropper was developed in synchronization with
the demands that originated during MH production, valid-
ation and usage. The user can zoom, crop and output parts
of Manhattan Plot in both graphical and numerical format.
Cropper also allows to sequentially remove peaks from Man-
hattan plot so that the user can continue work with the left-
over data set after cropping out peaks. Cropper offers two
views: a) global view showing all chromosomes, b) local view
showing the selected chromosome (Fig. 4). Chromosomes
are chosen from the global view while all the selections and
manipulations are done in the local view by using the mouse
(see Fig. 1 in Additional file 1). It is easy to visualize the re-
gions picked out by MH by copying their ranges directly
from the MH output file to the range data field of Cropper.

Results

Data

In this work we used the NMR metabolite GWAS
meta-analysis data set from the MAGNETIC consortium
which is freely available [8, 9]. The files had a GWAMA
format [10]. The data files were randomly divided into two
non-overlapping subsets: method development set (MDS)
and the method validation set (MVS).

General quality score (GQS)

MH computes 16 parameters for each peak. Each param-
eter describes a certain aspect of the peak region and can
be used for subjective ranking (see Table 1 in Additional
file 1). We built a model to predict the “goodness” of
GWAS peak based on these values to generate a GQS for
each peak. The more comprehensive GQS score was
invented to provide a more global quality assignment for
each peak that could be used as the main parameter for
peak assessment. The peak quality score model was cre-
ated using the quality scores assigned by the volunteer
knowledgeable human evaluators (KHEs, the scientists
from the Institute of Genomics, University of Tartu,
knowledgeable in GWAS) as dependent variables. We

Table 1 Execution speed of MH with various input file sizes, number of detected peaks and computational systems

Min p-val Peaks File size (MB) Data points (rows) PC, sec (mean = stdev) HPC, sec (mean = stdev)
0.01 1 0.257 8507 0.037 £0.0018 0.037 £ 0.0045

0.01 3 0.348 11,781 0.052 +0.0049 0.056 + 0.011

0.01 5 0215 7116 0.031+0.0018 0.033 +£ 0.0033

<1 6 85 560,646 NA 3.07 £ 0.0758
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Fig. 4 A summary of how Cropper works. The two views (global
and local) make different control options available to the user

collected the benchmark data set by asking 20 KHEs to
evaluate 277 Manhattan Plot peaks (extracted with Crop-
per from the MDS) on a 5 point scale. These peaks were
shown to the KHEs together with flanking areas (1/3 before
and 1/3 after the peak region). Each KHE could also see the
maximal —log(p-value) for the top of the peak and the width
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of the peak at p-value = 0.01. The evaluation marks generally
agreed well between the KHEs as witnessed by the grading
correlation structure (Fig. 5). The correlation structure
within the set of parameters used for modeling was investi-
gated (see Fig. 2 in Additional file 1). Many parameters
showed either a strong positive or negative correlation with
the marks given by the KHEs and in most cases the variation
was low (see Fig. 3 and Fig. 4 in Additional file 1).

We used the KHE-generated peak scores together with
thel6 parameters generated by MH as attributes to
model the outcome grade variables with a mixed-effects
proportional odds model [11]. The attribute “peak repe-
tition” was transformed by taking the square-root, the
attributes “skewness” and “peak balance” were raised to
the power of 0.25 and all other attributes except “Kol-
mogorov normality test” were log-transformed (see Table
1 in Additional file 1). All variables were additionally
mean scaled and standardized. The model used was a
mixed-effects proportional odds model with a cumu-
lative link that assumes an ordinal response of the
peak scores. These scores are assumed to be subject
to expert specific effects. We used a step-wise model
development approach starting from the null model

that minimized the average mean square error (1/n

> Pr-Tr;)* where Pr; is the predicted grade of
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Fig. 5 A heat-map with hierarchical clustering showing the Manhattan Plot peak assignment groupings between KHEs
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the iy, graded peak, Tr; is true grade given to a peak
and n is the number of graded instances of the pre-
dictions using five-fold out-of-sample cross valid-
ation. The initial dataset was split five-fold and the
model was trained five times using 4 of the 5 folds
and using the fold left-out fold as test data. We used
R (version 3.3.3) package ordinal (version 2018.4—-19)
for model development [12]. Of all parameters “log
max p-value” and “bestslope” were incorporated into the
final model. This was the optimal solution that resulted in
minimum 5-fold cross validation MSE of 0.92. The final
model parameters were obtained from refitting the final
model on all data. This resulted in Pearson correlation co-
efficient of r =0.88 between the expected value of pre-
dicted scores (E (score)= ZEZIP(score =1i)*i) and the
mean estimate from 20 KHE GQSs (Fig. 6). The R code
used for modeling is presented in Additional file 2. The
model was implemented in MH.

Manhattan harvester peak detection accuracy

It is important to evaluate the implemented algorithms of
MH on test data to show how well they detect the Man-
hattan Plot peak regions and estimate peak quality. The
adequacy of the MH algorithm can be evaluated relative
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to the KHE estimations. It is not preferable to use known
(published) biological significance of the detected regions
as a quality measure because the quality of the peak is not
linked to biological significance. Instead it is the peak
height, width and shape that typically mark a peak as in-
teresting for the next steps of the study. We assessed the
MH output by comparing the MH-detected regions with
the opinion of a KHE using the MVS. Cropper was used
by the KHE to conduct the comparison between the Man-
hattan Plot and the regions picked out as peaks by MH.
The KHE inspected 100 randomly chosen peaks ranging
from 5.1 to 81.7 on a —log(p-value) scale. Of those 97 co-
incided very closely with the KHE opinion, only one peak
(max(-log(p-value)) = 39.1) was detected as to have a base
range two times wider (extended equally to the left and
right of the highest point) than marked by the KHE.
Massive peaks were fragmented into 2 or 3 sub-peaks on
two occasions (separating the center of the peak region
from the shoulders). It was not unambiguous, however, if
this solution was better or worse than reporting those
peaks (3 MB wide at the height of —log(p-value) = 3) as
single clumps. In no cases were the existing peaks not re-
ported and the reported peak ranges never overlapped as
judged by the KHE. A KHE also visually validated the
GQS on the data used to validate the results above. The

Score prediction
w

3 4 5
Mean expert score

Fig. 6 Validation of the statistical model to estimate GQS — expected scores (based on KHE marks) vs. observed (computed by MH)
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GQS values computed by MH were always within one
unit of the score visually assigned by the KHE using
Cropper.

Computational speed

The computational speed of MH was measured by analyz-
ing MDS files on two systems: a) Hewlett Packard Elite-
Book 2540p (PC), with 14.04.5 LTS (32 bit), 2 GHz
Processor, b) High Performance Computing (HPC) cluster
of the University of Tartu running CentOS Linux release
74 (64 bit) and 2.2 GHz processor. All measurements
were carried out 5 times on a single processor using the
Unix command “time”. We used minimal (filtered) file size
with p-val<0.01 (<1MB) as well as an un-modified
GWAMA meta-analysis file (85 MB) (Table 1).

We show that an 85 MB GWAMA format file with 19
columns, 560,646 rows and 6 genomic regions detected by
MH was analyzed in just over 3 s (see Fig. 5 in Additional
file 1 for Manhattan Plot). The analysis took 0.031-0.056 s
when file reading time was minimized. We did not detect
association between execution speed and the number of
peaks detected. Most of the computational time was spent
on file reading and the overall analysis speed was suffi-
ciently fast for practical purposes.

The execution speed of Cropper was not quantified. It
was qualitatively judged by the users (KHEs) as suffi-
ciently fast.

Cropper evaluation

Cropper was initially created to facilitate the development
process of MH. It gained a role as a tandem tool in the
MH workflow — used for visual validation of MH assign-
ments. The other graphical tools that could be adopted
for viewing or cropping of Manhattan Plots were not con-
venient for a quick visual assessment of the findings from
MH. Cropper proved uniquely valuable for quickly con-
ducting the comparison between the peak assignments by
MH and KHE for this project both in terms of ease of use
and speed. The capability of Cropper to visualize regions
from MH output file in one copy and paste step proved
most useful. It was specifically brought out by the KHEs
that Cropper had no easy-to-use alternatives for fast
visualization of selected Manhattan plot regions.

Discussion

To this day GWAS results are typically evaluated visually
one at a time. This approach works well only with a small
number of files. With many files automated help is
needed. Manhattan Plot peaks are difficult to model based
on simple mathematical function because they reflect gen-
omic structure and underlying biological aspects in
addition to certain expected peak geometry. We tackled
this issue by creating a) MH which uses GQS and other
parameters to mimic the opinion of an experienced
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researcher when picking out genome regions with features
calling for further attention, b) Cropper that accompanies
MH whenever there is a need to study the detected re-
gions up-close. We demonstrate that our tools are fully
adequate both in terms of accuracy and speed.

We have developed MH so that it is certain to detect
all peaks and it is up to the user to draw the line be-
tween the interesting and uninteresting. The MH algo-
rithms can automatically scale to adapt to various peak
identities. The peaks are not initially identified based on
p-value but rather on a collection of peak qualities via
specialized data pre-processing and vector fragmentation
techniques. Data points with very low p-values are ig-
nored if they are not found to belong to high certainty
peaks. MH outperforms simple GWAS output screening
based on the magnitude of p-value: the low p-value
points are combined into regions and the regions, not
the individual low p-values, are reported as peaks. This
converts the findings into a manageable set that can be
further ranked according to the user needs.

MH and Cropper are meant to integrate into the GWAS
result analysis workflow. It starts with generation of GWAS
summary statistics with GWAS software. All resulting files
are then analyzed by MH in the batch mode. The regions of
interest are ranked by filtering and sorting the MH output.
Only a small number of hits are brought to the researcher’s
attention. The researcher can next focus on the short list by
using Cropper. The utility of Cropper was assessed by asking
the UT scientists using it. The feedback was fully positive en-
suring that the tool was needed.

MH is not dealing with issues of biological signifi-
cance. The peaks are evaluated based solely on the visu-
ally observable characteristics. This was the goal because
this is also how the scientist evaluates the peaks. The
same phenotype can result in Manhattan Plots of differ-
ent visual qualities depending on the number of subjects
and other study characteristics.

MH is not devoid of limitations. It is not currently using
the MAF or imputation quality info and thus relies on using
quality pre-filtered GWAS files. Also it is not attempting to
validate the peaks using non-mathematical methods such as
performing database searches or comparing against known
genome region associations to find gene identities. Although
MH is not providing graphical output this functionality is
performed by Cropper. Our future plans include updating
the tools based on user feedback.

Conclusions

We created a system for quickly detecting the interesting
genomic regions from GWAS output files. To the best of
our knowledge there are no other tools for helping to ex-
tend the human eye to a large number of GWAS outputs
the same way as MH/Cropper. However these tools are
needed. The aim of MH is to do a fast initial screening of
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data not manageable for the human eye. MH and Cropper
together constitute a system that allows the user to quali-
tatively study a large number of GWAS results.

Availability and requirements
Project name: Manhattan Harvester.
Project home page: www.geenivaramu.ee/en/tools
Operating system(s): Cross platform.
Programming language: C++/Qt.
Other requirements: Qt4.3 or higher (free from
www.qt.io).
License: GNU GPL.

Additional files

Additional file 1: Supplementary table and figures that show the
parameters computed by MH and the Cropper interface. (PDF 679 kb)

Additional file 2: R files showing the computer code used for
modeling. (ZIP 2 kb)
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