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Abstract

Background: Tandem repeat sequences are common in the genomes of many organisms and are known to cause
important phenomena such as gene silencing and rapid morphological changes. Due to the presence of multiple
copies of the same pattern in tandem repeats and their high variability, they contain a wealth of information about
the mutations that have led to their formation. The ability to extract this information can enhance our understanding
of evolutionary mechanisms.

Results: We present a stochastic model for the formation of tandem repeats via tandem duplication and
substitution mutations. Based on the analysis of this model, we develop a method for estimating the relative mutation
rates of duplications and substitutions, as well as the total number of mutations, in the history of a tandem repeat
sequence. We validate our estimation method via Monte Carlo simulation and show that it outperforms the
state-of-the-art algorithm for discovering the duplication history. We also apply our method to tandem repeat
sequences in the human genome, where it demonstrates the different behaviors of micro- and mini-satellites and can
be used to compare mutation rates across chromosomes. It is observed that chromosomes that exhibit the highest
mutation activity in tandem repeat regions are the same as those thought to have the highest overall mutation rates.
However, unlike previous works that rely on comparing human and chimpanzee genomes to measure mutation rates,
the proposed method allows us to find chromosomes with the highest mutation activity based on a single genome,
in essence by comparing (approximate) copies of the pattern in tandem repeats.

Conclusion: The prevalence of tandem repeats in most organisms and the efficiency of the proposed method
enable studying various aspects of the formation of tandem repeats and the surrounding sequences in a wide range
of settings.

Availability: The implementation of the estimation method is available at http://ips.lab.virginia.edu/smtr.
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Background
Tandem repeats, which form about 3% of the human
genome [1], are segments of DNA that primarily consist of
repeats of a certain pattern. The number of copies in tan-
dem repeats is highly variable and is prone to change due
to tandem duplication mutations. Furthermore, tandem
repeats are subject to point mutations [2]. The variability
of tandem repeats enables them to be used for popula-
tion genetics [3] and forensics [4]. Tandem repeats may
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cause expansion diseases, gene silencing [5], and rapid
morphological variation [6].
A mechanisms suggested for the formation of tandem

repeat sequences, especially those of shorter lengths, is
slipped-strand mispairing [7], also known as replication
slippage [8]. This mechanism refers to the misalignment
of the template and the nascent strand during DNA repli-
cation. It is thought that the presence of near-identical
sequences increases the probability of misalignment [7].
In this work, we present and analyze a model of the evo-

lution of tandem repeat sequences via tandem duplication
and substitution mutations. The starting point is a short
sequence which we refer to as the seed. At each muta-
tion step, either a tandem duplication or a substitution
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mutation occurs, each with a given probability. Here, a
tandem duplication refers to a type of duplication in which
a newly created copy of a segment of the sequence (the
template) is inserted into the same sequence immedi-
ately after the template. Thus, the model is appropriate
for studying slippage-driven repeats but not designed to
represent repeats resulting from other processes, such as
recombination [9]. The length of the seed, also referred
to as pattern length, may be from one to hundreds of
nucleotides. However, generally only repeats with short
pattern lengths, e.g. 1–10 nt, are associated with poly-
merase slippage [7]. In the model, tandem duplications of
different lengths do not necessarily have the same proba-
bility. We show analytically that certain statistical features
of the sequence converge as the number of mutations
increases. This in turn allows us to i) predict the behav-
ior of the sequence after a large number of mutations if
we have the parameters of the model, or ii) estimate the
parameters of the model given the sequence after a large
number of mutations. In other words, given a sequence
that is the result of the aforementioned process, we
can estimate conditional mutation probabilities without
any other information or comparison with homologous
sequences from other organisms.
We study two cases in the evolution of tandem repeats.

First, we consider the case in which substitution muta-
tions do not occur and the only type ofmutation is tandem
duplication. We show that in this case, while the predic-
tion of evolutionary behavior is easy, estimation of model
parameters, including the probabilities of tandem dupli-
cations of given lengths, is difficult. This is because as
the number of mutations increases, the sequence demon-
strates periodic behavior, lacking features that can be
leveraged for estimation. Perhaps surprisingly, the period
of this sequence is not necessarily the most common or
the shortest possible tandem duplication length.
We then consider the more interesting case in which

both tandem duplication and substitution mutations
occur. In this case, substitutions disrupt the periodic pat-
tern that would arise from tandem duplications. As a
result, after a large number of mutations, the resulting
sequence is more complex and informative, allowing us to
estimate the model parameters. Specifically, from such a
sequence, we can estimate the probability of a substitu-
tion in each step, as well as the probabilities of tandem
duplications of different lengths. Furthermore, we can
estimate the total number of mutations that gave rise to
the sequence under study. We apply this method to the
tandem repeats in the human genome, which enables us
to investigate the prevalence of substitutions in repeats
of different lengths and to compare the average number
of mutations among chromosomes. We show that two
classes of tandem repeats are observed based on their
mutation profiles and that this classification is compatible

with the mini- and micro-satellite classification based
on pattern length. Furthermore, our analysis illustrates
that the average number of mutations in some chromo-
somes are higher than others. Interestingly, this agrees
with another measure of mutation activity, i.e., compari-
son with the chimpanzee genome: The chromosomes with
higher mutation counts in repeated regions are the same
as the ones that have diverged most from chimpanzee
chromosomes.
Our results demonstrate that the proposed estimation

method can be used to study various aspects of tandem
repeat sequences, such as the effects of different factors
on mutation rates, at a large scale. Such studies will be
helpful for understanding what factors affect the occur-
rences of diseases that result from tandem repeats, such
as repeat expansion diseases [5]. More accurate estimates
of the number of mutations will also enable a better
characterization of the relationship between cancer and
repeat instability [10]. Classification of tandem repeats
based on mutation profile is informative for understand-
ing the differences between the underlying mutation
mechanisms. Furthermore, such a classification will lead
to more accurate choices of distance metrics between
sequences with similar mutation profiles, based on how
likely each mutation type is. These metrics can then be
used to obtain improved phylogenetic trees using tandem
repeat sequences.

Related work
This paper presents an explicit stochastic model for
the evolution of tandem repeat sequences. Conventional
models of sequence evolution, such as those of Jukes and
Cantor [11], Kimura [12], and Felsenstein [13], focus on
substitution mutations and are not applicable to more
complex mutations such as insertions, deletions, and
duplications.While the study ofmore complexmodels has
proved challenging [14], they have been studied by some
authors, including [14–16] for deletions and insertions,
and [17–19] for tandem duplications.
In previous work on modeling tandem duplication and

substitution mutations, it is often assumed that in each
step, the length of the sequence grows by at most one
repeat unit, which simplifies the analysis; see, e.g., [18] and
references therein. Our model however allows duplica-
tions of lengths longer than one repeat unit at a time. Note
that models that do not allow longer duplications may
underestimate the probability of substitution and overes-
timate the probability of tandem duplication since more
duplication events are needed to account for the observed
copy number. Models proposed by [17, 19] include dupli-
cations of lengths longer than one repeat unit. But these
works only consider perfect tandem repeats, in which all
copies are identical. Imperfect tandem repeats, however,
are common in genomic data. Furthermore, unlike [17, 18]
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that use Markov chains and branching processes for mod-
eling, our analysis is based on stochastic approximation,
which enables the description of new aspects of the prob-
lem. In particular, we see that the observed period in a
tandem repeat sequence is not necessarily the most com-
mon duplication length (Theorem 1) and that the pres-
ence of substitutions allows the estimation of mutation
probabilities (9). Finally, these papers are not concerned
with recovering the duplication history, which is a focus
of the current paper. Stochastic analysis has also been
used by [20, 21], to study latent periodicity in genomic
sequences. There, the goal is to utilize statistical analysis
to improve upon the purely spectral methods of period
detection for both genomic and non-genomic data, rather
than the estimation of the duplication history.
Recovering the duplication history has been studied by

[22–24], which take a combinatorial approach to solving
the problem. Via simulation, we show that the method
proposed in this paper outperforms the state-of-the-art
method, called DTSCORE [24]. Estimation of the dupli-
cation history using a stochastic model, to the best of our
knowledge, has not appeared in the literature before.

Modeling and estimationmethod
We will first present an overview of our method. Our
approach relies on designing a stochastic model for the
evolution of tandem repeats in the presence of tan-
dem duplication and substitution mutations. Assuming
the parameters of the model (the conditional proba-
bilities of duplication and substitution mutations) are
known, we study the asymptotic behavior of tandem
repeat sequences. This analysis is based on the autocor-
relation function since this feature well represents the
(approximate) periodicity that results from duplication
and substitution mutations. We determine the limit set
of the autocorrelation function as a function of model
parameters. We will then address the inverse problem
of estimating the parameters given a sequence, assuming
that its autocorrelation is close to the limit. This in turn
enables us to estimate the counts of mutations of different
types in the history of the sequence.

Model and general analysis via stochastic approximation
In this section, we first present the stochastic model
and a general framework for analyzing the evolution of
sequences under duplication and substitution mutations
using stochastic approximation. Stochastic approximation
relates the behavior of a discrete system to an ordinary
differential equation (ODE) [25], which is often more
tractable. The use of stochastic approximation for the
analysis of stochastic mutation models was originally pro-
posed by [26] to study the evolution of the frequencies of
k-mers in a simplified model of interspersed duplication.
After setting up the model and the preliminaries, we study

the behavior of the autocorrelation function in systems
with tandem duplication and substitution.
Let s be a circular sequence over some alphabet A that

“evolves” over time. The process starts with s(0), called the
seed, and in each step, s(i) is obtained from s(i−1) through a
randommutation. The reason that we choose s to be a cir-
cular string, and not a linear one, is to avoid the technical
difficulties of dealing with its boundaries. If the mutation
occurring at time i is a substitution, its position is chosen
at random among all symbols of s(i). That symbol is then
changed randomly to one of the other symbols ofA. If the
mutation is a tandem duplication of length �, a substring
of length � is chosen uniformly at random, duplicated, and
inserted in tandem. We use q0 to denote the probability
that the mutation in any given step is a substitution and
q�, � > 0, to denote that it is a tandem duplication of
length �. We assume that there exists K such that q� = 0
for all � > K . Finally, we let q = (q0, q1, . . . , qK ) where∑K

i=0 qi = 1. Note that q represents conditional muta-
tion probabilities given that a mutation occurs and not the
mutation probabilities per generation. In our notation s(i)
is the instance of s at time i. However, if it causes no ambi-
guity, we may use s instead of s(i). We use Li to denote the
length of s(i).
For an ordered set U, let Rn = (

Ru
n
)
u∈U be a vector rep-

resenting the number of appearances of objects u ∈ U in
the sequence s at time n and let ρn = Rn

Ln be the normalized
version of Rn. For example, U can be the set of all strings
over A with length at most three. Our goal is to find out
how ρn changes with n by finding a differential equation
whose solution approximates ρn.
Define Fn to be the filtration generated by the ran-

dom variables {ρn, Ln}. Furthermore, let E� [·] denote the
expected value conditioned on the fact that the length of
the duplicated substring is � and let δ� = E� [Rn+1|Fn] −
Rn. Recall that q0 is the probability of a substitution and
qi, 0 < i ≤ K is the probability of the event that a sequence
of length � = i is duplicated.
To understand how ρn varies, our starting point is the

difference sequence ρn+1 − ρn. Similar to [26] and as
described in the Additional file 1 for completeness, it can
be shown that

ρn+1 − ρn = 1
Ln

(
h(ρn) + Mn+1 + O

(
L−1
n

))
, (1)

where h�(ρ) = δ�(ρ) − �ρ and h(ρ) = ∑K
�=0 q�h�(ρ),

and where Mn+1 = Rn+1 − E [Rn+1|Fn] is a bounded
martingale difference sequence.
This system can be analyzed through stochastic approx-

imation ([25], Theorem 2), by relating the discrete system
describing ρn to a continuous system. In particular, the
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sequence ρn converges almost surely to a compact con-
nected internally chain transitive invariant set of the ODE

dρt
dt

= h
(
ρt

)
. (2)

While different properties of the sequence can be ana-
lyzed via the aforementionedmethod, for our purpose, the
autocorrelation of the sequence is the most suitable, as it
captures the degree of repetitiveness of sequences arising
from tandem duplication. The autocorrelation function Rr

of a sequence s = s1 · · · s|s|, si ∈ A, at lag r, is defined as

Rr =
|s|∑

i=1
〈si, si+r〉,

where indices of s are computed modulo |s| and 〈α,β〉 = 1
if α = β and 〈α,β〉 = 0 otherwise.
Let Rr

n denote the autocorrelation of function after n
mutations starting from the seed sequence and let ρr

n =
Rrn
Ln . To express autocorrelation as a vector, let Rn =
(
R0
n,R1

n, . . . ,Rm−1
n

)
and ρn = Rn

Ln , for a constant m. Note
that R0

n = Ln and ρ0
n = 1.

To find the ODE of Eq. (2), we need to find h�(ρ) =(
h0�(ρ), . . . , hm−1

� (ρ)
)
. As shown in Additional file 1,

hr�(ρ) =
{ − 8

3ρ
r + 2

3 , � = 0
rρr−� − rρr , � > 0 (3)

From Eq. (2), we have

d
dt

ρr
t = q0

(

−8
3
ρr
t + 2

3

)

+ r
∑

�>0
q�ρ

r−�
t − (1 − q0) rρr

t

(4)

for 0 < r ≤ m − 1. We thus see that the set of equations
governing ρ are linear.
Form ≥ K , we can write Eq. (4) as

d
dt

ρt = Aρt , (5)

where A is them×mmatrix whose rows and columns are
indexed by {0, 1, . . . ,m − 1} and its elements are given as

Arj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2q0/3 + rqr , if r > j = 0,
rqr−j + rqr+j, if r > j > 0,
q0

(
r − 8

3
) + rq2r − r, if r = j > 0,

rqr+j, if j > r > 0,
0, r = 0.

(6)

As discussed in Additional file 1, ρt converges to some
ρ∞ satisfying

Aρ∞ = 0, (7)

It can then be shown that ρn converges almost surely to
the null space of A.
In the following sections, we consider the null space of

A in two cases. First, we assume q0 = 0, that is, there

are no substitutions. Next we study the case with positive
probability of substitutions, i.e., q0 > 0.

Tandem duplication
In this section, we consider the case in which the only type
of occurring mutations is tandem duplication. We show
that in this case the null space of A is simple.

Theorem 1 Suppose q0 = 0. Let P = {
i : i > 0, qi > 0

}

and d = gcdP. The normalized autocorrelation ρn =(
ρ0
n , . . . , ρm−1

n
)
converges almost surely to a vector ρ∞ =

(
ρ0∞, . . . , ρm−1∞

)
, where ρ

j
∞ is periodic in j with period d,

ρ
j
∞ = 1 if j ≡ 0 (mod d), and ρ

j
∞ = ρ

d−j
∞ . In particular,

every pair of symbols at distance d in s(n) are, with high
probability, the same.

The theorem implies that regardless of the seed, after
many duplications, the sequence becomes almost periodic
with period d. The periodicity is expected since no sub-
stitutions occur. However, the period is not the dominant
or the shortest duplication length, but rather it is the gcd
of all lengths i for which the probability of duplication qi
is positive. For example, if duplications of lengths 4 and 6
occur, the sequence becomes approximately periodic with
period 2. Since given P, d does not depend on the values
of the qi, observing d does not provide enough informa-
tion for estimating q and thus, in this case, we are not able
to solve the inverse problem. Nevertheless, the study of
this case lays the foundation for the more complex case in
which substitutions are present and where we are able to
solve the inverse problem.
To prove Theorem 1, we need the following lemma

whose proof is given in Additional file 1.

Lemma 1 Let q0 = 0, P = {
i > 0 : qi > 0

}
, and d =

gcdP. Furthermore, let S(t) = Span
{
v0, . . . , v	t/2


}
, where

vi = (
vi,0, . . . , vi,m−1

)T , with

vi,j =
{
1, j ≡ ±i (mod t),
0, otherwise.

We have Null(A) = S(d).

Proof of Theorem 1: Since ρ∞ is in the null space of A,
where the null space of A is given by Lemma 1, ρ∞ is a
linear combination of the vectors S(d). Furthermore, by
definition we know that ρ0∞ = 1. In the basis of S(d) given
in Lemma 1, the only vector that has a nonzero element
in the 0th coordinate is v0. So the coefficient of v0 in the
linear combination describing ρ∞ is 1 and thus ρ

j
∞ = 1 if

j ≡ 0 (mod d). We hence have Theorem 1.
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Tandem duplication and substitution
We now consider both tandem duplication and substitu-
tion mutations and describe how the parameters of the
model, as well as the number of mutations of each type,
may be estimated. Note that while the parameters of the
model are unknown, we have access to the sequence s(n)

for some n.
The following lemma (see Additional file 1 for proof)

states that the autocorrelation function converges to a
single point when both duplication and substitutionmuta-
tions are present. This fact will facilitate the design of the
estimator.

Lemma 2 Let q0 > 0, P = {
i > 0 : qi > 0

}
, d = gcdP,

and let A be the matrix of Eq. (6). We have Null(A) =
Span(v), where v = (v0, . . . , vm−1)

T is a vector satisfying
v0 = 1 and vj = 1

4 for j �≡ 0 (mod d).

For example, for d = 3, v = (
1, 14 ,

1
4 , v3,

1
4 ,

1
4 , v6,

1
4 , . . .

)T .
From the lemma, it follows that there is only one valid

solution to the equation Aρ∞ = 0 which satisfies ρ0∞ = 1.
This unique point is the limit of the autocorrelation
function.
We have thus shown that if we know q, we can deter-

mine ρ∞. We now turn to the estimation problem, which
is the inverse of determining ρ∞ using q. In other words,
we are given a sequence whose autocorrelation we can
compute and our goal is to determine q.
Note that we can rewrite the equation Aρ∞ = 0, where

A is the matrix given in Eq. (6), as

Cq = ˜ρ∞, (8)

where q= (q0, q1, . . . , qm)T and ˜ρ∞ = (
ρ1∞, 2ρ2∞, . . . ,

(m − 1)ρm−1∞
)T , and where C = (Cri) is a (m − 1) ×

(m + 1) matrix whose elements are

Cri =
{ 2

3 + (
r − 8

3
)
ρr∞, i = 0

rρi−r∞ , otherwise,

where r ∈ {1, . . . ,m − 1} and i ∈ {0, 1, . . . ,m}.
Given ρ∞, we can solve Eq. (8) for q. Since we only

know the sequence after a finite time n, we approximate
ρ∞ by ρn = (

ρ0
n , . . . , ρm−1

n
)
computed from s(n). In our

model, there exists K such that qi = 0 for i > K . However,
the value of K is unknown to us. We thus choose some
m′ and assume that qi = 0 for i > m′. The value of m′
can be chosen for example based on our knowledge of the
underlying biological processes, such as slipped-strand
mispairings [7], that lead to tandem repeats. Furthermore,
the value of m′ should be chosen large enough so that
m′ ≥ K with a high degree of confidence. Note that
there are m′ + 1 unknown quantities, namely, the ele-
ments q0, . . . , qm′ of q. Another parameter is the number

of equations used to estimate q, denotedm′′, which should
be chosen close tom′. Having chosenm′,m′′, we can write
Eq. (8) as C′q = ρ̃n, where q = (q0, q1, . . . , qm′)T and

ρ̃n =
(
ρ1
n , 2ρ2

n , . . . ,m′′ρm′′
n

)T
, and where C′ is the matrix

containing the first m′′ rows and the first m′ + 1 columns
of C, computed using ρn instead of ρ∞. Now to obtain an
estimate of q we can solve the least-square curve fitting
problem

q̂ = argmin
q

∥
∥C′q − ρ̃n

∥
∥2
2

s.t.qT1 = 1
qi ≥ 0, for 0 ≤ i ≤ m′.

(9)

The solution q̂ of this problem contains an estimate of
the substitution probability q0 and the probabilities q� of
duplications of lengths �. Noting that the expected length
added to the sequence by each mutation is

∑m′
i=1 iq̂i,

we estimate the total number n of mutations that have
occurred as

n̂ =
∣
∣s(n)

∣
∣ − ∣

∣s(0)
∣
∣

∑m′
i=1 iq̂i

, (10)

where we assume the length of the seed s(0) is equal
to the pattern length. The estimator based on the pro-
posed Stochastic Model of Tandem Repeats and defined
by Eqs. (9) and (10) is referred to as SMTR.
In tandem repeat sequences observed in genomes dupli-

cation events have lengths that are multiples of a certain
value, leading to a pattern of that length appearing many
times. We refer to this length as the pattern length and
to the number of times that the pattern appears as the
copy number. While in general SMTR does not need to
know the pattern length d, if it is known, we set qi = 0
for i �≡ 0(mod d). Furthermore, from Lemma 2, we know
ρr∞ = 1/4 for r �≡ 0(mod d). Replacing these values in
Eq. (10) allows us to solve it by keeping only rows and
columns of C′ whose indices are multiples of d.
We note that in Eq. (10), if q̂0 is close to 1, then the esti-

mate n̂ for n may be very large. It is reason-
able to expect that n̂ is not larger than the length
of the sequence. Thus, we add the constraint(
d, 2d, . . . ,m′d

)
(qd, q2d, . . . , qm′d)

T ≥ 1 to Eq. (9), where
d is the pattern length. This ensures that on average
each mutation contributes at least 1 to the length of
the sequence. Furthermore, since our method relies
on asymptotic approximation, for short sequences,
specifically those with copy number ≤ 3, we provide
an alternative heuristic estimation algorithm, which is
described in Additional file 1.

Simulation and data analysis results
In this section, we use simulation to evaluate the perfor-
mance of SMTR by comparing its estimates of the model
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parameters with the true values. We also compare SMTR
toDTSCORE introduced by [27], which was shown to out-
perform similar methods [24]. Further, we apply SMTR to
tandem repeats in the human genome to study variation
across chromosomes and pattern lengths.
In the results that follow, we set the computation param-

eters as follows. First, we find ρ = (ρr) for r =
0, 1, . . . ,

⌊ |s|
2

⌋
. This ensures that each value of the autocor-

relation function is the average of at least |s|/2 values. Fur-
thermore, we let m′ = m′′ = min

(
max(10d, 5r∗),

⌊ |s|
2

⌋)
,

where r∗ = argmaxr ρr . The max here is intended to
ensure that m′ is large enough, while the min ensures
that all needed values of ρ are available. Finally, while
the estimation method is geared towards tandem repeats
with substitution mutations, our inspection of the results
shows that for perfect tandem repeats, the algorithm
returns probability near zero for substitution mutations,
as expected, and nearly uniform probability for differ-
ent duplication lengths. Thus, in the results that follow,
we apply it to tandem repeats regardless of the apparent
presence of substitution mutations.

Simulation results
We now turn to evaluating the performance of SMTR
through simulation and also compare it with DTSCORE
[27]. We show that SMTR provides more accurate esti-
mates and is significantly faster compared to DTSCORE.
In our simulation set up, we first generate a random seed

s(0) of a random length d that then undergoes n random
substitutions and tandem duplications, where the prob-
abilities of these events are given by q, itself randomly
generated. The resulting sequence s(n) and the pattern
length d are then passed to the SMTR estimator, which of
course does not know s(0), n, or q. We evaluate the perfor-
mance by finding the L2 error in estimating q̂, ‖q̂ − q‖2,

averaged across N experiments for each value of n. We
also find the normalized root mean square (NRMS) error
in estimating n. For a given value of n, NRMS Error is
defined as

NRMSE(n) = 1
n

√
√
√
√ 1

N

N∑

i=1

(
n̂i − n

)2 ,

where N is the number of experiments with n mutations
and n̂i is the estimate for n in the ith experiment.
We find the errors for two different cases: for a pair

of given values for n and q, we estimate n̂ and q̂ based
on 1) a single sequence and 2) ns sequences all generated
with parameters q and n. In the latter case, estimates are
obtained for each sequence individually and then aver-
aged. The multiple-sample case is intended to show that
performance improves, as expected, with more data. Due
to the large number of tandem repeat sequences in many
genomes, it is reasonable to expect that for a set of fac-
tors affecting duplication probabilities, e.g., GC content
and pattern length, a given set of values for these factors
is likely to arise multiple times. When studying the effects
of such factors on mutation rates, we may expect a simi-
lar performance improvement by averaging the estimates
among all instances with the same set of values for the
factors.
More detail on the simulation setup is given in

Additional file 1. The results are given in Fig. 1 where
n ranges from 10 to 500, with step size equal to 10.
For each value of n, the experiment is performed N =
500 times, and in each of these N trials, estimates are
obtained based on a single sequence and based on ns = 5
sequences drawn for the same seed and q. We observe that
as n increases, the errors sharply decrease. For a single
sequence and a small number of mutations, the estimation

(a) (b)
Fig. 1 Errors of the estimate q̂ of q, (a), and the estimate n̂ of n, (b)
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algorithm relies on a very limited amount of data. As the
number n of mutations increases, the sequence becomes
longer, providing more data in the form of the autocor-
relation function and asymptotic approximations become
more accurate. It is also observed that with more samples
for the same set of parameters, more accurate estimates
are obtained.
We now compare the performance of SMTR with

DTSCORE [27]. DTSCORE is a distance-based algo-
rithm designed to find the duplication history in the
form of a tree, thus providing estimates for the counts
of duplications of various lengths. In [24], it was shown
that DTSCORE performs better than other algorithms
for identifying the duplication tree, including TRHIST
[22] and WINDOWS [23]. Due to the slower speed of
DTSCORE (the worst-case time complexity is O

(
L4

)
,

where L is the copy number), we restrict the range of
the number of mutations n to {10, 20, . . . , 120} and also
reduce N = 200 but maintain ns = 5. As the distance
measure, we use Jukes-Cantor’s [11], which is compatible
with our sequence generation method. The comparison
is given in Figure 2. Since from DTSCORE, we can only
derive estimates for the counts of duplications but not
substitutions, we compare the accuracy of estimating q′ =(
q′
1, q′

2, . . .
)
where q′

i for i ≥ 1 is defined as q′
i = qi

1−q0 ·
From Fig. 2a, it is clear that SMTR estimates q′ with

significantly higher accuracy than DTSCORE. Further-
more, if multiple samples from the same distribution are
available, the improvement for SMTR is larger than for
DTSCORE. Finally, the execution time of SMTR is faster
than DTSCORE. In particular, for n = 120, on average,
SMTR needs no more than 0.015 s to compute the esti-
mate for each tandem repeat sequence, while DTSCORE
needs 15 s, 3 orders of magnitude longer. As a result,

SMTR will scale better when analyzing a large number
of tandem repeats, for example, all repeats in a given
chromosome or genome.
While we have shown the improved accuracy and effi-

ciency of SMTR compared to DTSCORE, we note that
combinatorial methods such as DTSCORE are more
generic in the sense that they do not rely on a stochastic
model of the generation of tandem repeats. On the other
hand, DTSCORE is more restrictive in the sense that it
assumes duplications occur at the predefined boundaries
of tandem repeat blocks (copies of the pattern). Blocks
are meaningful if each copy is a gene, but in general,
they are logical constructs rather than biological entities.
Finally, it is worth noting that both DTSCORE and SMTR
are designed for the analysis of repeats resulting from
polymerase slippage and not recombination events.

Tandem repeats in the human genome
We now apply SMTR to tandem repeats in the human
genome to estimate the number of substitution and
tandem duplication mutations for each. We use these
estimates to explore the variation of mutation rates for
minisatellite andmicrosatellites and across chromosomes.
Most of the results provided in this section rely on esti-
mating the number of substitutions in tandem repeat
sequences. We note that the DTSCORE algorithm only
provides estimates for duplication events. Furthermore,
due to its efficiency, SMTR is more appropriate for large-
scale data analysis.
We use the Tandem Repeats Database (TRDB) [28],

which provides the set of tandem repeats in each chromo-
some, as identified by the Tandem Repeat Finder (TRF)
algorithm, and related information such as the length of
the repeat unit and indel (insertion/deletion) percentage.

(a) (b)
Fig. 2 Comparison of SMTR Estimation (SM) and DTSCORE (DT): Error of q̂′ , (a), and the average execution time for an instance of the problem on an
Intel Core i7–7700 CPU with 16 GB of RAM, (b)
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As a preprocessing step, among overlapping repeats, we
keep only one. We also remove repeats with unknown (N)
bases and those with copy number less than 2. Finally, we
discard repeats whose indel percentage is nonzero, as our
model does not include insertion and deletion mutations.
We note however that the indel percentage is an approx-
imate value for the number of apparent insertions and
deletions. Excluding repeats with non-zero indel percent-
ages does not guarantee that there will be no insertions
or deletions in the remaining repeats. Another limitation
is that our method assumes substitutions are unbiased,
and so it cannot take into account different transition and

transversion probabilities, or the effect of GC content.
As an example of the preprocessing step, the number of
repeat sequences in chromosome 1 reduces from 93,626
to 38,628 as a result of preprocessing.
We applied the SMTR algorithm to tandem repeats in

each chromosome to study the role of tandem duplica-
tion and substitution mutations in their formation. The
results for chromosome X are given in Fig. 3a. Each point
in this plot corresponds to a tandem repeat sequence.
The position of each point is determined by the estimated
number of tandem duplications and substitutions that
occurred to create the sequence. It can be observed that

(a)

(b) (c)
Fig. 3 The mutation profile of tandem repeats in chromosome X (a) and mutation variation across chromosomes in microsatellites (pattern length
≤ 10): Mean of the ratio of the number of substitutions to the length of the tandem repeat sequence (b) and mean of the total number of
mutations per tandem repeat sequence for each chromosome (c)
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tandem repeat sequences can roughly be divided into two
clusters with different behaviors: one dominated by tan-
dem duplication mutations and the other by substitution
mutations. This difference in behavior matches well with
the classification of tandem repeats as microsatellites and
minisatellites, with pattern lengths of 1–10 and 11–100
bases, respectively. Other chromosomes exhibit behav-
ior similar to chromosome X illustrated here. Among all
chromosomes, theminimumKendall tau correlation coef-
ficient between the rankings of repeats based on length of
the pattern and based on the fraction of mutations that are
substitutions was 0.5160. Given the large number of tan-
dem repeats in each chromosome, such high correlation
coefficients lead to p-values that are practically zero (as
computed with MATLAB).
We now turn our attention to evaluating the varia-

tion of mutation rates across chromosomes. Through
comparison with the chimpanzee genome [29–31], it is
known that mutation rates vary across chromosomes.
To see whether this variation can also be observed in
repeated regions, we study the number of mutations in
tandem repeat sequences across chromosomes. Since our
model represents replication slippage, we only consider
tandem repeats with short patterns. Specifically, for tan-
dem repeats with pattern length ≤ 10, we estimate the
number of substitution and duplication mutations. As a
measure of mutation activity, we find the average of the
ratio of the the number of substitutions to the length
of the tandem repeat sequence for each chromosome
(Fig. 3b). The top five chromosomes that have the high-
est substitution rates are Y, 21, 22, 19, and 16. Based on
comparison with the chimpanzee genome [31], the five
chromosomes with highest mutation activity are Y, 21,
19, 22, and 16. Thus the top five chromosomes are the
same based on the two approaches (p-value=0.00002). We
repeated this analysis for repeats with maximum pattern
lengths of 8, 9, 11, and 12, and in all cases, at least four
of the top five matched the result from comparison with
chimpanzee [31].
We also considered the average number of mutations

per tandem repeat for each chromosome (Fig. 3c). On
average, tandem repeats in chromosome 21 have a higher
number of mutations than other autosomes. The aver-
age number of duplication mutations is estimated to be
higher in chromosome 21 than in the Y chromosome.
The higher number of mutations in chromosome 21 com-
pared to other autosomes is also observed if we set the
upper bound on the length of the patterns at 8, 9, 11,
and 12.

Discussion
Figure 1 demonstrates that compared to DTSCORE, the
proposed method, SMTR, is both more accurate and
faster. The efficiency of SMTR allows it to be applied

at the genome scale. Such large-scale analyses enable
statistically studying hypotheses about the formation of
tandem repeats.
We studied the relationship between the length of the

pattern in a tandem repeat and number of substitution
and duplication mutations. A clear difference emerges
between minisatellites and microsatellites, as shown in
Fig. 3a. The different mutation profiles suggest that these
two types of tandem repeats may result from different
mutation mechanisms. This is compatible with previous
findings, where polymerase slippage is thought to give rise
to microsatellites while unequal recombination is believed
to cause the heterogeneity observed in minisatellites [32].
Our method is only designed to model slippage and not
recombination. The fact that it generally estimates the
number of substitutions to be higher for minisatellites
thanmicrosatellites can be the result of higher raw hetero-
geneity that is observed in microsatellites and/or caused
by model mismatch. The results of this analysis suggests
that it is possible to design statistical tests to decide the
origin of tandem repeat sequences, as a means of clas-
sifying them, rather than relying on classification merely
based on pattern length.
Figure 3b presents the normalized number of substitu-

tions in tandem repeats, averaged for each chromosome.
As discussed, the five chromosomes with the highest rates
in Fig. 3b are the same as the five chromosomes with
the highest mutation rates, as obtained by [31] based
on comparison with chimpanzee genome. This suggests
a strong relationship between substitutions in repeated
regions and overall mutation activity in chromosomes.
On the other hand, the results are not exactly aligned.
For example, while chromosome X has the smallest diver-
gence from chimpanzee, it does not have the smallest
normalized number of substitutions. Overall, our results
suggest estimation of mutation activity based on tandem
repeats can be a powerful tool in studying mutations
since unlike existing methods it relies on a single genome
rather than on comparison of genomes from different
species.
In Fig. 3c, the reason that tandem repeats in chromo-

some 21 exhibit a higher number of mutations is unknown
to us but it is interesting to note that individuals with tri-
somy 21 can survive into adulthood, which suggests that
mutations in chromosome 21 are relatively better toler-
ated. It is also observed that 3 of the 5 chromosomes
with the highest total number of mutations in microsatel-
lites, Y, 21, and 22, match the result from [31]. This
further suggests a higher mutation activity in these chro-
mosomes. However, care should be taken in interpreting
results about mutation counts that are not normalized by
the length of the sequence. The opportunity for muta-
tion increases with length and copy number. In particu-
lar, increased copy number may increase the probability
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of misalignment during replication [33]. Another factor
that can affect the number of mutations in a complex
manner is the interplay between substitution mutations
and tandem duplication mutations: if many substitutions
occur, the copies becomemore heterogeneous, whichmay
decrease the possibility of misalignment. This interaction
is not taken into account in our model and left to future
work.

Conclusion
In this paper, we introduced a new stochastic model for
tandem duplication and substitution mutations, and ana-
lyzed it via stochastic approximation. In particular, we
fully characterized the limit set of the stochastic pro-
cess described by the model. In addition to enabling us
to predict the behavior of a sequence that undergoes
tandem duplication and substitution mutations, this char-
acterization allowed us to derive a minimization problem
whose solutions are estimates of the conditional muta-
tion probabilities for tandem duplication and substitution.
We showed further that it is possible to estimate the total
number of mutations. Finally, we evaluated the estimation
method via simulation by generating random sequences
and comparing the estimated probabilities with the true
values and also applied it to the human genome, where it
demonstrated the differing behavior of micro- and mini-
satellites as well as the variability of mutation activity
across chromosomes.
Advantages of our method include its scalability and the

fact that it relies on a single sequence to infer occurrences
of mutations. While with this method, we can learn only
about mutations in tandem repeat regions, our results
show that the findings may be applicable to surrounding
regions and can be of use in forming hypotheses about
mutation activity, for example, about factors that increase
or decrease activity.
There still exist many open problems in stochastic mod-

eling and estimation for tandem repeats. For example, the
model presented here does not take into account deletions
nor the fact that the level of heterogeneity may affect the
probability of tandem duplication. Neither does themodel
consider bias in substitution mutations. For example, it
cannot reflect different transversion and transition prob-
abilities. Incorporating such biases will make the method
more appropriate, for instance, for GC rich repeats. Fur-
ther, we only analyzed it in the asymptotic regime and
left finite-time behavior to future work. Finite-time anal-
ysis will enable us to analytically quantify the accuracy
of the presented estimation method as a function of the
number n of mutations and to devise improved estimation
algorithms. Finally, further work is needed to accurately
model mutations other than DNA slippage that cause
duplication, especially those that lead to minisatellite
repeats.
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