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Abstract

Background: Given the importance of relation or event extraction from biomedical research publications to support
knowledge capture and synthesis, and the strong dependency of approaches to this information extraction task on
syntactic information, it is valuable to understand which approaches to syntactic processing of biomedical text have
the highest performance.

Results: We perform an empirical study comparing state-of-the-art traditional feature-based and neural
network-based models for two core natural language processing tasks of part-of-speech (POS) tagging and
dependency parsing on two benchmark biomedical corpora, GENIA and CRAFT. To the best of our knowledge, there is
no recent work making such comparisons in the biomedical context; specifically no detailed analysis of neural models
on this data is available. Experimental results show that in general, the neural models outperform the feature-based
models on two benchmark biomedical corpora GENIA and CRAFT. We also perform a task-oriented evaluation to
investigate the influences of these models in a downstream application on biomedical event extraction, and show
that better intrinsic parsing performance does not always imply better extrinsic event extraction performance.

Conclusion: We have presented a detailed empirical study comparing traditional feature-based and neural
network-based models for POS tagging and dependency parsing in the biomedical context, and also investigated the
influence of parser selection for a biomedical event extraction downstream task.

Availability of data andmaterials: Wemake the retrained models available at https://github.com/datquocnguyen/
BioPosDep.

Keywords: POS tagging, Dependency parsing, Biomedical event extraction, Neural networks

Background
The biomedical literature, as captured in the parallel
repositories of PubMed1 (abstracts) and PubMed Cen-
tral2 (full text articles), is growing at a remarkable rate
of over one million publications per year. Effort to
catalog the key research results in these publications
demands automation [1]. Hence extraction of relations
and events from the published literature has become a
key focus of the biomedical natural language processing
community.
Methods for information extraction typically make use

of linguistic information, with a specific emphasis on the
value of dependency parses. A number of linguistically-
annotated resources, notably including the GENIA [2]
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and CRAFT [3] corpora, have been produced to sup-
port development and evaluation of natural language
processing (NLP) tools over biomedical publications,
based on the observation of the substantive differences
between these domain texts and general English texts,
as captured in resources such as the Penn Treebank
[4] that are standardly used for development and eval-
uation of syntactic processing tools. Recent work on
biomedical relation extraction has highlighted the par-
ticular importance of syntactic information [5]. Despite
this, that work, and most other related work, has sim-
ply adopted a tool to analyze the syntactic character-
istics of the biomedical texts without consideration of
the appropriateness of the tool for these texts. A com-
monly used tool is the Stanford CoreNLP dependency
parser [6], although domain-adapted parsers (e.g. [7]) are
sometimes used.
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Prior work on the CRAFT treebank demonstrated
substantial variation in the performance of syntactic pro-
cessing tools for that data [3]. Given the significant
improvements in parsing performance in the last few
years, thanks to renewed attention to the problem and
exploration of neural methods, it is important to revisit
whether the commonly used tools remain the best choices
for syntactic analysis of biomedical texts. In this paper,
we therefore investigate current state-of-the-art (SOTA)
approaches to dependency parsing as applied to biomedi-
cal texts. We also present detailed results on the precursor
task of POS tagging, since parsing depends heavily on
POS tags. Finally, we study the impact of parser choice
on biomedical event extraction, following the structure
of the extrinsic parser evaluation shared task (EPE 2017)
for biomedical event extraction [8]. We find that dif-
ferences in overall intrinsic parser performance do not
consistently explain differences in information extraction
performance.

Experimental methodology
In this section, we present our empirical approach to
evaluate different POS tagging and dependency parsing
models on benchmark biomedical corpora. Fig. 1 illus-
trates our experimental flow. In particular, we compare
pre-trained and retrained POS taggers, and investigate the
effect of these pre-trained and retrained taggers in pre-
trained parsing models (in the first five rows of Table 4).
We then compare the performance of retrained pars-
ing models to the pre-trained ones (in the last ten rows
of Table 4). Finally, we investigate the influence of pre-
trained and retrained parsing models in the biomedical
event extraction task (in Table 11).

Datasets
We use two biomedical corpora: GENIA [2] and CRAFT
[3]. GENIA includes abstracts from PubMed, while
CRAFT includes full text publications. It has been
observed that there are substantial linguistic differences
between the abstracts and the corresponding full text
publications [9]; hence it is important to consider both
contexts when assessing NLP tools in biomedical domain.
The GENIA corpus contains 18K sentences (∼486K

words) from 1999 Medline abstracts, which are manually
annotated following the Penn Treebank (PTB) bracketing

Fig. 1 Diagram outlining the design of experiments

guidelines [2]. On this treebank, we use the training,
development and test split from [10]3. We then use the
Stanford constituent-to-dependency conversion toolkit
(v3.5.1) to generate dependency trees with basic Stanford
dependencies [11].
The CRAFT corpus includes 21K sentences (∼561K

words) from 67 full-text biomedical journal articles4.
These sentences are syntactically annotated using an
extended PTB tag set. Given this extended set, the Stan-
ford conversion toolkit is not suitable for generating
dependency trees. Hence, a dependency treebank using
the CoNLL 2008 dependencies [12] was produced from
the CRAFT treebank using ClearNLP [13]; we directly
use this dependency treebank in our experiments. We use
sentences from the first 6 files (PubMed IDs: 11532192–
12585968) for development and sentences from the next 6
files (PubMed IDs: 12925238–15005800) for testing, while
the the remaining 55 files are used for training.
Table 1 gives an overview of the experimental datasets,

while Table 2 details corpus statistics. We also include
out-of-vocabulary (OOV) rate in Table 1. OOV rate is
relevant because if a word has not been observed in the
training data at all, the tagger/parser is limited to using
contextual clues to resolve the label (i.e. it has observed no
prior usage of the word during training and hence has no
experience with the word to draw on).

POS taggingmodels
We compare SOTA feature-based and neural network-
based models for POS tagging over both GENIA and
CRAFT. We consider the following:

• MarMoT [14] is a well-known generic CRF
framework as well as a leading POS and
morphological tagger5.

• NLP4J’s POS tagging model [15] (NLP4J-POS) is a
dynamic feature induction model that automatically
optimizes feature combinations6. NLP4J is the
successor of ClearNLP.

• BiLSTM-CRF [16] is a sequence labeling model
which extends a standard BiLSTM neural network
[17, 18] with a CRF layer [19].

Table 1 The number of files (#file), sentences (#sent), word
tokens (#token) and out-of-vocabulary (OOV) percentage in each
experimental dataset

Dataset #file #sent #token OOV

GENIA Training 1701 15,820 414,608 0.0

Development 148 1361 36,180 4.4

Test 150 1360 35,639 4.4

CRAFT Training 55 18,644 481,247 0.0

Development 6 1280 31,820 6.6

Test 6 1786 47,926 6.3
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Table 2 Statistics by the most frequent dependency and overlapped POS labels, sentence length (i.e. number of words in the
sentence) and relative dependency distances i − j from a dependent wi to its head wj

Dependency labels

GENIA CRAFT POS tags Length Distance

Type % Type % Type %G %C Type % Type %G %C

advmod 2.3 ADV 4.0 CC 3.6 3.2 GENIA < −5 4.1 3.9

amod 9.6 AMOD 1.9 CD 1.6 4.0 1-10 3.5 −5 1.2 1.2

appos 1.2 CONJ 3.6 DT 7.6 6.6 11-20 31.0 −4 2.1 2.1

aux 1.4 COORD 3.2 IN 12.9 11.3 21-30 35.7 −3 4.4 3.2

auxpass 1.5 DEP 1.0 JJ 10.1 7.6 31-40 19.4 −2 10.6 8.5

cc 3.5 LOC 1.7 NN 29.3 24.2 41-50 7.1 −1 24.1 21.7

conj 3.9 NMOD 33.7 NNS 6.9 6.6 >50 3.3 1 19.0 26.5

dep 2.1 OBJ 2.8 RB 2.5 2.4 2 9.4 9.8

det 7.2 P 18.4 TO 1.6 0.6 CRAFT 3 6.3 5.9

dobj 3.1 PMOD 10.6 VB 1.1 1.1 1-10 17.8 4 4.0 3.4

mark 1.1 PRD 0.9 VBD 2.1 2.2 11-20 23.1 5 2.4 2.3

nn 11.6 PRN 1.9 VBG 1.0 1.1 21-30 25.2 >5 12.3 11.6

nsubj 4.1 ROOT 3.9 VBN 3.1 3.8 31-40 17.5 - - -

nsubjpass 1.4 SBJ 4.9 VBP 1.4 1.1 41-50 9.3 - - -

num 1.2 SUB 0.9 VBZ 1.9 1.4 >50 7.1 - - -

pobj 12.2 TMP 0.9 - - - - - - - -

prep 12.3 VC 2.4 - - - - - - - -

punct 10.4 - - - - - - - - - -

root 3.8 - - - - - - - - - -

In addition, %G and %C denote the occurrence proportions in GENIA and CRAFT, respectively

• BiLSTM-CRF+CNN-char extends the model
BiLSTM-CRF with character-level word embeddings.
For each word token, its character-level word
embedding is derived by applying a CNN to the
word’s character sequence [20].

• BiLSTM-CRF+LSTM-char also extends the
BiLSTM-CRF model with character-level word
embeddings, which are derived by applying a
BiLSTM to each word’s character sequence [21].

For the three BiLSTM-CRF-based sequence labeling
models, we use a performance-optimized implementation
from [22]7. As detailed later in the “POS tagging results”
section, we use NLP4J-POS to predict POS tags on devel-
opment and test sets and perform 20-way jackknifing [23]
to generate POS tags on the training set for dependency
parsing.

Dependency parsers
Our second study assesses the performance of SOTA
dependency parsers, as well as commonly used parsers,
on biomedical texts. Prior work on the CRAFT treebank
identified the domain-retrained ClearParser [24], now
part of the NLP4J toolkit [25], as a top-performing system

for dependency parsing over that data. It remains the best
performing non-neural model for dependency parsing. In
particular, we compare the following parsers:

• The Stanford neural network dependency parser [6]
(Stanford-NNdep) is a greedy transition-based
parsing model which concatenates word, POS tag
and arc label embeddings into a single vector, and
then feeds this vector into a multi-layer perceptron
with one hidden layer for transition classification8.

• NLP4J’s dependency parsing model [26]
(NLP4J-dep) is a transition-based parser with a
selectional branching method that uses confidence
estimates to decide when employing a beam9.

• jPTDP v1 [27] is a joint model for POS tagging and
dependency parsing,10 which uses BiLSTMs to learn
feature representations shared between POS tagging
and dependency parsing. jPTDP can be viewed as an
extension of the graph-based dependency parser
BMSTPARSER [28], replacing POS tag embeddings
with LSTM-based character-level word embeddings.
For jPTDP, we train with gold standard POS tags.

• The Stanford “Biaffine” parser v1 [29] extends
BMSTPARSER with biaffine classifiers to predict
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dependency arcs and labels, obtaining the highest
parsing result to date on the benchmark English PTB.
The Stanford Biaffine parser v2 [30], further extends
v1 with LSTM-based character-level word
embeddings, obtaining the highest result (i.e., 1st
place) at the CoNLL 2017 shared task on multilingual
dependency parsing [31]. We use the Stanford
Biaffine parser v2 in our experiments11.

Implementation details
We use the training set to learn model parameters while
we tune the model hyper-parameters on the development
set. Then we report final evaluation results on the test set.
The metric for POS tagging is the accuracy. The metrics
for dependency parsing are the labeled attachment score
(LAS) and unlabeled attachment score (UAS): LAS is the
proportion of words which are correctly assigned both
dependency arc and label while UAS is the proportion of
words for which the dependency arc is assigned correctly.
For the three BiLSTM-CRF-based models, Stanford-

NNdep, jPTDP and Stanford-Biaffine which utilizes pre-
trained word embeddings, we employ 200-dimensional
pre-trained word vectors from [32]. These pre-trained
vectors were obtained by training the Word2Vec skip-
gram model [33] on a PubMed abstract corpus of 3 billion
word tokens.
For the traditional feature-based models MarMoT,

NLP4J-POS and NLP4J-dep, we use their original pure
Java implementationswith default hyper-parameter settings.
For the BiLSTM-CRF-based models, we use default

hyper-parameters provided in [22] with the following
exceptions: for training, we use Nadam [34] and run for
50 epochs. We perform a grid search of hyper-parameters
to select the number of BiLSTM layers from {1, 2} and the
number of LSTM units in each layer from {100, 150, 200,
250, 300}. Early stopping is applied when no performance
improvement on the development set is obtained after 10
contiguous epochs.
For Stanford-NNdep, we select the wordCutOff from

{1, 2} and the size of the hidden layer from {100, 150, 200,
250, 300, 350, 400} and fix other hyper-parameters with
their default values.
For jPTDP, we use 50-dimensional character embed-

dings and fix the initial learning rate at 0.0005. We also fix
the number of BiLSTM layers at 2 and select the number
of LSTM units in each layer from {100, 150, 200, 250, 300}.
Other hyper-parameters are set at their default values.
For Stanford-Biaffine, we use default hyper-parameter

values [30]. These default values can be considered as
optimal ones as they helped producing the highest scores
for 57 test sets (including English test sets) and second
highest scores for 14 test sets over total 81 test sets
across 45 different languages at the CoNLL 2017 shared
task [31].

Main results
POS tagging results
Table 3 presents POS tagging accuracy of each model
on the test set, based on retraining of the POS tagging
models on each biomedical corpus. The penultimate
row presents the result of the pre-trained Stanford POS
tagging model english-bidirectional-distsim.tagger [35],
trained on a larger corpus of sections 0–18 (about
38K sentences) of English PTB WSJ text; given the use
of newswire training data, it is unsurprising that this
model produces lower accuracy than the retrained tagging
models. The final row includes published results of the
GENIA POS tagger [36], when trained on 90% of the
GENIA corpus (cf. our 85% training set)12. It does not
support a (re)-training process.
In general, we find that the six retrainedmodels produce

competitive results. BiLSTM-CRF and MarMoT obtain
the lowest scores on GENIA and CRAFT, respectively.
jPTDP obtains a similar score to MarMoT on GENIA and
similar score to BiLSTM-CRF on CRAFT. In particular,
MarMoT obtains accuracy results at 98.61% and 97.07%
on GENIA and CRAFT, which are about 0.2% and 0.4%
absolute lower thanNLP4J-POS, respectively. NLP4J-POS
uses additional features based on Brown clusters [37] and
pre-trained word vectors learned from a large external
corpus, providing useful extra information.
BiLSTM-CRF obtains accuracies of 98.44% on GENIA

and 97.25% on CRAFT. Using character-level word
embeddings helps to produce about 0.5% and 0.3%
absolute improvements to BiLSTM-CRF on GENIA and
CRAFT, respectively, resulting in the highest accuracies
on both experimental corpora. Note that for PTB, CNN-
based character-level word embeddings [20] only pro-
vided a 0.1% improvement to BiLSTM-CRF [16]. The
larger improvements on GENIA and CRAFT show that

Table 3 POS tagging accuracies on the test set with gold
tokenization

Model GENIA CRAFT

MarMoT 98.61 97.07

jPTDP-v1 98.66 97.24

NLP4J-POS 98.80 97.43

BiLSTM-CRF 98.44 97.25

+ CNN-char 98.89 97.51

+ LSTM-char 98.85 97.56

Stanford tagger [�] 98.37 _

GENIA tagger [�] 98.49 _

[�] denotes a result with a pre-trained POS tagger. We do not provide accuracy
results of the pre-trained POS taggers on CRAFT because CRAFT uses an extended
PTB POS tag set (i.e. there are POS tags in CRAFT that are not defined in the original
PTB POS tag set). Corpus-level accuracy differences of at least 0.17% in GENIA and
0.26% in CRAFT between two POS tagging models are significant at p ≤ 0.05. Here,
we compute sentence-level accuracies, then use paired t-test to measure the
significance level
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character-level word embeddings are specifically useful
to capture rare or unseen words in biomedical text data.
Character-level word embeddings are useful for morpho-
logically rich languages [27, 38], and although English is
not morphologically rich, the biomedical domain con-
tains a wide variety of morphological variants of domain-
specific terminology [39]. Words tagged incorrectly are
largely associated with gold tags NN, JJ and NNS; many
are abbreviations which are also out-of-vocabulary. It is
typically difficult for character-level word embeddings to
capture those unseen abbreviated words [40].
On both GENIA and CRAFT, BiLSTM-CRF with

character-level word embeddings obtains the highest
accuracy scores. These are just 0.1% absolute higher than
the accuracies of NLP4J-POS. Note that small variations
in POS tagging performance are not a critical factor in
parsing performance [41]. In addition, we find that NLP4J-
POS obtains 30-time faster training and testing speed.
Hence for the dependency parsing task, we use NLP4J-
POS to perform 20-way jackknifing [23] to generate POS
tags on training data and to predict POS tags on develop-
ment and test sets.

Overall dependency parsing results
We present the LAS and UAS scores of different pars-
ing models in Table 4. The first five rows show parsing
results on the GENIA test set of “pre-trained” parsers. The

first two rows present scores of the pre-trained Stanford
NNdep and Biaffine v1 models with POS tags predicted
by the pre-trained Stanford tagger [35], while the next
two rows 3-4 present scores of these pre-trained models
with POS tags predicted by NLP4J-POS. Both pre-trained
NNdep and Biaffinemodels were trained on a dependency
treebank of 40K sentences, which was converted from the
English PTB sections 2–21. The fifth row shows scores of
BLLIP+Bio, the BLLIP reranking constituent parser [42]
with an improved self-trained biomedical parsing model
[10]. We use the Stanford conversion toolkit (v3.5.1) to
generate dependency trees with the basic Stanford depen-
dencies and use the data split on GENIA as used in [10],
therefore parsing scores are comparable. The remaining
rows show results of our retrained dependency parsing
models.
On GENIA, among pre-trained models, BLLIP obtains

highest results. This model, unlike the other pre-trained
models, was trained using GENIA, so this result is unsur-
prising. The pre-trained Stanford-Biaffine (v1) model pro-
duces lower scores than the pre-trained Stanford-NNdep
model on GENIA. It is also unsurprising because the
pre-trained Stanford-Biaffine utilizes pre-trained word
vectors which were learned from newswire corpora. Note
that the pre-trained NNdep and Biaffine models result
in no significant performance differences irrespective of
the source of POS tags (i.e. the pre-trained Stanford

Table 4 Parsing results on the test set with predicted POS tags and gold tokenization (except [G] which denotes results when
employing gold POS tags in both training and testing phases)

System With punctuation Without punctuation

Overall Exact match Overall Exact match

LAS UAS LAS UAS LAS UAS LAS UAS

GENIA
Pre-trained Stanford-NNdep [•] 86.66 88.22 25.15 29.26 87.31 89.02 25.88 30.22

Stanford-Biaffine-v1 [•] 84.69 87.95 16.25 26.10 84.92 88.55 16.99 28.24
Stanford-NNdep 86.79 88.13 25.22 29.19 87.43 88.91 25.88 30.15
Stanford-Biaffine-v1 84.72 87.89 16.47 25.81 84.94 88.45 17.06 27.79
BLLIP+Bio 88.38 89.92 28.82 35.96 88.76 90.49 29.93 37.43

GENIA
Retrained Stanford-NNdep 87.02 88.34 25.74 30.07 87.56 89.02 26.03 30.59

NLP4J-dep 88.20 89.45 28.16 31.99 88.87 90.25 28.90 32.94
jPTDP-v1 90.01 91.46 29.63 35.74 90.27 91.89 30.29 37.06
Stanford-Biaffine-v2 91.04 92.31 33.38 39.56 91.23 92.64 34.41 41.10
Stanford-Biaffine-v2 [G] 91.68 92.51 36.99 40.44 91.92 92.84 38.01 41.84

CRAFT
Retrained Stanford-NNdep 84.76 86.64 25.31 30.40 85.59 87.81 25.48 30.96

NLP4J-dep 86.98 88.85 27.60 33.71 87.62 89.80 28.16 34.60
jPTDP-v1 88.27 90.08 29.68 36.06 88.66 90.79 30.24 37.12
Stanford-Biaffine-v2 90.41 92.02 33.20 40.03 90.77 92.67 33.87 41.10
Stanford-Biaffine-v2 [G] 91.43 92.93 35.22 41.99 91.69 93.47 35.61 42.95

“Without punctuation” refers to results excluding punctuation and other symbols from evaluation. “Exact match” denotes the percentage of sentences whose predicted trees
are entirely correct [25]. [•] denotes the use of the pre-trained Stanford tagger for predicting POS tags on test set, instead of using the retrained NLP4J-POS model. Score
differences between the “retrained” parsers on both corpora are significant at p ≤ 0.001 using McNemar’s test (except UAS scores obtained by Stanford-Biaffine-v2 for gold
and predicted POS tags on GENIA, i.e. 92.51 vs. 92.31 and 92.84 vs. 92.64, where p ≤ 0.05)
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Fig. 2 LAS scores by sentence length. Scores obtained on GENIA and CRAFT are presented in the left and right figures, respectively

tagger at 98.37% vs. the retrained NLP4J-POS model
at 98.80%).
Regarding the retrained parsing models, on both

GENIA and CRAFT, Stanford-Biaffine achieves the high-
est parsing results with LAS at 91.23% and UAS at 92.64%
on GENIA, and LAS at 90.77% and UAS at 92.67%
on CRAFT, computed without punctuations. Stanford-
NNdep obtains the lowest scores; about 3.5% and 5%
absolute lower than Stanford-Biaffine on GENIA and
CRAFT, respectively. jPTDP is ranked second, obtaining
about 1% and 2% lower scores than Stanford-Biaffine and
1.5% and 1% higher scores (without punctuation) than
NLP4J-dep on GENIA and CRAFT, respectively. Table 4
also shows that the best parsing model Stanford-Biaffine
obtains about 1% absolute improvement when using gold
POS tags instead of predicted POS tags.

Parsing result analysis
Here we present a detailed analysis of the parsing results
obtained by the retrainedmodels with predicted POS tags.
For simplicity, the following more detailed analyses report
LAS scores, computed without punctuation. Using UAS
scores or computing with punctuation does not reveal any
additional information.

Sentence length
Figure 2 presents LAS scores by sentence length in bins of
length 10. As expected, all parsers produce better results
for shorter sentences on both corpora; longer sentences
are likely to have longer dependencies which are typi-
cally harder to predict precisely. Scores drop by about
10% for sentences longer than 50 words, relative to short
sentences <=10 words. Exceptionally, on GENIA we find
lower scores for the shortest sentences than for the sen-
tences from 11 to 20 words. This is probably because
abstracts tend not to contain short sentences: (i) as shown
in Table 2, the proportion of sentences in the first bin
is very low at 3.5% on GENIA (cf. 17.8% on CRAFT),
and (ii) sentences in the first bin on GENIA are rela-
tively long, with an average length of 9 words (cf. 5 words
in CRAFT).

Dependency distance
Figure 3 shows LAS (F1) scores corresponding to the
dependency distance i − j, between a dependent wi
and its head wj, where i and j are consecutive indices
of words in a sentence. Short dependencies are often
modifiers of nouns such as determiners or adjectives or
pronouns modifying their direct neighbors, while longer

Fig. 3 LAS (F1) scores by dependency distance. Scores obtained on GENIA and CRAFT are presented in the left and right figures, respectively
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Table 5 LAS (F1) scores of Stanford-Biaffine on GENIA, by
frequent dependency labels in the left dependencies

Type < −5 −5 −4

Prop. LAS Prop. LAS Prop. LAS

advmod 7.2 94.62 4.2 90.91 4.6 88.52

amod 4.8 74.19 8.1 80.00 17.5 86.09

det 4.3 85.71 17.7 91.43 21.3 88.97

mark 15.4 98.49 11.5 98.90 6.4 97.62

nn 4.7 74.38 15.7 77.42 16.6 76.71

nsubj 28.2 93.96 19.0 94.67 15.3 96.52

nsubjpass 15.9 95.38 11.3 92.13 3.9 86.27

prep 11.9 96.10 6.7 98.11 2.6 88.24

“Prop.” denotes the occurrence proportion in each distance bin

dependencies typically represent modifiers of the root or
the main verb [43]. All parsers obtain higher scores for
left dependencies than for right dependencies. This is
not completely unexpected as English is strongly head-
initial. In addition, the gaps between LSTM-based models
(i.e. Stanford-Biaffine and jPTDP) and non-LSTM mod-
els (i.e. NLP4J-dep and Stanford-NNdep) are larger for the
long dependencies than for the shorter ones, as LSTM
architectures can preserve long range information [44].
On both corpora, higher scores are also associated

with shorter distances. There is one surprising excep-
tion: on GENIA, in distance bins of −4, −5 and < −5,
Stanford-Biaffine and jPTDP obtain higher scores for

Table 6 LAS by the basic Stanford dependency labels on GENIA

Type Biaffine jPTDP NLP4J NNdep Avg.

advmod 87.38 86.77 87.26 83.86 86.32

amod 92.41 92.21 90.59 90.94 91.54

appos 84.28 83.25 80.41 77.32 81.32

aux 98.74 99.28 98.92 97.66 98.65

auxpass 99.32 99.32 99.49 99.32 99.36

cc 89.90 86.38 82.21 79.33 84.46

conj 83.82 78.64 73.32 69.40 76.30

dep 40.49 41.72 40.04 31.66 38.48

det 97.16 96.68 95.46 95.54 96.21

dobj 96.49 95.87 94.90 92.18 94.86

mark 94.68 90.38 89.62 90.89 91.39

nn 90.07 90.25 88.22 88.97 89.38

nsubj 95.83 94.71 93.18 90.75 93.62

nsubjpass 95.56 95.56 92.05 90.94 93.53

num 89.14 85.97 90.05 90.27 88.86

pobj 97.04 96.54 96.54 95.13 96.31

prep 90.54 89.93 89.18 88.31 89.49

root 97.28 97.13 94.78 92.87 95.52

“Avg.” denotes the averaged score of the four dependency parsers

Table 7 LAS by the CoNLL 2008 dependency labels on CRAFT

Type Biaffine jPTDP NLP4J NNdep Avg.

ADV 79.20 77.53 75.58 71.64 75.99

AMOD 86.43 83.45 85.00 82.98 84.47

CONJ 91.73 88.69 85.42 83.34 87.30

COORD 88.47 84.75 79.42 76.38 82.26

DEP 73.23 67.96 62.83 52.43 64.11

LOC 70.70 68.91 68.64 61.35 67.40

NMOD 92.55 91.19 90.77 90.04 91.14

OBJ 96.51 94.53 93.85 91.34 94.06

PMOD 96.30 94.85 94.52 93.44 94.78

PRD 93.96 90.11 92.49 90.66 91.81

PRN 62.11 61.30 49.26 46.96 54.91

ROOT 98.15 97.20 95.24 91.27 95.47

SBJ 95.87 93.03 91.82 90.11 92.71

SUB 95.18 91.81 91.81 89.64 92.11

TMP 78.76 68.81 65.71 59.73 68.25

VC 98.84 97.50 98.09 96.09 97.63

longer distances. This may result from the structural char-
acteristics of sentences in the GENIA corpus. Table 5
details the scores of Stanford-Biaffine in terms of the most
frequent dependency labels in these left-most dependency
bins. We find amod and nn are the two most difficult to
predict dependency relations (the same finding applied to
jPTDP). They appear much more frequently in the bins
−4 and −5 than in bin < −5, explaining the higher overall
score for bin < −5.

Dependency label
Tables 6 and 7 present LAS scores for the most fre-
quent dependency relation types on GENIA and CRAFT,
respectively. In most cases, Stanford-Biaffine obtains the
highest score for each relation type on both corpora with
the following exceptions: on GENIA, jPTDP gets the high-
est results to aux, dep and nn (as well as nsubjpass), while
NLP4J-dep and NNdep obtain the highest scores for aux-
pass and num, respectively. On GENIA the labels associ-
ated with the highest average LAS scores (generally>90%)
are amod, aux, auxpass, det, dobj,mark, nsubj, nsubjpass,
pobj and root whereas on CRAFT they are NMOD, OBJ,
PMOD, PRD, ROOT, SBJ, SUB and VC. These labels either
correspond to short dependencies (e.g. aux, auxpass and
VC), have strong lexical indications (e.g. det, pobj and
PMOD), or occur very often (e.g. amod, subj, NMOD and
SBJ).
Those relation types with the lowest LAS scores (gen-

erally <70%) are dep on GENIA and DEP, LOC, PRN and
TMP on CRAFT; dep/DEP are very general labels while
LOC, PRN and TMP are among the least frequent labels.
Those types also associate to the biggest variation of
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obtained accuracy across parsers (>8%). In addition, the
coordination-related labels cc, conj/CONJ and COORD
show large variation across parsers. These 9 mentioned
relation labels generally correspond to long dependen-
cies. Therefore, it is not surprising that BiLSTM-based
models Stanford-Biaffine and jPTDP can produce much
higher accuracies on these labels than non-LSTM models
NLP4J-dep and NNdep.
The remaining types are either relatively rare labels

(e.g. appos, num and AMOD) or more frequent labels but
with a varied distribution of dependency distances (e.g.
advmod, nn, and ADV ).

POS tag of the dependent
Table 8 analyzes the LAS scores by the most fre-
quent POS tags (across two corpora) of the dependent.
Stanford-Biaffine achieves the highest scores on all these
tags except TO where the traditional feature-based model
NLP4J-dep obtains the highest score (TO is relatively rare
tag in GENIA and is the least frequent tag in CRAFT
among tags listed in Table 8). Among listed tags VBG is
the least and second least frequent one in GENIA and
CRAFT, respectively, and generally associates to longer
dependency distances. So, it is reasonable that the low-
est scores we obtain on both corpora are accounted for by
VBG. The coordinating conjunction tagCC also often cor-
responds to long dependencies, thus resulting in biggest
ranges across parsers on both GENIA and CRAFT. The
results for CC are consistent with the results obtained for
the dependency labels cc in Table 6 andCOORD in Table 7
because they are coupled to each other.

On the remaining POS tags, we generally find simi-
lar patterns across parsers and corpora, except for IN
and VB where parsers produce 8+% higher scores for IN
on GENIA than on CRAFT, and vice versa producing
9+% lower scores for VB on GENIA. This is because on
GENIA, IN is mostly coupled with the dependency label
prep at a rate of 90% (thus their corresponding LAS scores
in tables 8 and 6 are consistent), while on CRAFT IN
is coupled to a more varied distribution of dependency
labels such asADV with a rate at 20%, LOC at 14%,NMOD
at 40% and TMP at 5%. Regarding VB, on CRAFT it usu-
ally associates to a short dependency distance of 1 word
(i.e. head and dependent words are next to each other)
with a rate at 80%, and to a distance of 2 words at 15%,
while on GENIA it associates with longer dependency dis-
tances with a rate at 17% for the distance of 1 word, 31%
for the distance of 2 words and 34% for a distance of > 5
words. So, parsers obtain much higher scores for VB on
CRAFT than on GENIA.

Error analysis
We analyze token-level parsing errors that occur consis-
tently across all parsers (i.e. the intersection set of errors),
and find that there are few common error patterns.
The first one is related to incorrect POS tag prediction
(8% of the intersected parsing errors on GENIA and
12% on CRAFT are coupled with incorrect predicted
POS tags). For example, the word token “domains”
is the head of the phrase “both the POU(S) and
POU(H) domains” in Table 9. We also have two OOV
word tokens “POU(S)” and “POU(H)” which abbreviate

Table 8 LAS by POS tag of the dependent

Type GENIA CRAFT

Biaffine jPTDP NLP4J NNdep Biaffine jPTDP NLP4J NNdep

CC 89.71 86.70 82.75 80.20 89.01 85.45 79.99 77.45

CD 81.83 79.30 79.78 79.30 88.03 85.17 84.22 79.77

DT 95.31 95.09 93.99 93.08 98.27 97.39 97.18 96.77

IN 90.57 89.50 88.41 87.58 81.79 79.32 78.43 75.97

JJ 90.17 89.35 88.30 87.76 94.24 92.91 92.50 91.70

NN 90.69 89.92 88.26 87.62 91.24 89.28 88.32 87.48

NNS 93.31 92.32 91.33 87.91 95.07 92.57 90.91 88.30

RB 88.31 86.92 87.73 84.61 84.41 81.98 82.13 76.99

TO 90.97 91.50 92.04 88.14 90.16 85.83 90.55 83.86

VB 89.68 87.84 85.09 83.49 98.86 98.86 98.67 96.38

VBD 94.60 93.85 90.97 90.34 94.74 93.21 90.03 86.86

VBG 82.67 79.47 79.20 72.27 85.51 81.33 81.15 75.57

VBN 91.42 90.53 88.02 85.51 93.22 91.24 90.25 88.04

VBP 94.46 93.88 92.54 90.63 93.54 91.18 88.98 84.09

VBZ 96.39 94.83 93.57 92.48 93.42 88.77 87.67 84.25
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“POU-specific” and “POU homeodomain”, respectively.
NLP4J-POS (as well as all other POS taggers) produced an
incorrect tag of NN rather than adjective (JJ) for “POU(S)”.
As “POU(S)” is predicted to be a noun, all parsers make an
incorrect prediction that it is the phrasal head, thus also
resulting in errors to remaining dependent words in the
phrase.
The second error type occurs on noun phrases such

as “the Oct-1-responsive octamer sequence ATGCAAAT”
(in Table 9) and “the herpes simplex virus Oct-1 coregula-
tor VP16”, commonly referred to as appositive structures,
where the second to last noun (i.e. “sequence” and “coreg-
ulator”) is considered to be the phrasal head, rather than
the last noun. However, such phrases are relatively rare
and all parsers predict the last noun as the head.
The third error type is related to the relation labels

dep/DEP. We manually re-annotate every case where all
parsers agree on the dependency label for a dependency
arc with the same dependency label, where this label dis-
agrees with the gold label dep/DEP (these cases are about
3.5% of the parsing errors intersected across all parsers
on GENIA and 0.5% on CRAFT). Based on this manual
review, we find that about 80% of these cases appear to
be labelled correctly, despite not agreeing with the gold
standard. In other words, the gold standard appears to
be in error in these cases. This result is not completely
unexpected because when converting from constituent
treebanks to dependency treebanks, the general depen-
dency label dep/DEP is usually assigned due to limitations
in the automatic conversion toolkit.

Parser comparison on event extraction
We present an extrinsic evaluation of the four depen-
dency parsers for the downstream task of biomedical
event extraction.

Table 9 Error examples

ID Form Gold Prediction

POS H. DEP POS H. DEP

19 both CC 24 preconj CC 21 preconj

20 the DT 24 det DT 21 dep

21 POU(S) JJ 24 amod NN 18 pobj

22 and CC 21 cc CC 21 cc

23 POU(H) NN 21 conj NN 21 conj

24 domains NNS 18 pobj NNS 21 dep

23 the DT 26 det DT 27 det

24 Oct-1-responsive JJ 26 amod JJ 27 amod

25 octamer NN 26 nn NN 27 nn

26 sequence NN 22 pobj NN 27 nn

27 ATGCAAAT NN 26 dep NN 22 pobj

“H.” denotes the head index of the current word

Evaluation setup
Previously, Miwa et al. [45] adopted the BioNLP 2009
shared task on biomedical event extraction [46] to com-
pare the task-oriented performance of six “pre-trained”
parsers with 3 different types of dependency represen-
tations. However, their evaluation setup requires use of
a currently unavailable event extraction system. Fortu-
nately, the extrinsic parser evaluation (EPE 2017) shared
task aimed to evaluate different dependency representa-
tions by comparing their performance on downstream
tasks [47], including a biomedical event extraction task
[8]. We thus follow the experimental setup used there;
employing the Turku Event Extraction System (TEES,
[48]) to assess the impact of parser differences on biomed-
ical relation extraction13.
EPE 2017 uses the BioNLP 2009 shared task dataset

[46], which was derived from the GENIA treebank cor-
pus (800, 150 and 260 abstract files used for BioNLP
2009 training, development and test, respectively)14.
We only need to provide dependency parses of raw
texts using the pre-processed tokenized and sentence-
segmented data provided by the EPE 2017 shared task. For
the Stanford-Biaffine, NLP4J-dep and Stanford-NNdep
parsers that require predicted POS tags, we use the
retrained NLP4J-POS model to generate POS tags. We
then produce parses using retrained dependency parsing
models.
TEES is then trained for the BioNLP 2009 Task 1 using

the training data, and is evaluated on the development
data (gold event annotations are only available to pub-
lic for training and development sets). To obtain test set
performance, we use an online evaluation system. The
online evaluation system for the BioNLP 2009 shared task
is currently not available. Therefore, we employ the online
evaluation system for the BioNLP 2011 shared task [49]
with the “abstracts only” option15. The score is reported
using the approximate span & recursive evaluation
strategy [46].

Impact of parsing on event extraction
Table 10 presents the intrinsic UAS and LAS (F1) scores
on the pre-processed segmented BioNLP 2009 devel-
opment sentences (i.e. scores with respect to predicted
segmentation), for which these sentences contain event

Table 10 UAS and LAS (F1) scores of re-trained models on the
pre-segmented BioNLP-2009 development sentences which
contain event interactions

Metric Biaffine jPTDP NLP4J NNdep

UAS 95.51 93.14 92.50 91.02

LAS 94.82 92.18 91.96 90.30

Scores are computed on all tokens using the evaluation script from the CoNLL 2017
shared task [31]
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interactions. These scores are higher than those pre-
sented in Table 4 because most part of the BioNLP 2009
dataset is extracted from the GENIA treebank training set.
Although gold event annotations in the BioNLP 2009 test
set are not available to public, it is likely that we would
obtain the similar intrinsic UAS and LAS scores on the
pre-processed segmented test sentences containing event
interactions.
Table 11 compares parsers with respect to the EPE

2017 biomedical event extraction task [8]. The first row
presents the score of the Stanford&Paris team [50]; the
highest official score obtained on the test set. Their system
used the Stanford-Biaffine parser (v2) trained on a dataset
combining PTB, Brown corpus, and GENIA treebank
data16. The second row presents our score for the pre-
trained BLLIP+Bio model; remaining rows show scores
using re-trained parsing models.
The results for parsers trained with the GENIA treebank

(Rows 1-6, Table 11) are generally higher than for parsers
trained on CRAFT. This is logical because the BioNLP
2009 shared task dataset was a subset of the GENIA cor-
pus. However, we find that the differences in intrinsic
parsing results as presented in Tables 4 and 10 do not
consistently explain the differences in extrinsic biomedi-
cal event extraction performance, extending preliminary
related observations in prior work [51, 52]. Among the
four dependency parsers trained on GENIA, Stanford-
Biaffine, jPTDP and NLP4J-dep produce similar event
extraction scores on the development set, while on the
the test set jPTDP and NLP4J-dep obtain the lowest and
highest scores, respectively.
Table 11 also summarizes the results with the depen-

dency structures only (i.e. results without dependency
relation labels; replacing all predicted dependency labels
by “UNK” before training TEES). In most cases, compared

to using dependency labels, event extraction scores drop
on the development set (except NLP4J-dep trained on
CRAFT), while they increase on the test set (except
NLP4J-dep trained on GENIA and Stanford-NNdep
trained on CRAFT). Without dependency labels, better
event extraction scores on the development set corre-
sponds to better scores on the test set. In addition,
the differences in these event extraction scores without
dependency labels are more consistent with the parsing
performance differences than the scores with dependency
labels.
These findings show that variations in dependency rep-

resentations strongly affect event extraction performance.
Some (predicted) dependency labels are likely to be partic-
ularly useful for extracting events, while others hurt per-
formance. Also, investigating ∼20 frequent dependency
labels in each dataset as well as some possible combina-
tions between them could lead to an enormous number
of additional experiments. We believe a detailed analysis
of the interaction between those labels in a downstream
application task deserves another research paper with a
more careful analysis. Here, one contribution of our paper
could be seen to be that we highlight the need for further
research in this direction.

Conclusion
We have presented a detailed empirical study comparing
SOTA traditional feature-based and neural network-
based models for POS tagging and dependency parsing
in the biomedical context. In general, the neural models
outperform the feature-based models on two bench-
mark biomedical corpora GENIA and CRAFT. In par-
ticular, BiLSTM-CRF-based models with character-level
word embeddings produce highest POS tagging accu-
racies which are slightly better than NLP4J-POS, while

Table 11 Biomedical event extraction results

System Development Test

R P F1 R P F1

Stanford&Paris 49.92 55.75 52.67 45.03 56.93 50.29

BLLIP+Bio 47.90 61.54 53.8752.35 41.45 60.45 49.1849.19

GENIA Stanford-Biaffine-v2 50.53 56.47 53.3453.18 43.87 56.36 49.3449.47

jPTDP-v1 49.30 58.58 53.5452.08 42.11 54.94 47.6848.88

NLP4J-dep 51.93 55.15 53.4952.20 45.88 55.53 50.2549.08

Stanford-NNdep 46.79 60.36 52.7151.38 40.16 59.75 48.0448.51

CRAFT Stanford-Biaffine-v2 49.47 57.98 53.3952.98 42.08 58.65 49.0049.84

jPTDP-v1 49.36 58.22 53.4252.01 40.82 58.57 48.1149.57

NLP4J-dep 48.91 53.13 50.9351.03 41.95 51.88 46.3947.46

Stanford-NNdep 46.34 56.83 51.0551.01 38.87 59.64 47.0746.38

The subscripts denote results for which TEES is trained without the dependency labels
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the Stanford-Biaffine parsing model obtains significantly
better result than other parsing models.
We also investigate the influence of parser selection

for a biomedical event extraction downstream task, and
show that better intrinsic parsing performance does not
always imply better extrinsic event extraction perfor-
mance. Whether this pattern holds for other information
extraction tasks is left as future work.

Endnotes
1 https://www.ncbi.nlm.nih.gov/pubmed
2 https://www.ncbi.nlm.nih.gov/pmc
3 https://nlp.stanford.edu/~mcclosky/biomedical.html
4 http://bionlp-corpora.sourceforge.net/CRAFT
5http://cistern.cis.lmu.de/marmot
6 https://emorynlp.github.io/nlp4j/components/part-

of-speech-tagging.html
7 https://github.com/UKPLab/emnlp2017-bilstm-cnn-

crf
8 https://nlp.stanford.edu/software/nndep.shtml
9 https://emorynlp.github.io/nlp4j/components/

dependency-parsing.html
10 https://github.com/datquocnguyen/jPTDP
11 https://github.com/tdozat/Parser-v2
12Trained on the PTB sections 0–18, the accuracies

for the GENIA tagger, Stanford tagger, MarMoT, NLP4J-
POS, BiLSTM-CRF and BiLSTM-CRF+CNN-char on the
benchmark test set of PTB sections 22-24 were reported
at 97.05%, 97.23%, 97.28%, 97.64%, 97.45% and 97.55%,
respectively.

13 https://github.com/jbjorne/TEES/wiki/EPE-2017
14 678 of 800 training, 132 of 150 development and 248

of 260 test files are included in the GENIA treebank
training set.

15 http://bionlp-st.dbcls.jp/GE/2011/eval-test/eval.cgi
16 The EPE 2017 shared task [47] focused on evaluat-

ing different dependency representations in downstream
tasks, not on comparing different parsers. Therefore each
participating team employed only one parser, either a
dependency graph or tree parser. Only the Stanford&Paris
team [50] employ GENIA data, obtaining the highest
biomedical event extraction score.
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