P'ng et al. BMC Bioinformatics (2019) 20:42
https://doi.org/10.1186/512859-019-2610-2

BMC Bioinformatics

SOFTWARE Open Access

BPG: Seamless, automated and interactive

@ CrossMark

visualization of scientific data

Christine P'ng'", Jeffrey Green'", Lauren C. Chong', Daryl Waggott', Stephenie D. Prokopec', Mehrdad Shamsi',
Francis Nguyen', Denise Y. F. Mak', Felix Lam', Marco A. Albuquerque’, Ying Wu', Esther H. Jung',

Maud H. W. Starmans', Michelle A. Chan-Seng-Yue', Cindy Q. Yao'~, Bianca Liang', Emilie Lalonde'?, Syed Haider',
Nicole A. Simone', Dorota Sendorek', Kenneth C. Chu', Nathalie C. Moon', Natalie S. Fox'?,

Michal R. Grzadkowski', Nicholas J. Harding', Clement Fung', Amanda R. Murdoch', Kathleen E. Houlahan'?,
Jianxin Wang'*, David R. Garcia', Richard de Borja', Ren X. Sun'?, Xihui Lin', Gregory M. Chen', Aileen Lu'?,

Yu-Jia Shiah'?, Amin Zia', Ryan Kearns' and Paul C. Boutros

1,2,3,56,7,8%

Abstract

statistical environment.

computational pipelines.

plotting.general

Background: We introduce BPG, a framework for generating publication-quality, highly-customizable plots in the R

Results: This open-source package includes multiple methods of displaying high-dimensional datasets and
facilitates generation of complex multi-panel figures, making it suitable for complex datasets. A web-based
interactive tool allows online figure customization, from which R code can be downloaded for integration with

Conclusion: BPG provides a new approach for linking interactive and scripted data visualization and is available at
http://labs.oicr.on.ca/boutros-lab/software/bpg or via CRAN at https://cran.r-project.org/web/packages/BoutroslLab.
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Background

Biological experiments are increasingly generating large,
multifaceted datasets. Exploring such data and communi-
cating observations is, in turn, growing more difficult and
the need for robust scientific data-visualization is acceler-
ating [1-4]. Myriad data visualization tools exist, particu-
larly as web-based interfaces and local software packages.
Unfortunately these often do not integrate easily into
R-based statistical pipelines, such as the widely used Bio-
conductor [5]. Within R, many visualization packages
exist, including base graphics [6], ggplot2 [7], lattice [8],
Sushi [9], circlize [10], multiDimBio [11], NetBioV [12],
GenomeGraphs [13] and ggbio [14]. There is also a broad
range of activity-specific visualization packages focused on
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specific tasks or analysis-types [15—24]. Some of these lack
publication-quality defaults such as high-resolution, ap-
propriate label-sizing and default colour palettes appropri-
ate for gray-scale use and visible for those with red-green
colour-blindness. Many can require significant
parameterization. Others contain limited plot types, pro-
vide limited scope for automatic generation of multi-panel
figures or are constrained to specific data-types. Few allow
interactive visualization, where specific plot elements can be
highlighted and the set of parameters available to customize
them automatically identified and allowing interactive gener-
ation of R code through a GUI interface that visualizes plot
changes in real-time. Thus while each of these visualization
packages has significant value and user-bases, each lacks
some features beneficial for computational biologists and
data scientists.

Good visualization software must create a wide variety
of chart-types in order to match the diversity of data-types
available. It should provide flexible parametrization for
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highly customized figures and allow for multiple output for-
mats while employing reasonable, publication-appropriate
default settings, such as producing high resolution output.
In addition, it should integrate seamlessly with existing
computational pipelines while also providing an easily intui-
tive, interactive mode. There should be an ability to transi-
tion between pipeline and interactive mode, allowing
cyclical development. Finally, good design principles should
be encouraged, such as suggesting appropriate color
choices and layouts for specific use-cases. To help users
quickly gain proficiency, detailed examples, tutorials, an
ability for real-time interactive plot-tuning and an applica-
tion programming interface (API) are required. To date, no
existing visualization suite fully fills these needs.

Implementation

To address this gap, we have created the BPG (Boutro-
sLab.plotting.general) library, which is implemented in R
using the grid graphics system and lattice framework. It
generates a broad suite of chart-types, ranging from com-
mon plots such as bar charts and box plots to more spe-
cialized plots, such as Manhattan plots (Fig. 1; code is in
Additional file 1). These include some novel plot-types, in-
cluding the dotmap: a grid of circles inset inside a matrix,
allowing representation of four-dimensional data (Fig. 1n).
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Each plotting function is highly parameterized, allowing
precise control over plot aesthetics. The default parame-
ters for BPG produce high resolution (1600 dpi) TIFF files,
appropriate for publication. The file type is specified sim-
ply by specifying a file extension. Other default values
contribute to graphical consistency including: the inclu-
sion of tick marks, selection of fonts and default colors
that work together to create a consistent plotting style
across a project. Default values have been optimized to
generate high-quality figures, reducing the need for man-
ual tuning. However, even good defaults will not be appro-
priate for every use-case [15]. Additional file 2: Figure S1
demonstrates a single scatter plot created using four sep-
arate graphics frameworks with either default or opti-
mized settings: BPG, base R graphics, ggplot2, and lattice.
BPG required half as much code as the other frameworks
for both default and optimized plots, while producing
plots with at least similar quality (Additional file 3).

To facilitate rapid graphical prototyping, an online
interactive plotting interface was created (http://bpg.oi-
cr.on.ca). This interface allows users to easily and rapidly
see the results of adjusting parameter values, thereby en-
couraging precise improvement of plot aesthetics. The R
code generated by this interface is also made available
for download, as is a methods paragraph allowing careful
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Fig. 1 Available chart-types. The basic chart-types available in BPG: a density plot, b boxplot, ¢ violin plot, d segplot, e strip plot, f barplot, g
scatterplot, h histogram, i ggplot fit, j qgplot comparison, k Manhattan plot, I polygon plot, m heatmap, n dotmap and o hexbinplot. All plots are
based upon the datasets included in the BPG package and code is given in Additional file 1
J
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reporting of plotting options. A public web-interface is to convey all relevant information within a single
available, and local interfaces can be easily created. chart-type. Combining multiple chart-types allows more
One critical feature of BPG is its ability to combine in depth visualization of the data. For example, one plot
multiple plots into a single figure: a technique used might convey the number of mutations present in differ-
widely in publications. This is accomplished by the ent samples; a second plot could add the proportion of
create.multiplot function, which automatically aligns different mutation types, while a third could give
plots and standardizes parameters such as line widths sample-level information (Fig. 2). We have included a
and font sizes across all plot elements within the final series of example datasets directly in BPG, including the
figure. This replaces the slow and error-prone manual one used to create the visualization in Fig. 2, and the
combination of figures using PowerPoint, LaTeX or source-code for creating this plot from these datasets is
other similar software, or the time-consuming given in Additional file 4.
parameterization of manually align plot locations dir- A number of utility functions in BPG assist in plot
ectly in R with functions like layout(). The necessity of  optimization, such as producing legends and covariate
combining multiple plots arises from the complexity of bars, or formatting text with scientific notation for
datasets — with high dimensional data, it is often difficult =~ p-values. One difficult step in creating figures is the
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Fig. 2 Multiplot example. The create.multiplot function is able to join multiple chart-types together into a single figure. In this example, a central
dotmap conveys the somatic mutations present in a selection of genes (y-axis) for a number of colorectal tumours (x-axis), while adjacent barplots and
heatmaps provide additional information. Within this central dotmap, shaded cells reflect single nucleotide variants (SNVs), while dots in cells reflect
copy number aberration (CNAs), which some patients have both types of aberration in a single gene (shaded cells harbouring a dot). The colour of
the cell or dot indicates the specific type of mutation, using the legend on the left. The bottom heatmap shows key clinical information about each
patient, including their Sex, the Stage of their disease and their microsatellite status (instable, MSI; stable MSS). The barplot to the right shows the
percentage of patients with a SNV or a CNA in that gene. The barplot at the top, equivalently, shows the number of SNVs and CNAs for each patient.
Finally, the second barplot from the top categorizes all SNVs based on the type of base-change that mutation reflects, showing their proportion as a
fraction of the total mutation number. Code used to generate this figure is available in Additional file 4
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selection of color schemes that are both pleasing and in-
terpretable [25, 26]. BPG provides a suite of 45 color pal-
ettes including qualitative, sequential, and diverging color
schemes [27], shown in Additional file 5: Figure S2. Many
optimized color schemes exist for numerous use cases in-
cluding tissue types, chromosomes and mutation types.
The default.colors function produces a warning when a re-
quested color scheme is not grey-scale compatible, a com-
mon concern for figures reproduced in black and white.
This is determined by converting each color to a grey
value between 1 and 100, and indicating differences of <
10 as not grey-scale compatible to approximate a color
scheme’s visibility when printed in grey-scale. To facilitate
reproducibility, image metadata is automatically generated
for all plots, creating descriptors such as software and op-
erating system versions.

Results

Extensive documentation is provided to help new users
learn how to use BPG. To assist researchers in determin-
ing which chart-type is appropriate for their dataset, we
provide plotting examples in the documentation which
are derived from a real dataset and a plotting guide is in-
cluded to explain the intended use-case of each function.
This guide also contains explanations of typography,
basic color theory and layout design which help to im-
prove the design of figures [28, 29]. In addition, an on-
line API is available with both simple and complex
use-case examples for each plot-type to help users
quickly learn the range of functionality available.

Conclusions

BPG has been used in over 60 publications to date
(Additional file 6: Table S1) [30-35]. These plotting func-
tions have been integrated into numerous R analysis pipe-
lines for automated figure generation as part of the analysis
of large —omic data. The plots created by this package are
reproducible and maintain a consistent aesthetic. We be-
lieve that BPG will facilitate improved visualization and
communication of complex datasets.

Additional files

Additional file 1: Code to generate Fig. 1. (TXT 14 kb)

Additional file 2: Figure S1. Comparison of graphical software options
in R. (a-b) are created with base R graphics, (c-d) are created using
ggplot2, (e-f) are made in lattice and (g-h) use BPG. The first plot in each
pair uses default settings, while the second plot has been adjusted for
font sizes, axes ranges, tick mark locations, grid lines, diagonal lines,
background shading and highlighted datapoints. The number of lines of
code used to create default plots are: 10 for base R, 10 for ggplot2, 14 for
lattice, and 5 for BPG. The customized plots use 73 lines for base R, 83 for
ggplot2, 86 for lattice, and 42 for BPG. Code for generating this figure is
provided in Additional file 3. (TIFF 1590 kb)

Additional file 3: Code to generate Additional file 2: Figure S1. (TXT 6 kb)
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Additional file 4: Code to generate Fig. 2. (TXT 11 kb)

Additional file 5: Figure S2. Color palettes. Color palettes are provided
using the default.colors function for (a) generic use-cases and force.co-
lor.scheme for (b) specific use-cases. This display is generated using the
show.available.palettes function. Interactive display of colors is also avail-
able using the display.colors function. (TIF 1036 kb)

Additional file 6: Table S1. Publications using BPG. (DOC 67 kb)
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