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Abstract

Background: Simulation of genetic variants data is frequently required for the evaluation of statistical methods in
the fields of human and animal genetics. Although a number of high-quality genetic simulators have been developed,
many of them require advanced knowledge in population genetics or in computation to be used effectively. In addition,
generating simulated data in the context of family-based studies demands sophisticated methods and advanced
computer programming.

Results: To address these issues, we propose a new user-friendly and integrated R package, sim7000G, which
simulates variants in genomic regions among unrelated individuals or among families. The only input needed
is a raw phased Variant Call Format (VCF) file. Haplotypes are extracted to compute linkage disequilibrium (LD) in the
simulated genomic regions and for the generation of new genotype data among unrelated individuals. The covariance
across variants is used to preserve the LD structure of the original population. Pedigrees of arbitrary sizes are generated by
modeling recombination events with sim7000G. To illustrate the application of sim7000G, various scenarios are presented
assuming unrelated individuals from a single population or two distinct populations, or alternatively for three-generation
pedigree data. Sim71000G can capture allele frequency diversity, short and long-range linkage disequilibrium (LD) patterns
and subtle population differences in LD structure without the need of any tuning parameters.

Conclusion: Sim1000G fills a gap in the vast area of genetic variants simulators by its simplicity and independence from

external tools. Currently, it is one of the few simulation packages completely integrated into R and able to simulate
multiple genetic variants among unrelated individuals and within families. Its implementation will facilitate the application

and development of computational methods for association studies with both rare and common variants.
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Background

With the emergence of next-generation sequencing (NGS)
technologies, the amount of genetic data generated every
year grows exponentially. Developing new methods for
analyzing these data is an area of active research, not only
in human populations but also in plant and animal spe-
cies. It is a common practice to generate large number of
simulated datasets for validation and comparison of novel
bioinformatics tools and statistical methods.
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Simulation programs are a key component of genetic and
genomic research, useful for improving our understanding
of the mechanisms underlying complex biological processes
[1]. Unlike experimental data, where the “truth” is un-
known, simulated data sets are created under particular
scenarios to mimick real biological systems. These so-called
in silico data sets can be used for example, to assess differ-
ent hypotheses, validate statistical methods and compare
the power of different analytical methods. Simulations can
also be used to evaluate conditions such as evolutionary
history, which gives rise to existing genomic data [2].
Genetic simulators might also be useful for creating some
generalizable benchmark data sets and/or reference simula-
tion program(s) for the user community [3]. These bench-
mark data sets could include, for example, multi-ethnic
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sequence data files. Currently, there is a plethora of
simulation programs and packages but a lack of estab-
lished criteria for their evaluation. Therefore, it is difficult
for investigators less familiar with simulation methodolo-
gies to select an appropriate simulation program that sat-
isfies their needs. In many instances, researchers have to
develop customized softwares for the simulation of genetic
data. Chen et al. [2] reviewed several issues of the journal
“Genetic Epidemiology” and found out that out of 36 arti-
cles that included simulated genetic data, only 8 of them
used genetic simulators or simulators already catalogued
in the Genetic Simulation Resources page of NIH [4].
Many resources used for the development and implemen-
tation of genetic simulators are likely redundant.

While many approaches have been introduced for simu-
lations of genetic variants data [5] such as HapGen2 [6],
simuPOP [7] and simuRARE [8], many of those rely on
population evolution theory and pose additional complexity
to researchers developing methods in statistical genetics.

To address some of the shortcomings of existing genetic
simulators, we implemented a genetic variants simulator,
sim1000G, which is user-friendly, completely integrated
into R and fits various simulation purposes. Implementing
sim1000G in R also facilitates the integration of analytic
methods for genetic association tests, many of them being
also available in R. Sim1000G has been designed to simulate
existing genetic variants with a wide range of MAFs under
different study designs including independent individuals
and pedigree data. It was not developed to simulate se-
quence data nor novel genetic variants. Other types of gen-
etic variants such as MNPs, indels, CNVs, functional
annotations can be simulated if they are included in the in-
put VCF file, as long as they are biallelic. The impact of
evolutionary processes (e.g. natural selection on one or
more mutations with its impact on surrounding variants)
and the impact of demographic models (e.g. admixture
populations) was not considered either although a easy way
to simulate admixed populations is given as illustration (see
Results section). The value of sim1000G is also its ability to
create benchmark genetic variants data sets that can be
used subsequently for assessing genetic association meth-
odologies. Compared to most genetic simulators, the inte-
gration of our genetic simulator into R allows a much
simpler workflow and minimal set-up time for the users of
the package. The capacities of sim1000G allow the simula-
tion of genotype data among unrelated individuals as well
as within pedigrees of arbitrary sizes, a feature absent from
most existing genetic simulators.

Implementation

Simulation of genetic variants among unrelated individuals
A realistic genetic simulator of genetic variants data should
preserve the minor allele frequencies (MAF) distribution
and the LD patterns observed in a single homogeneous
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population or in an admixed population. With sin1000G,
this is achieved by reading a phased VCF file containing
both rare and common genetic variants located on a spe-
cific chromosomal region and for a given population. A
common source of VCF inputs is the phased variant calls
from Phase III 1000 genomes sequencing data [9], where
variant calls are available on 2504 samples across 26 popu-
lations. For example, the initial population could be the
European descent subset of the 1000 Genomes and the
gene region be SMADS5. Generating VCF files for sim1000G
can be performed using the bcftools package [10]. An over-
view of the simulation workflow is shown in Fig. 1.

There is no current limit on the size of the simulated
genomic region, i.e. up to a whole chromosome in length,
but the number of genetic variants should not exceed the
computational capability of the R environment. There is
an option in sim1000G for filtering genetic variants with
respect to a minimum or maximum MAF and for the
number of variants allowed, to speed-up computations. It
is also possible to simulate only functional variants or spe-
cific classes of variants by providing a VCF file matching
the required conditions.

After reading through the VCF file, the haplotypes for
a particular population are extracted and the correlation
between each pair of genetic variants is estimated. The
hapsim package in R [11] is used for this step, wherein a
haplotype is modeled as a multivariate random variable
and the corresponding marginal distributions and pair-
wise correlation coefficients are estimated. Hapsim pro-
vides a computationally efficient algorithm to generate
large pools of haplotypes, which are then integrated into
sim1000G. The computation time for this step is propor-
tional to the square of the number of genetic variants
and is the most time-consuming step when sim1000G
is applied to regions with large number of variants. The
size of the region in Mb does not affect the simulation
speed.

Simulating genetic variants for a new individual requires
the generation of two simulated haplotypes for the gen-
omic region considered using hapsim functionality. This
step ensures that the simulated variants data capture both
the allele frequency distribution, short and long-range LD
structure from the genome as well as recombination
hotspots. To enable higher computational efficiency, large
pools of haplotypes are computed in batches. Each time a
VCEF file is read, a pool of 1000 haplotypes is automatically
generated. Once this pool is exhausted, another pool of
1000 haplotypes is generated. The generation of unrelated
individuals is performed with the function generatelinrela-
tedIndividuals in sim1000G.

With this feature, sim1000G can simulate genomic regions
with a wide range of sizes and up to a full chromosome.
Multiple chromosomes can also be simulated as long as the
corresponding VCEF files are provided. Examples of VCF files
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Fig. 1 a Overview of our simulation workflow (function names in parenthesis). b Generating related individuals in sim1000G by following

(b) Recombination process for the
simulation of related individuals

from across the genome are provided on the simI1000G
github page.

The computer memory and computational burden grow
in proportion to the square of number of variants consid-
ered. Simulations of up to 1000-2000 variants can be per-
formed easily on a laptop computer while the generation
of 4000 to 10,000 variants requires the use a workstation
computer with sufficient memory.

Simulation of genetic variants among pedigrees

Since many genetic analyses use pedigree data including
linkage or family-based association studies, an important
feature of simI000G is its ability to simulate genetic vari-
ants among family relatives. A set of functions in sim1000G
allows the modeling of recombination events and offspring
formation assuming diploid individuals and autosomal
chromosomes. This functionality can be used to simu-
late pedigrees of arbitrary sizes together with realistic
genetic variants datasets that preserve the LD structure
of the genomic region considered.

For this purpose, a detailed genetic map of the simulated
region is needed. For human autosomal data, the genetic
maps can be downloaded automatically from an online
database on github (https://github.com/adimitromanolakis/
geneticMap-GRCh37). We provided detailed genetic maps
for all chromosomes obtained by re-mapping (lifting) the
coordinates of the HapMap Phase II genetic map from
build 35 to GRCh37. The original map was generated as
part of the HapMap project [12]. Locations in centimorgans
of each variant included in the simulation are computed
from the corresponding base pair position.

Modeling recombination events with sim1000G is per-
formed by selecting one of two models: an interference

chi-squared model or a simple no-interference model.
These models are used to generate inter-recombination
distances on a chromosome and the recombination events
that occur in the simulated genomic region are used to re-
combine the parental haplotypes. The model with interfer-
ence was adapted from a two-pathway model previously
described in Housworth and Stahl [13].

The function mate automates the above process and
generates one or more offspring as specified in the pedi-
gree structure from two previously simulated individuals.

Analysis methods dealing with familial data often require
the estimation of identity by descent (IBD) probabilities
between pairs of relatives. Through its simulation model,
sim1000G tracks all ancestral haplotypes and alleles for
each recombination event. This allows the computation of
the exact IBD state at each position of the simulated region.
The function computePairIBD12 computes the exact IBD 1
and IBD 2 proportions for each pair of individuals.

Computational efficiency

The total running time of siml1000G was evaluated
using a laptop computer with a 2GHz processor and
4GB of RAM. Only one CPU core, out of the 4 avail-
able, was used for all timing reports. The number of
simulated individuals varied from 100 to 8000 and the
number of variants from 100 to 1600. Even when con-
sidering thousands of individuals, the entire simulation
process with sim1000G was completed in less than 10s.
The simulation of an entire genomic region of size
1MBp with 400 variants on 4000 individuals was fin-
ished in less than 8 s (Fig. 2), including the initialization
time of the simulator.
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Fig. 2 Running time of sim1000G when simulating a specific number of individuals and number of variants (timings include the simulation
initialization time). The simulated region length does not affect the simulation time
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Results hapgen2 seems to slightly underestimate the MAF and
Comparison with other genetic variants simulators has larger variability than sim1000G. Finally, simuGWAS
We compared siml000G to two other competing and has excessive variability and the allele frequency estima-
well established genetic variants simulators: hapgen2 [6]  tion diverged widely from the original data. This latter
and simuGWAS [14]. We assessed how these simulators  software does not aim to preserve MAF distributions as
preserve the allele frequency distribution and correlation  best as possible because the seed population and result-
structure across genetic variants in a real genomic region.  ing population are both “samples” of the truth.

We used the default parameters specified by each software

(Additional file 1) and simulated 2000 genetic variants  Comparison of correlation structure

spanning location 1 to 10MBp on chromosome 1. The LD structure across genetic variants was the most
accurately estimated with the simulators sim1000G and
Comparison of allele frequency distribution hapgen2, which preserved both long and short range LD

Among the three simulators tested, simI000G provided (Fig. 3b). Hapgen2 yielded better LD estimates for pairs
the most accurate allele frequency distribution estimates  of genetic variants distant less than 250 kb apart while
compared to the original data (Fig. 3a). The simulator  sim1000G performed better to capture subtle patterns of
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Fig. 3 Comparison of simulated genetic variants to their original population. a: Allele frequency comparison between the original genetic variants
and the simulated ones. b: Decay of LD patterns for the original data and the 3 simulators tested. Each curve shows the average value of
pairwise LD (%) between genetic variants with respect to the distance between these variants
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long-range LD for pairs of variants more than 250 kb
away from each other. The simulator simuGWAS could
not estimate accurately the patterns of LD observed in
the original population.

Correction for population structure in genetic association
studies

Population stratification is a common problem in genetic
association studies, usually arising when cases and controls
are sampled at differential rates from genetically divergent
populations [15]. Methods based on principal components
analysis can be applied to correct the test procedure for
type-1 error inflation [16]. In this context, being able to
simulate realistic data sets mimicking population stratifica-
tion problems can help evaluating how particular methods
correct this bias. Our new simulator simI000G has this
capacity. As an illustration, we generated datasets of genetic
variants from different ethnic groups. The population gen-
etic heterogeneity leads to a significant number of false
positive associated variants. We obtained the p-values for
the association tests based on the SKAT method [17], be-
fore and after correction for population stratification.

We extracted a set of 200 genes from the 1000 genomes
sequence data located on chromosome 4. Individuals from
two distinct populations were selected: a European sub-
set (populations CEU, TSI and GBR) and an African
subset (populations ASW, LWK and YRI). For each
gene, we filtered out genetic variants with MAF <2%
and generated the corresponding VCF files for use with
sim1000G.

In total, 1000 replicate datasets were generated for
each gene, with a total of 2000 individuals in each repli-
cate. To create distinct LD patterns and allele frequency
distributions, each ethnic group was generated inde-
pendently with sim1000G and the genotypes were com-
bined to create common sets of variants.

An outcome y; was generated for each individual i,
given its simulated genotypes G, ;, where j€ {1, ..., J} de-
notes the genetic variant j from a standard logistic re-
gression model:

logit(P{y; = 1}) = bo + b1s; + Z/':l,...,}Gi’i xcj, (1)

where by is a baseline parameter, s; a population stratifica-
tion term, assumed O for individuals from the European
subset and 1 otherwise, b, is the odds ratio of the disease
risk between Africans and Europeans, and ¢; the effect size
(i.e. log odds-ratio) for a specific variant j (j = 1,...]).

Each simulated dataset included 3 causal genes, each
with J=10 causal genetic variants. The effect size of
each variant was fixed in the range of log(1.5) to log(5).
The number of individuals from African descent varied
between 0 to 400 in order to simulate different magni-
tudes of population stratification effects.
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SKAT [17] was used to obtain the association test
p-value under 2 scenarios: (a) with no covariates or (b)
with the ethnic group as covariate as a way to adjust for
population stratification.

The results from 16 different simulation scenarios are
shown in Table 1. In Fig. 4, an example of a QQ-plot
representing the simulation results is given. The SKAT
test is able to correct for population structure bias with
very little loss of power.

Power calculation for rare variant (RV) association test

To assess the performance of genetic association tests with
RVs under a case-control design, simulations of RV geno-
types from cases and controls are necessary. Sim1000G can
be used in this context.

As an illustration, we evaluated the statistical power of
several RV association tests (Burden, SKAT and SKAT-O
[18]) under different scenarios where we varied the sam-
ple size and length of the chromosomal region. The pa-
rameters for generating the data with sim1000G included:
(a) The length n of the simulated region, where # corre-
sponds to the number of variants with genetic variations;
(b) The range of MAFs for the simulated variants.

We simulated the phenotype data of individuals using
a logistic regression model similar to eq. (1). We assumed
that the effect size of a causal variant is inversely propor-
tional to its MAFE, B = (In5/4)*|log;oMAF| [17] and that
the proportion of causal variants was similar across differ-
ent simulated regions. The number of cases and controls
was either 250 or 1000 in each simulated dataset.

To assess the quality of the generated data, we com-
pared sim1000G to the simuRareVaraints (SRV) script
[19], implemented in the simuPOP [7] software, in terms
of MAF distribution and association results.

Table 1 Power (0=0.05) for the SKAT test under the population
stratification scenario and varying levels of stratification. 10
causal variants were selected in causal genes. n,: number of
individuals of African descent out of 2000 individuals

OR n,=0 100 200 400
Power (no covariate adjustment)
1.5 65.95% 58.40% 50.80% 30.77%
1.8 87.76% 83.35% 77.40% 54.17%
3 99.32% 99.25% 98.69% 93.91%
5 99.85% 99.90% 99.81% 99.40%

Power (with population as a covariate)

1.5 64.29% 64.56% 62.52%
1.8 87.35% 86.77% 85.10%
3 99.27% 99.15% 99.25%
5 99.83% 99.86% 99.90%
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Fig. 4 Examples of 2 Q-Q plots of SKAT p-values under two simulation scenarios: a Significant population stratification and no covariates adjustment,
(b) With covariate adjustment. Solid points: true causal genes. Total number of genes was 200 with 3 causal genes, each with 10 causal variants

We first used SRV to simulate a population of DNA
sequences with RVs forward in time, subject to muta-
tion, natural selection and population expansion. The
region lengths were 50 k bp, 100 k bp and 300 k bp, which
correspond to 72, 147 and 442 genetic variants respect-
ively, in the region having mutations in the population. A
gamma distribution was used for the selection coefficient
of the new mutants, assuming a complex bottleneck
model for the European population [20]. All other param-
eters of the simulator were based on the default setting of
the script.

In Table 2, we notice that a larger proportion of genetic
variants falls into the correct pre-specified range of MAFs
when using sim1000G vs. SRV. In Table 3, we found that
the power of the RV association tests differs depending
upon which simulator was used to simulate the data. In
terms of computation time, sim1000G was more efficient
and easier to implement than simuPOP. Indeed, the
former only simulates genotype data for a pre-specified

sample size while the latter requires for each simulation
scenario to generate of a huge initial population from
which the final set of individuals is extracted.

Family-based association test for diseases with variable
age at onset

Family-based study designs allow the characterization of
gene mutation effect on the disease risk by considering
related individuals. A few methods have been developed
for testing sets of genetic variants in family studies but
only few approaches were proposed in the context of
right-censored time-to-event data [21].

A correlated frailty model can be used to test the asso-
ciation between a set of genetic variants and a survival
outcome in family studies [22]. In this model, the
within-familial correlation is specified by an IBD sharing
probabilities matrix. For an individual i, i =1, ..., 1y from
a family f=1, ..., n, the risk for developing a disease is
defined by the hazard function:

Table 2 Proportion of variants within each MAF range category. The MAF range we specified when simulating the data was [0.0005,0.01]

N_cases = N_controls = 250

N_cases = N_controls = 1000

Simulator MAF range [0,0.0005) [0.0005,0.01] (001,05 [0,0.0005) [0.0005,0.01] (0.01,0.5)

sim1000G n=72 9.00% 89.10% 1.80% 0.10% 98.60% 1.30%
n=147 14.30% 85.10% 0.60% 0.70% 99.10% 0.20%
n=442 14.40% 84.00% 1.60% 0.70% 98.50% 0.80%

simuPOP n=72 33.20% 65.30% 1.50% 14.60% 84.30% 1.10%
n=147 27.90% 70.00% 2.10% 11.40% 86.70% 1.90%
n=442 28.20% 69.20% 2.70% 11.70% 86.80% 1.60%
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Table 3 Statistical power comparison
N_cases = N_controls = 250 N_cases = N_controls = 1000
Simulator MAF range SKAT Burden SKAT-O SKAT Burden SKAT-O
sim1000G n=72 21.00% 19.00% 27.00% 70.00% 53.00% 76.00%
n=147 19.00% 32.00% 28.00% 71.00% 77.00% 82.00%
n=442 47.00% 81.00% 82.00% 98.00% 99.00% 100.00%
simuPOP n=72 26.20% 20.90% 28.80% 87.90% 59.90% 88.20%
n=147 28.70% 20.80% 30.50% 92.40% 56.30% 91.70%
n=442 66.80% 69.90% 78.40% 100.00% 99.70% 100.00%

As(t]b) = Ao(2) eXP(bﬁ +X},/J’),
with b= {bs,i=1,...,np,f =1,..,n}~MVN(0,5(0))

(2)

and where 1y(2) is a baseline hazard function, e.g. the
Weibull hazard function Ao(¢) =% (£)” - Xj, is the vector
of non-genetic covariates and 8 are the corresponding
regression coefficients. The random effects b are nor-
mally distributed and correlated with each other. The
covariance matrix X(o) defines the dependence structure
using the IBD matrix B, %(0) = 0”B. The frailty parameter
o” represents the familial correlation related to the SNP
or region of SNPs included in the calculations of the
IBD probabilities. The estimators of the model parame-
ters (p, A, B, 0?) are found using a conditional maximum
likelihood estimation that accounts for the selection bias
coming from the sampling of families through affected
probands [23]. The procedure was implemented in the R
package frailtypack [24].

We performed simulation studies where the goal was
to evaluate the type I error and the power of genetic as-
sociation tests when the model is correctly specified.
The number of families was N =100, N=200 and N =
500. Using sim1000G, we generated families of three
generations: parents, one or two children in the second
generation and one or two children in the third gener-
ation (for each second generation individual). For gener-
ating the genotypes, we used the region from 1000
genomes Phase III sequencing data VCF files and a gen-
etic map GRCh37 from the corresponding chromosome
4. The assumed MAF ranged from 0.02 to 0.1. The pedi-
gree structures and mean IBD (mIBD =IBD1 + IBD2/2)
were used to generate time-to-event data with the func-
tion simfam from the R package FamEvent [25]. We
used gender as the non-genetic covariate and fixed S,
to 0.5. The time of right-censoring was equal to an indi-
vidual’s current age sampled from the normal distribu-
tion with variance 2.5 and mean fixed to 95, 75 and 55
for the first, second and third generation, respectively.
Values for the Weibull parameters were chosen to obtain

around 60% of censored cases in the samples (A =143
and p = 3.0).

For generating the survival times, we used the model
(2) with genotypes as covariates to modify the risk of
disease. The number of variants was s =3, we assumed
that they have equal effect on the disease risk, 5; =5
= B3, this effect was fixed at 0.0, 0.5 or 1.0. In all the set-
tings, we used model (2) for the estimation with the
function frailtyPenal from the package frailtypack [20].
In order to evaluate the association test for the assumed
genotypes, the frailty variance parameter, 0?, was fixed at
0.0 under the null hypothesis (no association) and esti-
mated under the alternative (association). The p-values
were obtained using likelihood ratio test, in which, under
the null the asymptotic distribution of the test statistic is
the mixture of x7 and y? with equal probability 0.5.

The results of the simulation studies using 500 repli-
cates are presented in Table 4. In all scenarios, i.e. for dif-
ferent number of families, the type I error was close to the
nominal value of 5%. As expected, the power increased
with the number of families and the assumed values of the
genotypes effects f5;. The power is low when the effect of
genotypes is fixed to 0.5, which means that the test detects
the genetic association only if the effect of genotypes on
survival is strong. When the genotype effects are fixed to
1.0, for all sample sizes, the association test is very power-
ful. For datasets with 500 families, the test detects the as-
sociation in all the replicates.

Conclusion
We have developed the R package sim1000G for easy
generation of simulated genetic variants under realistic

Table 4 Estimated type | error and power over 500 simulations
for the association test

N =100 N =200 N =500
s 3 3 3
By=+--=B.=0 56 42 50
Bi=+-=B=05 357 532 60.0
Bi=-=B=10 9.8 994 100.0
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scenarios, mimicking the 1000 Genomes project or any
other phased variant call VCF files. The capabilities of
the package allow the simulation of genetic variants data
in tens of thousands of individuals, generated either in-
dependently or within pedigrees of arbitrary sizes.

Compared to other simulators designed to simulate
existing genetic variants, sim1000G provides a very effi-
cient and compelling approach to simulation, completely
integrated within the R environment. Besides, it avoids
the need for complex scripts and is independent from
external packages/softwares. It allows the generation of
realistic genetic variants data, from 50 variants in Euro-
pean families to > 1000 variants in populations of inde-
pendent individuals with mixed ethnicities. Sim1000G is
able to perform these tasks under minimal computa-
tional burden, user interaction or set-up time. We have
not yet implemented phenotype simulations as part of
sim1000G to give more flexibility to the users to perform
this task. A number of examples of phenotype simula-
tions are however included in the Additional file 1.

The applications described in this paper demonstrate
the versatility of sim1000G to perform analyses and sim-
ulations for various genetic problems. Our first applica-
tion simulated unrelated individuals from a single
population to compare the MAF distributions and pat-
terns of LD of siml1000G to competing simulators. Our
second example showed that sim1000G can be used to
create admixed populations of unrelated individuals and
such simulated data can be useful to assess methods that
correct for population stratification, using either rare or
common variants (or both). The third example, which
simulated unrelated individuals from a single population,
shows the interest of sim1000G to assess the power and
type I error of various methods to detect genetic associ-
ation with a set of RVs. Finally, our last application
shows how sim1000G can be used to simulate sequence
variants data in pedigrees and assess the power and type
I error of various methods to detect genetic association
in this setting.

Therefore, our implementation of sin1000G should facili-
tate future applications and developments of computational
methods for association tests with both rare and common
variants, using either unrelated individuals or families. Many
more simulation situations than those presented here, could
benefit from a package such as sim1000G.

Sim1000G is available for download on CRAN under
the package name sim1000G and the most recent ver-
sion is also available on github, at: https://github.com/
adimitromanolakis/sim1000G.

Availability and requirements
Project name: sim1000G.

Project home page: https://github.com/adimitroma-
nolakis/sim1000G
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Operating system(s): Platform independent.

Programming language: R.

Other requirements: R packages of stringr, readr and
hapsim (available in CRAN).

License: GNU GPL.

Any restrictions to use by non-academics: No
restrictions.

Supplementary information: Available on the journal’s
online website.

Additional file

[ Additional file 1: Supplementary materials. (PDF 216 kb) ]
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