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Abstract

Background: Single-cell sequencing experiments use short DNA barcode ‘tags’ to identify reads that originate from
the same cell. In order to recover single-cell information from such experiments, reads must be grouped based on
their barcode tag, a crucial processing step that precedes other computations. However, this step can be difficult
due to high rates of mismatch and deletion errors that can afflict barcodes.

Results: Here we present an approach to identify and error-correct barcodes by traversing the de Bruijn graph of
circularized barcode k-mers. Our approach is based on the observation that circularizing a barcode sequence can yield error-
free k-mers even when the size of k is large relative to the length of the barcode sequence, a regime which is typical single-
cell barcoding applications. This allows for assignment of reads to consensus fingerprints constructed from k-mers.

Conclusion:We show that for single-cell RNA-Seq circularization improves the recovery of accurate single-cell transcriptome
estimates, especially when there are a high number of errors per read. This approach is robust to the type of error
(mismatch, insertion, deletion), as well as to the relative abundances of the cells. Sircel, a software package that implements
this approach is described and publically available.
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Background
Tagging of sequencing reads with short DNA barcodes is a
common experimental practice that enables a pooled se-
quencing library to be separated into biologically meaningful
partitions. This technique is in the cornerstone of many
single-cell sequencing experiments, where reads originating
from individual cells are tagged with cell-specific barcodes;
as such, the first step in any single-cell sequencing experi-
ment involves separating reads by barcode to recover
single-cell profiles ([7, 20, 22]. For example, in the Drop-Seq
protocol, which is a popular microfluidic-based single-cell
experimental platform, DNA barcodes are synthesized on a
solid bead support, using split-and-pool DNA synthesis [10],
and this approach has been applied to obtain single-cell tran-
scriptome profiles from a number of model- and non-model
organisms [3, 6, 13, 16, 19, 21]. Similar split-and-pool bar-
coding strategies are used in other single-cell sequencing as-
says such as Seq-Well [4] and Split-seq [14]. One
consequence of this synthetic technique is that deletion

errors are extremely prevalent; by some estimates 25% of all
barcode sequences observed contain at least one deletion
[10]. Ignoring such errors can therefore dramatically lower
the number of usable reads in a dataset, while incorrectly
grouping reads together can confound single cell analysis.
Current approach to “barcode calling”, the process of

grouping reads together by barcode, use simple heuristics
to first identify barcodes that are likely to be uncorrupted,
and then “error correct” remaining barcodes to increase
yields. However the complex nature of errors, that unlike
sequencing based error also include deletions, can lead to
large number of discarded reads (reads that could not be
assigned to a barcode) [10]. Additionally, some current ap-
proaches require that the approximate number of cells in
the experiment be known beforehand, and in some experi-
mental contexts such information is not easily obtained.
In such experiments, there are two major approaches

toward generating barcodes. In the used by 10× Genom-
ics among others, barcodes drawn are from a known
‘whitelist’ of sequences, and as such this prior knowledge
of a whitelist can be used to simplify error-correction
and read assignment. On the other hand, the barcodes
generated though split-pool synthesis (including
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Drop-seq) are random and no prior information can be
used for either error-correction or read assignment. The
problem of identifying true barcodes from among many
sequences corrupted by mismatch and deletion errors
seemingly requires a multiple sequence alignment, from
which errors can be detected and corrected [24]. How-
ever unlike standard biological sequence alignment set-
tings, the single-cell barcode identification problem
requires analysis of millions, if not billions of different
sequences. On the other hand, the problem is con-
strained in that the sequences are short (barcodes are
typically 10–16 bp long) and the length of each barcode
is the same and known.
Here, we present a fast and error-robust k-mer based

approach to detecting random barcodes from sequencing
data. Our software circumvents the need for complete
(and intractable) multiple sequence alignment, by making
use of the idea of circularizing the sequences that are to
be error corrected, and rather than pursuing a multiple se-
quence alignment approach, we instead borrow ideas from
genome assembly. However unlike assembly methods de-
veloped for reconstructing circular genomes [5] our use of
circularization is merely a method for adding robustness
to the k-mer fingerprinting of barcodes.
Our methods are implemented in software called Sircel

whose input is a list of reads and which outputs the num-
ber and sequences of cell-barcodes from error-containing
datasets in an unbiased manner. Our implementation is
robust to insertion, deletion, and mismatch errors, and re-
quires a minimal number of user-inputted parameters.
The output is compatible with downstream single-cell
analysis tools such as kallisto [1, 11].

Implementation
K-mer counting is a fast and well-established technique that
has previously been used to dramatically speed up the as-
signment of reads to transcripts for RNA-seq (N. L. [1, 12];
Z. [23]) and metagenomics[17] and as such might be applic-
able to barcode calling. We reasoned that by counting
k-mers we could rapidly identify error-free subsequences
within the context of a larger error-containing read. [8, 18]
The intuition behind our approach lies in the fact that while
many copies of the same barcode may contain a different
profile of errors, pairs of such barcodes may share some
overlapping subsequence that is error free. However as the
barcode errors are expected to be random, it is unlikely that
several reads will share the exact same error pattern. Thus,
multiple error-containing reads will share k-mers only in
their error-free regions where the overlap, while the
error-containing k-mers are expected to be unique. As such,
frequently occurring k-mers would arise from error-free re-
gions of barcodes, while much less overlap would be ex-
pected from error-prone k-mers. Similar reasoning has been

previously used to rapidly detect and reject error-containing
reads from RNA-seq and DNA assembly [9, 18].
One difficulty associated with error-correcting barcodes

using this technique lies in the fact that barcodes are typ-
ically very short: for example Drop-Seq barcodes are 12
base pairs long. Conversely in order for a k-mer counting
approach to be feasible we must pick a moderately large
value for k, typically k = 8. As a result there are many posi-
tions on a barcode where a single error would ensure that
none of its k-mers are shared with an error-free barcode.
To circumvent this problem we circularize the barcode se-
quences before counting k-mers; this ensures that bar-
codes containing a single mismatch error still share
k-mers with the error-free sequence, independent of
where the error occurred within the barcode (Fig. 1a).
Furthermore this approach with a small modification al-

lows for addressing the possibility of insertion or deletion
error. In a Drop-seq style experiment, if a barcode did con-
tain a deletion error (at an unknown position), then nucleo-
tide at the expected last position of the barcode actually
arises from the first nucleotide of either an adaptor sequence
or a molecular identifier. As such, the circularized barcode
sequence will contain a single incorrect nucleotide, resulting
in a large number of incorrect k-mers. However, if before cir-
cularizing, the sequence is truncated by one nucleotide, then
incorrect nucleotide is removed, allowing the circularization
to contain a majority of correct k-mers. This provides the
same robustness to positional errors, but additionally allows
for robustness to deletion errors. A similar operation can be
performed to handle the possibility of insertion errors: in this
case, the sequence that is circularized is the observed bar-
code, extended by one nucleotide (into the adaptor / mo-
lecular identifier sequence).As every read contains unknown
mutation type(s), we perform all three circularization opera-
tions before counting k-mers. Thus, we obtain a set of
error-free subsequences that derive from the ‘true’ barcodes.
This procedure guarantees that all reads with either zero or
one error contribute some error-free k-mers, while reads
with two or more errors sometimes contribute error-free
k-mers, depending on the spacing between the errors.
We use these k-mer counts to identify and error-correct

complete barcodes. To do this we build and traverse a di-
rected, weighted de Bruijn graph [2]. In this graph, nodes rep-
resent subsequences of length k - 1, and an edge represents
two nodes that directly adjacent to each other in at least one
k-mer. The weight of these edges relates to how many times
each edge (k-mer) was observed in the entire dataset. Add-
itionally as the barcode portions of these reads are stranded,
these edges are directed by the order of their appearance in
the read (5′ to 3′). In this graph, which originates from circu-
larized barcode sequences, a cyclic path of length l represents
a possible barcode sequence of the same length. We define
the capacity of a path to be the weight of the lowest edge
within that path. Thus, high-weight paths represent possible
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barcodes that contain frequently observed k-mers, while
low-weight paths likely represent cycles that formed spuri-
ously. This is depicted in Fig. 1b and c. We emphasize here
that we do not need any single read to contain all k-mers in a
high-weight path / error-corrected barcode; it is the overlap of
many k-mers that likely originate from a number of reads that
gives rise to such a path.
To rapidly identify cyclic paths from this graph we use a

greedy depth-first recursive search (Algorithm 1a). Briefly,
this algorithm works by first (randomly) picking a node from
the graph to initialize the search. Each of the outgoing edges
that connect to this node is checked, in descending order of
the edge weights. This step is repeated for each of the chil-
dren nodes, for a fixed number of steps given by the length
of the barcode (a user-supplied parameter). If at the end of
these steps the procedure returns to the same node where it
began, a cycle has been found. We use a similar procedure
to identify multiple cycles within a graph. After the first cycle
has been found we decrement the edge weights of all edges
in that cycle by its capacity (the weight of the lowest weight
edge in that cycle). This has the effect of removing one edge
from the cycle (thereby breaking it) while removing any con-
tribution that cycle had to any other edges. We then repeat
the procedure in Algorithm 1a until there are no more cy-
cles present in the subgraph. We then repeat this process,
starting from a new node, and new nodes are selected from
the common k-mers in the dataset. This is described in some
more detail in Algorithms 1a and 1b.

This approach identifies several cyclic paths from the bar-
code de Bruijn graph, and the depth of this search is deter-
mined by user-supplied parameters. As only a subset of
these paths represents a true error-corrected barcode se-
quence, we filter the paths based on their path weight. We
hypothesized that paths representing a true error-corrected
barcodes would have a higher capacity than paths that con-
tained errors, or paths formed by spurious k-mer overlap be-
tween [barcode-wise] unrelated sequences. To verify this
hypothesis we plotted the cumulative distribution of path
capacities, and observed a clear inflection point, correspond-
ing to a subset of paths that had a significantly higher cap-
acity than the rest of the population. We computationally
identified this inflection point as a local maximum in the first
derivative of the cumulative distribution function. This was
facilitated by first smoothing the CDF.
Paths are then thresholded at this inflection point, and

paths with capacities higher than the threshold value are
deemed error-corrected barcodes, while the rest of the
paths are rejected. We then assign each read in our data-
set to one of the error-corrected barcodes based on ei-
ther k-mer compatibility or Levenshtein distance. When
assigning a read by k-mer compatibility, a read is
assigned to the consensus barcode with which it shares
the most k-mers. A read is only assigned to a consensus
barcode if it shares a minimum number of k-mers with
it (a user-specified parameter). With this protocol, we
can vary the length of k (a user parameter) to affect the

Fig. 1 A strategy to use k-mer counting to identify sequence barcodes. a Circularizing barcodes ensures robustness against single mismatches.
An example sequence ‘BARCODE’ contains an error (highlighted in red). When the barcode sequence is short relative to k, all k-mers from this
sequence will contain the mutated base. Circularizing the sequence (bottom) ensures that there will be some error-free k-mers from a sequence
independent of the position of the error. b An example circular k-mer graph containing one barcode. Error-containing reads were simulated from
a ground-truth barcode. Reads were circularized and k-mers were counted. The resultant k-mer graph is plotted here. Nodes in this graph are
represented as gray dots, and edges as blue lines. Edges weights are represented by shading (dark = high edge weight). Despite a fairly high rate
of error (Poisson 3 errors per 12 nucleotide barcode), the true barcode path is visually discernable with a modest number of reads. c An example
circular k-mer graph containing three barcodes. Same as above
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output data in a predictable manner. Assigning reads
using larger k than that used to assign reads enables us
to call error-free barcodes with the higher stringency,
while assigning a large number of reads (Algorithm 2).
In general, in order for this approach to use information
contained in reads with one or more errors, we require
that k be smaller than the length of the barcode. Add-
itionally reads with two or more errors can sometimes
contribute error-free k-mers (depending on the relative
spacing of these errors in the circularized sequence), and
the frequency with which this occurs increases as k de-
creases. However, the number of nodes in the de Bruijn
graph is also reduced as k decreases leading to an in-
crease in spurious edges between nodes, obfuscating the
cyclic paths that represent true barcodes. As such, for a
typical drop-seq barcode of length 12 we recommend
using a value of k that is at least 8 nucleotides in length.
Finally, to improve performance we make a small modi-

fication to the protocol outlined above. Rather than build-
ing a de Bruijn graph of the entire barcode dataset, we
instead build a new subgraph for each new node we
initialize the search with. This subgraph is built by first
extracting all the reads which contain the start k-mer (in
any of its circular permutations), and then building a de
Bruijn graph from these reads. As the subgraph was built
only from reads that contain the start node, this subgraph
only contains nodes that are indirectly connected (within
a fixed number of steps) to the start node. This substan-
tially simplifies the search procedure while leaving per-
formance unaffected. To rapidly build these subgraphs we
prepare a k-mer index of the input dataset, which maps a
k-mer to a list of reads that contains that k-mer. When
performing a search from a random start node, we query
the k-mer index for the start node and prepare a de Bruijn
graph from only the subset of reads returned by the query.
As this index can be quite large (for Drop-seq, which uses

12mer barcodes, each read produces 36 circularized and
truncated / extended k-mers to be indexed), which results in
an extremely large index. We further simplify this protocol
by preparing the index from a subset of the reads. This ap-
proximation also does not affect performance, as long as the
subset is representative of the entire dataset. We can identify
when we have obtained a representative sampling of the data
when the k-mer counts distribution has become stable. The
exact parameters for this depend on the sequencing depth,
number of barcodes, error rate and likely other parameters;
however in our tests simply indexing ~ 0.5m reads is suffi-
cient (Table 1).

Results
To benchmark our algorithms’ performance and estab-
lish it’s performance limits, we performed a large num-
ber of simulations, under a wide variety of scenarios. We
also compared Sircel’s performance against a naïve

pipeline based on simple k-mer counting that is not be
able to handle insertion / deletion errors. We produced
a fixed number of ‘true’ barcodes, and produced reads
by adding a Poisson number of errors to each read.
Error positions were selected uniformly at random, and
separate datasets were produced for insertion, deletion,
mismatch, and all errors. We also varied the barcode
abundance distributions between normal, uniform and
exponential. For each condition we produced 3 separate
datasets and evaluated our algorithms’ performance on
each. Finally, we evaluate the effect of assigning reads to
barcodes using either kmer compatability and Levensh-
tein distance.
As shown in Additional file 1: Figure S1, our algorithm

is able to identify the error-free barcode sequences inde-
pendent of the number of Poisson errors per read. How-
ever we do see a dependence on the specific error type:
mismatch errors are better tolerated than insertion or
deletion errors. Additionally we find that the barcode
abundance distribution strongly affects our ability to de-
tect and error correct barcodes as the error rate in-
creases, with normally distributed barcode abundances
being far easier to handle than exponentially distributed
abundances. We also used our simulations to evaluate
how well we could assign reads to error-corrected bar-
codes (Additional file 1: Figure S2). Here we see a simi-
lar trend with exponentially distributed barcode
abundances causing a higher rate of incorrect read as-
signment with both the naïve pipeline and our approach.
Importantly however our algorithm outperforms the
naïve approach in these circumstances. In these experi-
ments we observe that using Levenshtein distance to
assign reads to consensus barcodes results in a higher
rate of correct read assignment. However, these two
approaches differ significantly when evaluating the
number of unassigned reads for each of the workflows
(Additional file 1: Figure S3). Together these results
show that assigning reads based on Levenshtein distance
results in fewer reads being incorrectly assigned, but a
higher number of reads being unassigned to any single
barcode. This conservative approach to barcode assign-
ment is likely more useful in a real sc-RNA-seq dataset,
and as such is the default behavior of the program.
We next validated our approach on real data, by

attempting to identify and error-correct barcode se-
quences in multiple real datasets. We re-analyzed a pre-
viously published species-mixing Drop-Seq experiment

Table 1 Run time for downsampled Macosko et al., datasets

Number of reads in dataset Number of cells detected Time

1,000,000 562 6 m 39 s

10,000,000 575 51 m 08 s

100,000,000 574 360m 31 s
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published by Macosko et al., as well as a similar experi-
ment from the unrelated SeqWell protocol. Although
the methods differ, both experiments involved single-cell
sequencing of a mixture of human and mouse cells, and
as such it served as a useful control for barcode calling:
if the calling performs well, cells should only contain hu-
man, or mouse reads but not both. We used our algo-
rithm on this data and as expected found a clear
inflection point in the cumulative distribution of bar-
code paths. We could readily identify this inflection by
its smoothed first derivative, and thresholding the paths
at this inflection point yielded 582 barcodes, each of
which had accounted for approximately the same num-
ber of reads (Fig. 2a and b). These values were consistent
with previously reported values from the same dataset.
We then quantified single-cell expression profiles using
combined human/mouse transcriptome, once again
using an algorithm derived from k-mer counting [kal-
listo]. As seen in Fig. 2c, ‘cells’ that represent collections
of reads clustered by similar barcode k-mers have an
fairly even number of reads, as is expected from a
single-cell RNA seq experiment. Additionally, these cells
exhibit distinct expression profiles, and in nearly every
case cells appear to consist of reads deriving entirely from
one species (Fig. 2d and Additional file 1: Figure S5). This
result indicates that our k-mer counting approach can
be used to group reads into single-cell datasets. Fi-
nally, we note that deletion errors do pose a real
problem in these datasets. To evaluate the extent to
which deletion errors in the split-pool bead barcode
synthesis protocol affect these datasets we calculated
either the Levenshtein distance or the Hamming dis-
tance between a consensus barcode and each read
that is assigned to it (Additional file 1: Figure S4).
We see that the Hamming distance is systematically
higher than the Levenshtein distance indicating that
at least some insertion/deletion errors are present in
and affect the majority of cells in a Drop-seq
experiment.

Discussion
We have shown how a de Bruijn graph formulation of
the barcode calling problem based on circularization of
input sequences is a useful approach to identify and
error-correct barcode sequences. Our approach simpli-
fies the problem of sequence error correction by re-
phrasing it as a k-mer counting question, and as such is
simple and relatively fast. Furthermore it does not rely
heavily on user-supplied parameters or any prior know-
ledge about the exact nature of the sequencing errors; as
such we expect it to be applicable to a number of differ-
ent single-cell barcoding techniques that differ in the
exact nature of the barcode generation chemistry. We
also show that our approach produces usable data from

real-world datasets, and that our integrated pipeline
using kallisto and transcript compatibility counts is an
effective approach for rapid and accurate analysis of
Drop-Seq single-cell RNA-Seq data.
We benchmarked our algorithm using an extensive set

of simulations that systematically varied the error rate per
read, the error type, and the abundance of each barcode
[single-cell] within the dataset. From these simulations we
observe that the barcode abundance distribution makes a
significant difference to performance, with normally- and
uniformly- distributed barcode abundances being far bet-
ter tolerated than exponentially distributed barcodes. This
behavior is expected; with exponentially distributed bar-
code abundances, the inflection point in the CDF of cyclic
path weights is obscured, making it difficult to distinguish
between a true barcode path with low abundance, and an
error-containing path with relatively high weight. Notably,
exponentially distributed barcode abundances are not ex-
pected (and indeed not observed) in real data: the total
RNA content from any given single cell in an experiment
are typically approximately uniformly distributed.
These simulations also demonstrated that although

our method is tolerant of errors when identifying and
error-correcting barcode sequences, errors lower its abil-
ity to assign individual reads to error-corrected consen-
sus sequences. This is not surprising, because reads with
a large number of errors are unlikely to contain any
error-free k-mers that are required to assign a read. Sim-
ulations also revealed that our algorithm is more toler-
ant to mismatch errors over insertion or deletion errors.
We postulate that this is because in the barcode de
Bruijn graph, reads that contain only mismatches form a
cyclic path of the correct length, whereas reads contain-
ing insertion or deletion errors form paths with incor-
rect length, complicating the cyclic-path search protocol.
This effect is most pronounced at the error rates that
are higher than typical Drop-seq datasets.

Conclusions
Single-cell genomics is a dynamic field that encompasses a
large and growing number of techniques that measure a
variety of biological properties. However one commonality
in these workflows is that experiments mark reads originat-
ing from distinct cells with single cell barcodes. Correctly
identifying and grouping reads by their barcodes in the
presence of experimental and sequencing errors is an es-
sential first step in any single-cell analysis pipeline. The
software presented here addresses this universal problem,
and as such it should be useful for a variety of single cell se-
quencing based genomics experiments. Our approach pre-
sented here uses the novel concept of kmer-circularzation,
which enables the fast and efficient operation of k-mer
counting to be expanded to problems that potentially in-
clude insertions and deletions. Although we have not
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explored this here, we believe this approach might therefore
have applications in other areas of genomics; one potential
application might be to use k-mer circulariation to obtain
k-mer fingerprints of metageomic datasets in an indel sen-
sitive manner.
Finally although we focus here on the specific

Drop-seq protocol, there are a number of related
single-cell experiments that rely on split-pool combina-
torial synthesis of barcodes [14], as well as other mas-
sively parallel single-cell sequencing experiments that
measure other genomic and transcriptomic properties
[4, 15]. As error correcting and clustering barcodes is
central to these assays as well, we believe that these
methods will also benefit from our software.

Availability and requirements
Project name: Sircel
Project home page: https://github.com/pachterlab/

sircel
Operating system: platform independent
Programming language: python3
Other requirements:
python3 (version 3.5 or higher),
numpy,
scipy,
scikit-learn,
Redis (https://redis.io/)
License: MIT
Any restrictions to use by non-academics: no

Fig. 2 Identifying barcodes and splitting reads from Macosko et al., species mixing experiment. a Circular paths were identified in the circular
barcode k-mer graph from a published Drop-seq dataset. The distribution of circular path weights versus path rank clearly shows an inflection
point. Paths with weight higher than this inflection point are deemed to be true barcodes. b This inflection point can be identified as a local
maximum in the first derivative of the path-weight distribution. A Savitskiy Golay filter facilitates in this identification by smoothing the data. c
Reads were grouped into cells by assigning them to to thresholded paths based on k-mer compatibility alone. This assignment results in a flat
distribution in the number of pseudoalignments per cell. d Reads that were split based on barcode k-mer compatibility alone also segregate by
their number of pseudoalignments to different transcriptiomes. This indicates that assigning reads based on k-mer compatibility produces distinct
and biologically relevant groupings
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Example
The example data set (supplementary data) shows the
workflow to identify and split barcoded reads from a
published Drop-seq dataset [SRR1873277]. This dataset
derives from a species-mixing experiment, where human
and mouse cells were mixed prior to single-cell
RNA-seq. As such reads grouped by their barcodes
should also segregate by which species they [pseudo]
align with. We can therefore evaluate the performance
of Sircel by how frequently reads from the two species
appear to derive from the same cell.

Methods
Raw sequencing data for Drop-seq and Seqwell species
mixing was obtained from the sequence read archive
(SRR1873277 and SRR5250839 respectively) and con-
verted to fastq format using SRA-toolkit. Subsamples of
these datasets were obtained using standard command
line tools:

zcat INFILE.fastq.gz | head –n NUM_READS*4 |
gzip > OUTFILE.fastq.gz

We used this data without any further processing, or
read filtering. Sircel was then used to identify barcodes
and assign reads with the following parameters: k-mer
length of 7, search breadth of 1000 subgraphs, search
depth of 5 paths per subgraph. All results presented here
were processed with 32 threads.Output from Sircel was
then fed, into a single-cell analysis pipeline based on kal-
listo (N. L. [1]) and transcript compatibility counts [11].
Our integrated pipeline, as well as ipython notebooks to
visualize the data is available on Github.
Simulations were performed by first randomly generat-

ing a 500 ground truth barcode sequences of length 12.
Each barcode was assigned a relative abundance drawn
from one of three pre-defined distributions (normal, uni-
form and exponential). Reads were generating by select-
ing a barcode according to the barcode abundance, and
adding a Poisson number of errors given by user-defined
rate. Error type (insertion, deletion, mismatch or any)
was also varied systematically during this step. Each
simulation consisted of 100,000 reads generated in this
manner. For each condition (combination of barcode
abundance distribution, Poisson error rate and error
type), we produced three separate simulations for a total
of 180 datasets. The Poisson error rate was varied be-
tween 0 and 3 errors per read. The number of cells in
each simulation was generated from a normal distribu-
tion with mean of 500 and standard deviation of 50. Ex-
ponentially distributed cell abundances were generated
with scale parameter 0.2, and normally distributed cell
abundances were generated with a mean of 200 reads
per cell, and standard deviation of 20 reads per cell.

Our naïve pipeline was based on that of [11]. It was
implemented in python.
These simulated datasets were then fed into Sircel to

identify error-free barcodes. For each simulation we
compared the output of Sircel to the ground-truth bar-
codes, identifying true positives as barcode sequences
that were present in both the Sircel output and the
ground-truth, false positives as barcode sequences that
were found in the Sircel output but not the ground
truth, and false negatives as barcode sequences that were
not found in the Sircel output but not the ground truth.
For each true positive barcode identified by Sircel, we
additionally evaluated whether the reads assigned to that
barcode were correctly assigned. Reads that derived from
the ground truth barcode were deemed correctly
assigned, and all other reads were labeled as incorrectly
assigned.
Ipython notebooks to reproduce this analysis are avail-

able on Github.
Algorithm 1a. Recursively identify a single cycle of fixed length in graph

1. Initialize recursion:
a. Pick a starting edge by edge weight

i. Edge links node and neighbor
1. Set the current path to the starting edge
2. Record the identity of the starting node 

2. Recursion:
a. Get all outgoing edges that emanate from neighbor
b. Sort outgoing edges by edge weight (descending)
c. For each outgoing edge

i. Extend the current path by this edge
ii. Continue recursion

3. Terminate recursion:
a. If the current path length is longer than the barcode length

i. If the path start node and end node are the same, the path is a cycle
1. Return True

ii. Else return False

Algorithm 1b. Identify multiple cycles of fixed length within the same graph
1. Initialize

a. Pick a starting edge by edge weight
2. Repeat the following

a. Identify a single cycle (see above)
b. Decrement all edge weights in that cycle by the capacity of that cycle

i. Lowers the weight of the limiting edge to 0
ii. All other edges will have some smaller positive value for edge 

weight
3. Terminate loop when there are no more cycles in the graph

Algorithm 2. Identify barcodes and assign reads
1. Index k-mers

a. Build a look-up table associating each k-mer with a set of reads that 
contains that k-mer

2. Identify barcodes
a. Pick a starting edge (k-mer) in order by edge weight
b. Build a de Bruijn sub-graph. This is a directed, weighted, de Bruijn graph 

containing only the subset of reads that contain the starting k-mer
i. Building only a subgraph greatly speeds up graph traversal

c. Identify high-weight cycles
i. See Algorithm 1.

ii. Remove this cycle from the subgraph by decrementing the weights 
of all edges in this subgraph by the capacity of this path

d. Repeat c to find other paths that originate from this node
e. Repeat a–e to find paths that start at a different node

3. Merge similar paths by Hamming distance
4. Threshold paths to identify true barcodes

a. Identify an inflection point in the cumulative distribution of path lengths
5. Assign reads

a. Assign each read to the path with which it shares the most k-mers
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Additional file

Additional file 1: Figure S1. Sircel can robustly identify the number of
cells present in a dataset. We performed several simulations with error-
prone reads. The number of errors per read, the type of errors, and the
distribution of barcode abundances were all systematically varied. Per-
formance was compared over three pipelines: a naïve approach (grey),
using Sircel and k-mers (red) and using Sircel and Levenshtein distance
(cyan). A. Any errors. B. Deletions. C. Insertions. D. Mismatches. Figure S2.
Assigning reads to consensus barcodes depends on errors rate and bar-
code abundance distribution. Using the same simulations as before, the
fraction of reads that were correctly assigned in each cell was quantified.
We find that Sircel using Levenshtein distance performs the best. A. Any
errors. B. Deletions. C. Insertions. D. Mismatches. Figure S3. Assigning
reads to consensus barcodes by k-mer compatibility depends on errors
rate and barcode abundance distribution. In the same simulations, the
fraction of reads that could not be unambigiously assigned in each cell
was quantified. A. Any errors. B. Deletions. C. Insertions. D. Mismatches.
Figure S4. Indel errors are present in real data. We separated barcodes in
a species mixing experiment from Seqwell (SRR5250839), and evaluated
the Hamming and Levenshtein distances between each read and its con-
sensus barcode. We find that Hamming distance is systematically larger
than Levenshtein distance, indicating that the data contains indels. Fig-
ure S5. Species mixing with Seqwell data. We separated barcodes in a
species mixing experiment from Seqwell and evaluated our ability to split
reads by species. Figure S6. Circularized de Bruijn graph from real data. A
de Bruijn subgraph was prepared from circularized reads that could be
assigned assigned to 10 randomly selected barcodes from the Macosko
et al. dataset is depicted here. Line transparency is proportional to the
weight of each edge. (PDF 2486 kb)
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