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Abstract

Background: This paper presents a novel approach for Generative Anatomy Modeling Language (GAML). This
approach automatically detects the geometric partitions in 3D anatomy that in turn speeds up integrated non-
linear optimization model in GAML for 3D anatomy modeling with constraints (e.g. joints). This integrated non-
linear optimization model requires the exponential execution time. However, our approach effectively computes
the solution for non-linear optimization model and reduces computation time from exponential to linear time. This
is achieved by grouping the 3D geometric constraints into communities.

Methods: Various community detection algorithms (k-means clustering, Clauset Newman Moore, and Density-
Based Spatial Clustering of Applications with Noise) were used to find communities and partition the non-linear
optimization problem into sub-problems. GAML was used to create a case study for 3D shoulder model to
benchmark our approach with up to 5000 constraints.

Results: Our results show that the computation time was reduced from exponential time to linear time and the
error rate between the partitioned and non-partitioned approach decreases with the increasing number of
constraints. For the largest constraint set (5000 constraints), speed up was over 2689-fold whereas error was
computed as low as 2.2%.

Conclusion: This study presents a novel approach to group anatomical constraints in 3D human shoulder model
using community detection algorithms. A case study for 3D modeling for shoulder models developed for
arthroscopic rotator cuff simulation was presented. Our results significantly reduced the computation time in
conjunction with a decrease in error using constrained optimization by linear approximation, non-linear
optimization solver.
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Background

This paper introduces a novel approach to speed up the
exponential computation time in our optimization
model for geometry constraint solving. In our previous
work, we had introduced Generative Anatomy modeling
Language (GAML) [1]. GAML helps generate variation
of 3D virtual human anatomy in real-time. It also incor-
porates anatomical constraints to create anatomically
correct variations of 3D models. Our goal of developing
GAML was to minimize numerous iterations in the
process for designing and modeling of 3D anatomically
correct medical models. This modeling process necessi-
tates involvement of expert physicians even for rudimen-
tary geometry modifications. This protracts the model
generation phase mostly due to the various challenges in
collaboration of different parties such as i) hectic sched-
ule of the physicians, ii) lack of tools to collaborate for
people from various disciplines, iii) communication
problem among engineers, designers, and physicians re-
lated to medical terminology, and iv) lack of anatomy
knowledge of 3D designers, engineers etc. Besides, each
design iteration causes manual alterations to ensure that
the model is anatomically correct. Therefore, we pro-
posed GAML (1) to avoid the lengthy consultation to
expert opinion for basic anatomical verifications, (2) to
eliminate manual work to speed up the design process,
and (3) to increase the collaborative efforts between de-
signers, engineers, and physicians.

GAML framework allows users to modify 3D models
using human readable commands. These commands can
be basic model modification commands (e.G. affine
transformations, deformation) in conjunction with
geometry constraints. Geometry constraints can be dy-
namically added to and removed from the 3D virtual
model depending on the anatomy. The ultimate goal of
GAML is to manipulate 3D models while satisfying any
imposed geometric constraints of the anatomy. The ori-
ginal motivation of GAML stems from the modeling
challenges embodied in complex human anatomy.

GAML has commands for modeling anatomy using
constraints and joint connections. We defined “Joint” as
an abstract definition where any type of geometry con-
straints and joint type are stored [1]. For instance, human
anatomy consists of three main types of joints which total
up to 360 joints. These joints types are Fibrous, Cartilagin-
ous, and Synovial joints. Each of these joint types have dis-
tinct constraints; Fibrous joints are fixed and immovable,
while cartilaginous joints are slightly moveable and Syn-
ovial joints are freely moveable. In GAML, these joints
can be added in between each bone, muscle, vein, skin
etc., which overall can be used to build a 3D model for
complex anatomical structures or systems.

In GAML, we used Powell’s nonlinear derivative-free con-
strained and non-linear optimization solver; Constrained
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Optimization by Linear Approximation (COBYLA) [2, 3].
According to our benchmark results, the computation time
for our optimization model exhibited non-linear computa-
tion time after number of joints exceed 30 joints (=120 con-
straints). We noted that the computational time increases
significantly (e.g. 5000 constraints with 4 h’ computation
time). This eliminates the practical use of GAML (real--
time performance) as each single modification command
requires re-computation of the solution which takes a lot
of time. In this study, we introduce a novel solution to
overcome this computation time problem for increasing
number of joints (constraints). We partition the
optimization problem in to smaller sub-problems by
introducing additional constraints for each sub-problem.
This allows us to concurrently compute the solution for
the sub-problems independent from each other while
retaining the original problem. Especially, in large number
of constraints, solving partitions (sub-problem) of a prob-
lem compared to solving an original non-partitioned
problem eliminates the exponential execution time and
results in linear computation time.

The literature for this work stretches over multiple re-
search areas such as problem decomposition with Divide
and Conquer or sub-space techniques applied for
non-linear optimization, Quadratic Programming (QP),
or Mixed Integer Non-linear Programming (MINLP). In
general, the purpose is to partition the problem using
context information of the problem (e.g. graph partition-
ing) or linearize the problem or transpose the problem
to search algorithm to find the global optimum. More-
over, division of a problem into smaller sub-problems is
used to reduce time during constraint solving. Through-
out the paper, optimization problem and problem are
used interchangeably.

Divide and conquer approaches
Divide and conquer approach causes additional compu-
tations for each sub-problem due to its recursive nature.
In [4], a backtracking algorithm is used to overcome
these additional computations. All sub-problems are
solved recursively via backtracking and solutions are
then combined until global constraint is fulfilled. Redun-
dant checks are eliminated to increase speed; this in-
creases the search space complexity which forbids
proposed solution to work on large problems. Freuder et
al. [5] used decomposition to extract a sub-problem
from constraint satisfaction problem. This approach dy-
namically eliminates failed or not feasible solutions with
forward checking to speed up computation. Forward
checking used in this study is a form of backtracking
search, which can cause late detection of conflicts/
failures.

There are several methods which can be used in
large-scale bound-constrained optimization problems.
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One example is the active-set method which is used for
a primal and dual formulation of a QP According to For-
sgren et al. [6], the aim of the method is to estimate the
optimal set of constraints that are satisfied with equality.
Furthermore, a standard active-set method has two
phases; first phase will be ignoring the objective function
where a feasible point is found; the second phase is to
minimize the objective function while keeping its feasi-
bility. The time complexity of the active-set method for
large-scale problems has the worst-case complexity of 3"
[7]. Solving of QP is needed for Support Vector Machine
(SVM) training [8]. A study in [8], introduced Sequential
Minimal Optimization (SMO) for SVMs where in this
case QP is divided into sub-problems to allow linear
memory and run times. For non-linear cases, SMO had
15 times speed up compared to the chunking approach
[9]. Hsieh et al. [10] used divide and conquer method to
divide large sample data to be classified with SVM.
Two-step kernel k-means [11] clustering was used to
cluster the large scale data in to sub-problems to be
classified. Sub-problems are solved separately and solu-
tions from sub-problems are used to solve the original
problem. Divide and Conquer-SVM achieved 96% accur-
acy with 100 times speed up compared to Library for
Support Vector Machines (LIBSVM) [12]. During ex-
perimental results, 100 different parameter settings were
tested. Out of 100 settings LIBSVM was faster than
Conquer-SVM on only 4 settings.

Sub-space approaches

Sub-space techniques are used to solve large non-linear
optimization problems [13]. Reducing the computation
cost and memory size is one of the advantages of the
subspace techniques. According to Gould et al. [7], the
problem structure is important considering the size of
problems: partially separable problems are easier to han-
dle than intense problems.

One of the common approaches for sub-space tech-
nique is based on the linearization of non-linear con-
straints using the Sequential Quadratic Programming
(SQP). Byrd et al. [14] used an approach to solve
sub-problems by SQP. In this approach, each
sub-problem is solved with trust regions [15]. Trust re-
gions are subsets in quadratic functions which are
thought to be correct. Use of trust regions creates effi-
ciency and robustness which allows the solving of large
problems. Iterations to solve sub-problems slow down
the overall execution time due to the use of lower order
corrections and the use of tight accuracy for refining the
solutions. In [16], a large-scale non-linear programming
algorithm was introduced to solve the barrier problem,
which is a continuous function, while the point ap-
proaches the boundary of the feasible region of a prob-
lem, the value on the point increases to infinity [17],
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with the use of trust regions. The algorithm is based on
SQP and interior point methods. In this algorithm [16],
the trust regions are used for second derivatives to solve
the barrier problem. The idea behind the SQP is to solve
non-linearly constrained problems by minimizing quad-
ratic approximations to the Lagrangian function to the
linearized constraints [18]. According to Tillman et al.
[19], the Generalized Reduced Gradient (GRG) method
[20], modified sequential simplex pattern search [21],
and the generalized Lagrangian function method [22]
are effective on large-scale non-linear programming
problems. The GRG method derived from reduced gra-
dient method by using non-linear constraints and
bounds. The method uses a direction for independent
variables and a direction is considered for dependent
variables. Derivative is found by calculating the gradient
of the objective function. However, there is no corrobor-
ation that one of these algorithms is the optimal in order
to solve general non-linear programming problems [23].
Overall, SQP is an iterative method; thus, it requires
more computation time than our proposed approach.
Moreover, the SQP assumes that objective function and
constraints are second order differentiable.

MINLP is another area, where problem partitioning can
be used to improve the computation performance. In [24],
a constraint-partitioning method, a partition-and-resolve
procedure for solving P, (CPOPT), was used to find local
optimal solutions for large-scale MINLPs. In this approach
violated global constraints are efficiently resolved using
extended saddle points (decomposed sub-problems can be
achieved from the original problem) [25] and large scale
MINLPs are automatically partitioned to the optimal
number of partitions to lower the search time. CPOPT
was compared to a MINLP approach based on branch
and bound [26] and Branch-and-Reduce Optimization
Navigator (BARON) [27] using 22 large problem bench-
marks from a collection of MINLP (MacMINLP) library
[28]. In [26], a MINLP approach based on branch and
bound tree search with SQP was used. In this approach
branching is carried out after each iteration which allows
the non-linear problem to be solved during searching of
the tree, while BARON is a mixed integer constrained
solver with branch and reduce. Out of 22 large problems
MINLP approach based on branch and bound couldn’t
find a feasible solution for 13 large problems while
BARON couldn’t find a feasible solution in 12 large prob-
lems respectively in the time limit of 3600s. For the large
problems with feasible solutions CPOPT was only slower
in 2 large problems compared to MINLP approach based
on branch and bound and BARON. For the smaller prob-
lems, BARON and MINLP approach based on branch and
bound had average solution times of 4.59 and 5.45 s, while
CPOPT had an average solution time of 8.4 s due to parti-
tioning overhead. Nagarajan et al. [29] introduced an
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adaptive and multivariate partitioning algorithm for solv-
ing MINLPs. Adaptive multivariate partitioning, partitions
domains non-uniformly according to the best-known local
solution. In this work, a user parameter is used to scale
the partition’s size, thus affecting the number of partitions
and the rate of convergence. The proposed approach per-
formed better than BARON [27] in 26 out of 32 for MIN-
LPLib [30] instances.

Methods

POM-GAML overview

Our Partition-based Optimization Model for Generative
Anatomy Modeling Language (POM-GAML) approach
was developed as a module as an extension to our
GAML framework. The current design has (a) GAML
interpreter for command processing and constraint
entry, (b) Community module, and (c) Optimization
module. In the GAML, joints are created with user com-
mands which then sent to GAML interpreter for model
update. The solution to the optimization model can be
performed either executing solver directly on the
optimization model or partitioning the problem (com-
munity approach) and following solver execution. The
decision is made based on the preference; if
non-community approach is preferred, the command is
sent to optimization module and executed. If the com-
munity approach is preferred, the request is sent to the
community module first where the communities are de-
tected, and the optimization problem is partitioned. The
module revises the problem and redirects the execution to
the optimization module for solution. In POM-GAML, a
community or cluster is an abstract definition for group of
nodes that are close enough and densely connected to each
other. At present, the communities are detected based on
the Clauset Newman Moore (CNM), Density-based spatial
clustering of applications with noise (DBSCAN), and
k-means clustering approaches. Architecture of our frame-
work is shown in Fig. 1.

Optimization model

Optimization model aims at computing the closest pos-
sible location (e.g. goal location) given a desired motion
for each joint. In other words, our model seeks to
minimize the error between the desired location and
goal location. That being said, all joints that have desig-
nated motions by user are placed in objective function.
Similarly, if there are no prescribed motion for a joint, it
will be dropped from the objective function. The
non-linear solver tries to minimize the overall error for
all the joints in the objective function. Both joints and
the constraints can be dynamically changed/updated in
the optimization model prior to prior to each non-linear
solver step.
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Our previous optimization model [1] can be seen in
Table 1. In our model, p; is a 3D position of a joint (/;),
where J; can be an arbitrary node in or a node attached
to a 3D Mesh (M). Number of joints (N), can be dynam-
ically modified by adding and removing joints. In be-
tween each joint couple i (p;) and j (p;), there could be
up to four different types of constraints (Eqs. 1-4 in
Table 1) to constrain the movement. In our model,
unique constraint sets are formed for each constraint
type. For instance, Eq. 1 is defined for the absolute dis-
tance constraint and set A indicates the set of absolute
distance constraints. Similarly, Eq. 2, Eqs. 3—4 are for
the angle constraints and the flexibility constraints and

Table 1 Optimization model [1]
Arg Min: Z?V:W k/|p/_pDestinatmn|

Subject to:

Disty—|pi—p|=0 for (i)e A (1)
cos™! (H(p?fﬁ;jﬂ)%(ﬁ(;?;[)\\)799 <0 foripe 8 @
(Pio = Plaxis = (0= Paxis =0 (2a)
Distyy = Mpmax— |pi—pj| <0 for (ij)e C (3)
|pi = pj| = Distjj— Aoy < O (4)

ijedand i, jcM k>0,AnC=0




Demirel et al. BMC Bioinformatics 2019, 20(Suppl 2):105

set B and C are designated for the set of angle and flexi-
bility constraints respectively. Dist; is the original dis-
tance while Ad,,, is the maximum displacement
allowed between the joint couple p; and p; using the
stiffness ratio k;. p;, is the initial point for joint p; and 6;
is the maximum angle that joint p; is allowed to pivot
about joint pj. (Pio — Pj)axis and (p; — pj)axis are the direc-
tional vectors in the x, y or z axis’ to accommodate any
lock along the axis of rotation (Eq. 2a). For the angle
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constraint, p;, is the original position of p; and is the dir-
ection vector of p;, and pivot point of p; is (p;, — p;). The
direction vector between p; and pivot point of p; is (p; - p)).
Further details of the optimization model and use cases can
be found in our previous work [1].

Partition based constraint model
In order to partition the model (as seen in Fig. 2), we
first determine the candidate nodes where a split of the

Fig. 2 (a) Connected Joints, (b) Partition of joints (red joints are virtual)
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model can occur. These candidate nodes are possible
centers of the communities that are determined with
community detection algorithms using joint graphs (see
Section 4). The split starts with geometry-based oper-
ation in the constraint hierarchy. The result of the oper-
ation creates additional optimization models with the
number of splits. For instance, one split creates two sep-
arate geometry and optimization models. The split oper-
ation is performed on a pair of nodes with duplicating
these candidate nodes. The next operation is to remove
all the constraints amongst the nodes of the splits from
each other starting with pairs. A duplicate node will
serve as a virtual node that represents the node of the
split pair that remain in the other split. This is to ensure
to retain the original joint hierarchy at each split. The
key step here is that we introduced a new constraint for
these candidate pairs. Unlike the original problem, this
will introduce a flexible constraint that anticipates the
location of the virtual node (e.g. the other attached
node) within an estimated range of motion. We deter-
mined this predication with a cone like motion (as seen
in eq. 9) with a virtual joint (v).

In our model (as seen in Table 2), V is the set of virtual
joints. Virtual joint holds information about the discon-
nected joints and enforces its constraints. v; is the virtual
joint of joint p; and v; is the virtual joint of joint p;. P, is
the partition, and none of the joints in one partition can
be shared or exist in another partition, unless it is a vir-
tual joint. This imposes the splits are completely disjoint
model and share no nodes or joints. In Equation 9, r is
the radius of the cone, while a; is the angle. Angle of
cone is a preset to 30°, which is used to create the antici-
pated range of motion of virtual nodes. We empirically
observed that the change of preset angle makes no sig-
nificant difference in the constraint sets over 50. Radius

Table 2 Optimization Model for Partitions
Af’g Min: P(Z;\/ﬁ k/‘p/_pDesr/narman

Subject to:

Disty—|pi=p|=0 for (ij)eA, (5)
cos” (s 0 <O for e ©

(Pio = Paxis — (i — Paxis = 0 (6a)

Distyj— Mdpmax— |Pi—p] < 0 for (i))eC, (7)
|pi = pj| = Distjj— Adpmax < O 8)

2 sgn(p;p;.pivs)x tan™! (p)-a; <0 for (ij)eD; 9
(28 <0 "
lpi—v|<0 (11a)
lpi—vi=0 (176)

ijedand i jcM, k>0,AnC= O,
PAMnPAN= B, vi=p, v,;=p,veV,veA B, C

Page 104 of 149

of the cone is calculated in Equation 10 and D is the set
of cone constraints.

The constraint among the candidate pairs is general-
ized with a distance constraint. This distance constraint
is formulated as (Equation 12);

Clp) = ll(p=p,)-rll =0 (12)

In equation 12, r is the current distance, p and p, are
joint current and initial locations respectively. In the
context of our model, p and p,can be node and virtual
locations in turn. In order to get rid of the L1 norm, we
could redefine the equation in L2 norm as (Equation 13)
to eliminate the square root in the formulation;

C=C) = (02, ] (13)

At all times, the both virtual nodes should retain the
initial distance to ensure the integrity of the original
problem. The derivate of the constraint with respect to
solver iterations of the model should also satisfy the con-
straint equation. This constraint is defined with chain
rule as the following (Equation 14);

.. dC 3Cap

dp .
C= G pa (P—Po)~g = (p-po)-P (14)

Similarly, the second derivative should also satisfy the
imposed constraint (Equation 15);

[X ]
7

\
d

g
7

Fig. 3 CNM for 5000 constraints
.
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C=0=\Nnn+ (p-p,)p (17)

& 4C _d((p-po)-p) _3Cap ¢
di di op di
=+ (p-po) B (15)

All the constraints equations above should satisfy the
following per iteration (Equation 16);

Therefore, we could predict that the (p —p,) vector
will be orthogonal to the p. We could simply represent
the p with An, which denotes that the change in p should
be in the direction of the unit vector n with some A
amount. The vectors n and p - po which is 7 (e.g. from
the equation of C (Equation 16)) should be orthogonal.
Therefore, we incorporated this orthogonality constraint
within a cone that sweeps the possible range of motion
of p described in the revised model in the previous sec-
tion. We could also extend the formulation for the der-
ivation of the relation between A and r with using
second derivative of constraint equation (Equation 17);

This reduces to the following relation (Equation 18);

XM= /P (18)

Community detection in joint graphs

A hierarchical graph data structure allowed us to extract
the connectivity among joints and their organization
[31]. The graph can be utilized to find communities of
joints for possible splits. We propose to determine these
joints with community/cluster detection algorithms/ap-
proaches. In our joint hierarchy, connectivity between
joints also represent the constraints of joints. We
hypothesize that joint communities with more constraint
density (e.g. number of constraints per node) could be
good candidates for optimization model partition.
Therefore, we seek to find the cluster of joints with
highest density (density of features in the context of data
mining) which is the main goal of clustering/community
detection [32]. However, there is no single solution for
clustering/community detection [33]. In this work, we
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used three different community detection algorithms;
CNM [34], DBSCAN [35], and k-means clustering [36].
The community detection algorithms inherently take the
links (e.g. constraints) into account whereas in the clus-
tering algorithms we used the constraints for distance
computations. In the manuscript, although there is a
slight difference, clustering and community detection
phrases are used interchangeably.

In a common graph structure, vertices are used for
nodes and edges are used for hierarchical links. In our
framework, a joint is used as nodes and the constraint
represents an edge to form a graph structure. Once the
graph structure is generated, communities in the graph
are identified. The parameters (¢, MinPts, number-
ofClusters, etc.) of the selected community detection al-
gorithm is based on the prescribed input. Once the
communities are identified, joints in the graph are parti-
tioned to their communities. The process is basically
performed in two steps; (1) the connection between the
joint pairs which belong to separate communities is de-
leted, (2) a virtual joint for each joint is inserted into
each community that would represent the deleted joint.
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In CNM, modularity [37] is to measure the division
strength of a network in to communities. Modularity is
calculated as the ratio of number of edges in each com-
munity against the number if edges between the com-
munities. CNM starts with the calculation of modularity
at the node level. Each node is assumed as a community
then the modularity between each pair of communities
is calculated. Pair of communities with the highest
modularity are combined together and this approach is
carried out recursively. Modularity greater than 0.3 indi-
cates a significant community [34]. All our constraint
sets had a final modularity of greater than 0.3. CNM is
an agglomerative hierarchical method and is based on
greedy optimization. Time complexity of CNM is O(V =
logV) [34], where V is the number of vertices (joints) in
the graph. Figure 3 visualizes CNM for the sample con-
straint set of 5000 in our test data.

Another approach used to find communities is
DBSCAN with time complexity of O(V?). DBSCAN dis-
covers high dense areas and detaches them from low
dense areas. DBSCAN algorithm parameters are; the
amount of joints required for a dense area (MINPTS)
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within the radius (¢) and a distance function of connect-
ivity of joints in the graph. DBSCAN starts with finding
the neighbors of every node, if two nodes are within the
specified e they are considered neighbors. DBSCAN
groups neighbor nodes according to MINPTS and a dis-
tance metric. A high-dense area must have at least
MINPTS within the distance metric. Unless the mini-
mum number of points is satisfied the area is considered
low-dense.

For MINPTS, we selected 2 and for € we used 5
(DBSCANS) and 10 (DBSCANIO) respectively. Figure 4
shows the DBSCAN clustering for e =5 and MINPTS=2
for the constraint set of 5000, while Fig. 5 shows the
DBSCAN clustering for € =10 and MINPTS=2 for the
constraint set of 5000 of the same model data as used in
CNM testing.

The third approach used to find communities and par-
tition an N-dimensional data into k sets is k-means clus-
tering algorithm. One of the applications of the k-means
is approximating a general distribution that estimates
the distribution between the sample points [36]. A mini-
mum distance partition of the sample points can be
found by using k-means algorithm. K-means clustering
in high dimension is a NP-hard problem and there are
several partitioning algorithms called “center-based clus-
tering” to improve quality [33]. The time complexity of
the k-means algorithm in d-dimension is O(n*?). How-
ever, Hamerly et al. [38] stated that the worst-case time
complexity of k-means is super polynomial. Finding the
minimized sum of squared deviations of the partitions of
the k sets is the goal of k-means clustering algorithm
[39]. For our case, k was set to the same amount of
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Table 3 : Speed-up(x-times) for each partitioned algorithm compared to non-partitioned COBYLA

# of Cons affected k-means-10 k-means-5 CNM DBSCAN-10 DBSCAN-5
1500 7317 108.64 9718 3815 82.11

2000 159.55 49842 47.57 91.92 474.40
2500 123.63 44927 36.99 64.96 567.79
3000 181.20 1036.72 78.81 46.24 849.14
3500 11893 161041 62.89 15.32 1248.50
4000 86.77 1068.89 57853 12.95 927.99
4500 231.31 221813 701.81 18.38 477.99
5000 510.19 2677.52 601.19 1318 2689.72

communities as DBSCAN clusters. Thus, k-means-5 and
k-means-10 have the same amount of communities as
DBSCAN-5 and DBSCAN-10 respectively. Figures 6 and 7
show the k-means clusters for DBSCAN-5 and DBSCAN-10
respectively.

Results
Time and error
In order to measure the execution time and error, we gener-
ated random joints sets starting from 1500 to 5000 and used
community/cluster detection algorithms used to partition
the optimization model. For each constraint set, we per-
formed the computation five times for each partitioning al-
gorithm, and the average computation was used as a result.
For performance measurement, an Intel Core i7-5820K
CPU with 16GB Ram and a GeForce GTX 970 GPU with
Driver version 388.13 was used. We benchmarked the exe-
cution time (in log graph) for non - partitioned model and
each of our differently partitioned communities as seen in
Fig. 8. COBYLA was used for optimization model solver.
According to our results, execution times in partitioned
base models achieve almost linear execution times with in-
creasing number of constraints, whereas non-partitioned

model demonstrate non-linear execution times as seen in
log graph in Fig. 8. Regarding the execution time for parti-
tioned communities, DBSCAN-10 clustering execution
time was higher in all constraint sets except for 2000 and
2500. In those sets of constraints, the difference in number
of communities between DBSCAN-10 and CNM were
minimum; DBSCAN-10 had 5 communities for both, while
CNM had 9 and 10 communities respectively. Furthermore,
for constraint sets for 2000 and 2500 CNM execution times
have peaked (11,343 ms and 27,363.7 ms respectively), while
DBSCAN-10 execution times have dipped (5870.11 ms and
15,583.34 ms respectively). For the constraint set of 1500,
CNM had the most number of communities (12 >com-
munities), while above the constraint set of 1500
DBSCAN-5 and k-means-5 had the most communities.
In all constraint sets, DBSCAN-10 and k-means-10 had
the least amount of communities. K-means-5 or
DBSCAN-5 had the fastest times for every constraint
set out of each partitioned community detection algo-
rithms except for the constraint sets of 2500 and 5000
where k-means-5 was faster than DBSCAN-5. Figure 9
shows the number of communities for each constraint
set and community detection algorithm. Table 3 shows
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the speed-up times for each partitioned algorithm. The
maximum overall speed-up is achieved with DBSCAN-5
and k-means-5 with 5000 constraints with the execution
time 2689.72 and 2677.52 compared to non-partitioned
problem.

Partitioning the original problem in to sub-problems
will introduce errors with respect to original problem.
Error calculation is shown in Equation 19.

)

We noted that errors for all the community detection
algorithms are between 19.8 and 28% for 1500 constraints.
For constraint set of 1500, CNM had the highest error
percentage at 28.04%, while DBSCAN-10 had the lowest
at 19.84%. Between constraint set of 3000 and 3500, errors
had the biggest decrease for CNM (10.89 to 4.26%),
k-means-10 (13.63 to 9.32%), DBSCAN-10 (10.75 to
5.72%) and DBSCAN-5 (15.09 to 8.2%). K-means-5 had
the biggest decrease in error between the constraint sets
4000 and 4500 by decreasing from 10.40 to 4.15%. At the
constraint set of 3500, all partitioning algorithms reached
below 10% error percentage except for k-means-5 which
stayed at 14.13%. For the constraint set of 5000, CNM
reached the lowest error percentage at 2.2%, while
k-means-5 had the highest error percentage at 3.57%. The
error graph can be seen at Fig. 10. Starting at the con-
straint set of 3500, CNM had the lowest error percentage
compared to other community detection algorithms.
Below the constraint set of 3500, DBSCAN-10 had the
lowest error percentage. Figure 11 shows the error per-
centage normalized to the scene (calculation can be seen
in Equation 20). The scene magnitude was 40.86.

We computed our results with respect to normalized
error. The error expression was given as in Equation-20.

Partition—-Non-Partition

%error = Avg(
x 100

Non-Partition
(19)
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This stems from the empirical analysis that the errors
are not noticeable to the eye for a model. The solution
difference between the non-partition and original prob-
lem becomes minimal. Therefore, we consider the scene
size or magnitude of the geometry. The error becomes
less than 1% even for 1500 constraints as seen in Fig. 11.

Partition—-Non—Partition
Non—Partition I )

SceneMag

%Normerror = Avg(|
i

x 100 (20)

Discussion

We experimented our optimization model for modeling
human shoulder anatomy and human airway anatomy.
The anatomies and its variations are important for simu-
lation especially in training for difficulty scenarios.

Shoulder anatomy

The shoulder anatomy was developed for our arthros-
copy surgery simulation for rotator cuff procedures.
Arthroscopic rotator cuff surgery is a common minim-
ally invasive shoulder surgery done through a scalpel
incision for diagnosis and treatment of tissues and
joints [40]. Rotator Cuff muscles attach shoulder blade
to the upper arm and allow rotational motion of the
shoulder [41]. We created a virtual 3D scene of the ro-
tator cuff muscles and attached joints corresponding
to constraint set of 5000. In the scene 25 3D models
pertaining to shoulder anatomy with total of 160,392
vertices were used. We executed movement for Clav-
icle, Rotator Cuff muscles (Subscapularis, Supraspina-
tus, Infraspinatus and Teres Minor) and Humerus
models. Figure 12a shows the 3D scene with joints
which are represented as blue circles. Figure 12b shows
the 3D scene with joints after motion using the partition
and non-partition optimization model. In these figures,
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Fig. 12 (a) Rotator Cuff Scene joints after solving with non- partitioned COBYLA and Partition Model, (b) Rotator Cuff Scene joints after solving
with partitioned COBYLA and Partition Model, (c) Scene error comparison using Canny edge detection

arrows indicate the transformation motion, red
circles represent joints after solving with non-
partitioned model using COBYLA solver while green
circles represent the joints after solving with parti-
tioned model using COBYLA solver. Visual errors
for partitioned and non-partitioned COBYLA were
not visible to the eye so we used Canny edge detec-
tion algorithm [42] in MATLAB to highlight the
errors in the scene (Fig. 12c) In Fig. 12c the differ-
ences were marked with red.

Airway anatomy

Securing the airway on severely injured patients or a pa-
tient before a surgery is critical [43]. Life threatening
complications can be avoided by securing the airway
under 1 min. Otherwise, complications can cause per-
manent injuries or death. We created a virtual 3D scene
of the airway anatomy and attached joints corresponding
to constraint set of 5000. In the scene 8 3D models per-
taining to shoulder anatomy with total of 214,686 vertices
were used. We executed movement for larynx, thyroid
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Fig. 13 (a) Airway Scene joints after solving with non- partitioned COBYLA and Partition Model, (b) Airway Scene joints after solving with
partitioned COBYLA and Partition Model, (c) Scene error comparison using Canny edge detection

cartilage, thyroid membrane, hyoid, cricoid membrane,
cricoid cartilage, and tongue models. Figure 13a shows the
3D scene with joints which are represented as blue circles.
Figure 13b shows the 3D scene with joints after motion

using the partition and non-partition optimization model.
As mentioned in above, in these figures, arrows indicate
the transformation motion, red circles represent joints
after solving with non-partitioned model using COBYLA
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solver while green circles represent the joints after solving
with partitioned model using COBYLA solver. In Fig. 13c
the differences using Canny edge detection algorithm
were marked with red. In conclusion, our optimization
model achieves the desired motion with minimal errors.
In conclusion, our optimization model achieves the de-
sired motion with minimal errors in both case studies.

Conclusion

In this work, we introduced a partition-based solution to
our original optimization model for developed GAML.
Our approach is based on creating smaller sub-problems
of original model with achieving acceptable error rates
and practical computation times for increasing number
of the constraints. Our goal is to achieve near real time
rates to overcome exponential increase in the computa-
tion time of our non-linear model. We used COBYLA as
non-linear optimization solver. In our approach, we par-
titioned the problem joints network and introduced new
virtual nodes and additional constraints to retain the ori-
ginal problem. Partitioning of the problem was carried
out with detecting communities with CNM, k-means
and DBSCAN algorithms. Execution of partitioned prob-
lems, instead of solving original and large problem, sig-
nificantly reduces non-linear execution time (up to
2689.7 speed-up for constraint set of 5000) and de-
creased the error. For the constraint set of 5000 the vari-
ation in error was between 3.57 and 2.2%. Lowest error
calculated for the constraint set of 5000 was 2.2% error
using CNM, while k-means-5 had the highest error per-
centage at 3.57%. The error percentage for rest of the
community detection/clustering algorithms are calcu-
lated as DBSCAN-10 - 2.4%, DBSCAN-5 - 2.34% and
k-means - 3.2%. We used our approach for modeling vir-
tual 3D arthroscopic rotator cuff and airway anatomy.
Our findings showed that errors in our scenes were min-
imal where we used an edge detection algorithm to
visualize them. In the future, we plan to experiment our
approach using different joint hierarchy graphs and
community detection techniques with higher constraint
sets for further validation.

Abbreviations

(pi = Paxis: Directional vectors in the x, y or z axis' to accommodate any lock
along the axis of rotation; a;: Angle between joints J; and J; k;: Stiffness ratio
of joint I; Aday: Is the maximum displacement allowed between the joint
couple p; and p;; BARON: Branch — And- Reduce Optimization Navigator;
CNM: Clauset Newman Moore; COBYLA: Constrained Optimization by Linear
Approximation; CPOPT: A Partition-and-resolve procedure for solving Py;
DBSCAN: Density-based spatial clustering of applications with noise; Dist;: The
original distance between joint J; and J; GAML: Generative Anatomy
Modeling Language; GRG: Generalized Reduced Gradient; J;: Joint i;

LIBSVM: Library for Support Vector Machines; M: 3D mesh;

MacMINLP: collection of mixed integer non-linear programs; MINLP: Mixed
Integer Non-linear Programming; MINPTS: The amount of joints required for
a dense area in DBSCAN; N: Number of joints; p;: a 3D position of a joint J;
Dio: The initial point for joint p; POM-GAML: Partition-based Optimization
Model for Generative Anatomy Modeling Language; P;: Partition t;
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QP: Quadratic Programming; SMO: Sequential Minimal Optimization;

SQP: Sequential Quadratic Programming; SVM: Support Vector Machine;

v: Virtual joint; & Radius used in DBSCAN; 6;: Maximum angle that joint p; is
allowed to pivot about joint p;; r: Radius of the cone
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