Pitt and Banga BMC Bioinformatics (2019) 20:82
https://doi.org/10.1186/512859-019-2630-y

BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

Parameter estimation in models of

@ CrossMark

biological oscillators: an automated
regularised estimation approach

Jake Alan Pitt"? and Julio R. Banga'”

Abstract

practical identifiability.

above-mentioned pitfalls.

power).

Background: Dynamic modelling is a core element in the systems biology approach to understanding complex
biosystems. Here, we consider the problem of parameter estimation in models of biological oscillators described by
deterministic nonlinear differential equations. These problems can be extremely challenging due to several common
pitfalls: (i) a lack of prior knowledge about parameters (i.e. massive search spaces), (ii) convergence to local optima
(due to multimodality of the cost function), (iii) overfitting (fitting the noise instead of the signal) and (iv) a lack of
identifiability. As a consequence, the use of standard estimation methods (such as gradient-based local ones) will
often result in wrong solutions. Overfitting can be particularly problematic, since it produces very good calibrations,
giving the impression of an excellent result. However, overfitted models exhibit poor predictive power.

Here, we present a novel automated approach to overcome these pitfalls. Its workflow makes use of two sequential
optimisation steps incorporating three key algorithms: (1) sampling strategies to systematically tighten the parameter
bounds reducing the search space, (2) efficient global optimisation to avoid convergence to local solutions, (3) an
advanced regularisation technique to fight overfitting. In addition, this workflow incorporates tests for structural and

Results: We successfully evaluate this novel approach considering four difficult case studies regarding the calibration
of well-known biological oscillators (Goodwin, FitzHugh-Nagumo, Repressilator and a metabolic oscillator). In
contrast, we show how local gradient-based approaches, even if used in multi-start fashion, are unable to avoid the

Conclusions: Our approach results in more efficient estimations (thanks to the bounding strategy) which are able to
escape convergence to local optima (thanks to the global optimisation approach). Further, the use of regularisation
allows us to avoid overfitting, resulting in more generalisable calibrated models (i.e. models with greater predictive
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Background

Oscillations and sustained rhythms are pervasive in bio-
logical systems and have been deeply studied in areas such
as metabolism [1-5], the cell cycle [6-9], and Circadian
rhythms [10-16], to name but a few. In recent years, many
research efforts have been devoted to the development of
synthetic oscillators [17-20], including tunable ones [21-24].
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Mathematical and computational approaches have been
widely used to explore and analyse these complex dynam-
ics [25-32]. Model-based approaches have also allowed
for the identification of design principles underlying cir-
cadian clocks [12, 33] and different types of biochemical
[34] and genetic oscillators [35-39]. Similarly, the study
of the behaviour of populations of coupled oscillators
has also greatly benefited from mathematical analysis and
computer simulations [40-47].

A number of approaches can be used to build math-
ematical models of these biological oscillators [48—52].
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This process is sometimes called reverse engineering,
inverse problem solving or dynamic model identifica-
tion [53-55]. Model calibration (i.e. parameter estimation
or data fitting) is a particularly important and challeng-
ing sub-problem in the identification process [56—64].
Different strategies have been specially developed and
applied to calibrate models of oscillators [32, 50, 65-71]
and to characterise and explore their parameter space
(31, 72-76].

In this study, we consider parameter estimation in
mechanistic dynamic models of biological oscillators.
From all the issues that plague model calibration [77], we
pay special attention to three that are particularly prob-
lematic in oscillatory models: huge search spaces, multi-
modality and overfitting. We also discuss how to handle
lack of identifiability.

Methods

Models of biological oscillators

Here, we consider mechanistic models of oscillatory bio-
logical systems given by deterministic nonlinear ordinary
differential (ODEs). The general model structure is:

dxiit;ﬂ) =f(t,u(),x(t0),0), forx(t,0) € Vo (1)
y(x,0) =g(x(0,1),t0) @
x(t0,0) = Xo (3)

where x € RM represents the states of the system as
time-dependent variables, under the initial conditions
Xo, & € RN is the parameter vector, u(t) represents
any time-dependent input (e.g. stimuli) affecting the
system and ¢ € [to,tenqg] C R is the time variable. Wo
represents the set of all possible oscillatory dynamics.
The observation function g : RN*Ne > RNy maps the
states to a vector of observables y € RM, ie. the state
variables that can be measured. While the methodology
here is developed for and tested on oscillatory models,
it is not strictly restricted to models that exhibit such
behaviour.

Formulation of the parameter estimation problem
We now consider the parameter estimation problem con-
sidering dynamic models described by the above Egs. (1 — 3).
We formulate this estimation problem as a maximisation
of the likelihood function given by:

N, yk N kj

(J’kji(x(fiv")ﬁ)*?kﬁ)z
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where N, is the number of experiments, Ny x the number
of observables in those experiments, Ny ; is the number

L(yl) =
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of time points for each observable, yy;; represents the mea-
sured value for the it time point of the j™ observable
in the k" experiment, and oyj; represents its correspond-
ing standard deviation. Under specific conditions [78], the
maximisation of the likelihood formulation is equivalent
to the minimisation of the weighted least squares cost
given by:

thk]
(X (6,0),0) -
Qms(o)—z >y (yk’ * o

Gi

N
d k”) =070 )

k=1 j=1 i=1

Using the above cost, the estimation problem can be

formulated as the following minimisation problem:

min (Quzs(8)) = min (r®"x®) (6)

subject to the dynamic system described by Egs. (1-3),
and also subject to the parameter bounds:

O/ < 9, < 0"V G, € 0 (7)

We denote the solution to this minimisation problem
as 9. In principle, this problem could be solved by
standard local optimisation methods such as Gauss-
Newton or Levenberg-Marquardt. However, as described
next, there are many pitfalls and issues that compli-
cate the application of these methods to many real
problems.

Pitfalls and perils in the parameter estimation problem
Numerical data fitting in nonlinear dynamic models is a
hard problem with a long list of possible pitfalls, including
[77]: a lack of identifiability, local solutions, badly scaled
data and parameters, oscillating dynamics, inconsistent
constraints, non-differentiable model functions, slow con-
vergence and errors in experimental data. It should be
noted that several of these difficulties are interrelated, e.g.
a lack of practical identifiability can be due to noisy and
non-informative data and will result in slow convergence
and/or finding local solutions.

In the case of oscillators, the above issues apply, partic-
ularly multimodality and lack of identifiability. However,
there are at least two additional important difficulties
that must be also considered: overfitting (i.e. fitting the
noise rather than the signal) and very large search spaces
(which creates convergence difficulties and also makes
it more likely the existence of additional local optima).
Although these four issues are all sources of difficulties for
proper parameter estimation, the last two have been less
studied.
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Lack of identifiability

The objective of identifiability analysis is to find out
whether it is possible to uniquely estimate the val-
ues of the unknown model parameters [79]. It is use-
ful to distinguish between two types of identifiability:
structural and practical. Structural identifiability [80, 81]
studies if the model parameters can be uniquely deter-
mined assuming ideal conditions for the measurements
and therefore only considering the model dynamics and
the input-output mapping (i.e. what is perturbed and
what is observed). Structural identifiability is sometimes
called a priori identifiability. Despite recent advances
[82-84], structural identifiability analysis remains diffi-
cult to apply to large dynamic models with arbitrary
nonlinearities.

It is important to note that, even if structural iden-
tifiability holds, unique determination of parameter
values is not guaranteed since it is a necessary con-
dition but not a sufficient one. Practical identifiabil-
ity analysis [85-87] considers experimental limitations,
i.e. it aims to find if parameter values can be deter-
mined with sufficient precision taking into account the
limitations in the measurements (i.e. the amount and
quality of information in the observed data). Practi-
cal (sometimes called a posteriori) identifiability anal-
ysis will typically compute confidence intervals of the
parameter values. Importantly, it can also be taken
into account as an objective in optimal experimental
design [86].

Multimodality

Schittkowski [77] puts emphasis on the extremely difficult
nature of data fitting problems when oscillatory dynam-
ics are present: the cost function to be minimised will
have a large number of local solutions and an irregular
structure. If local optimisation methods are used, they will
likely converge to one of these local solutions (typically
the one with the basin of attraction that includes the ini-
tial guess). Several researchers have studied the landscape
of the cost functions being minimised, describing them as
very rugged and with multiple local minima [77, 88, 89].
Thus, this class of problems clearly needs to be solved
with some sort of global optimisation scheme as illus-
trated in a number of studies during the last two decades
[57, 86,90-93].

The simplest global optimisation approach (and widely
used in parameter estimation) is the so-called multi-start
method, i.e. a (potentially large) number of repeated local
searchers initialised from usually random initial points
inside the feasible space of parameters. Although a num-
ber of studies have illustrated the power of this approach
[94-96], others have found that it can be inefficient
[92, 97-99]. This is especially the case when there is a
large number of local solutions: in such situations, the
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same local optima will be repeatedly found by many local
searches, degrading efficiency.

Thus, several methods have tried to improve the perfor-
mance of the plain multi-start method by incorporating
mechanisms to avoid repeated convergence to already
found local solutions. This is the case of hybrid meta-
heuristics, where a global search phase is performed
via diversification mechanisms and combined with local
searches (intensification mechanisms). In this context, the
enhanced scatter search (eSS) method has shown excel-
lent performance [64, 97, 99, 100]. Here we will use an
extension of the eSS method distributed in the MEIGO
toolbox [101] as the central element of our automated
multi-step approach. We have modified the MEIGO
implementation of eSS in several ways, as detailed in
Additional file 1. In order to illustrate the performance
and robustness of eSS with respect to several state-of-
the-art local and global solvers, we provide a critical
comparison in Additional file 2.

Huge search spaces

In this study, we consider the common case scenario
where little prior information about (some or all of the)
parameters is available and therefore we need to consider
ample bounds in the parameter estimation. These huge
parameter bounds complicate convergence from arbitrary
initial points, increase computation time and make it
more likely that we will have a large number of local solu-
tions in the search space. Although deterministic meth-
ods, which could be used to systematically reduce these
bounds exist [102-104], currently they do not scale up
well with problem size. Such techniques therefore can not
be applied to problems of realistic size. Some analytical
approaches have also been used for the analysis of biolog-
ical oscillators [26, 31]. Alternatively, non-deterministic
sampling techniques have been used to explore the
parameter space and identify promising regions consis-
tent with pre-specified dynamics [105]. Inspired by these
results, we will re-use the sampling performed during
an initial optimisation phase to reduce the parameter
bounds.

Overfitting

Overfitting describes the problem associated with fit-
ting the noise in the data, rather than the signal.
Overfitted models can be misleading as they present
a low-cost function value, giving the false impres-
sion that they are well-calibrated models that can
be useful for making predictions. However, overfit-
ted models have poor predictive power, i.e. they do
not generalise well and can result in major prediction
artefacts [106]. In order to fight overfitting, a num-
ber of regularisation techniques have been presented.
Regularisation methods originated in the area of inverse
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problem theory [107]. Most regularisation schemes are
based on adding a penalty term to the cost function, based
on some prior knowledge of the parameters. This penalty
makes the problem more regular, in the sense of reduc-
ing ill-conditioning and by penalising wild behaviour.
Regularisation also can be used to minimise model
complexity.

However, regularisation methods for nonlinear dynam-
ics models remain an open question [99]. Further, these
methods require some prior knowledge about the param-
eters and a tuning process which can be cumbersome
and computationally demanding. Here, we will present a
workflow that aims to automate this process.

Small illustrative example

In order to graphically illustrate several of the above
issues, let us consider the ENSO problem, a small yet
challenging example taken from the National Institute
of Standards (NIST) nonlinear least squares (NLLS) test
suite [108].

To visualise the multimodality of this problem, we can
use contour plots of the cost function for pairs of param-
eters, as shown in Fig. 1. In this figure we also show the
convergence paths followed by a multi-start of a local opti-
misation method (NL2SOL [109]), illustrating how most
of the runs converge to local solutions or saddle points
close to the initial point. We can also see how differ-
ent runs converge to the same local solutions, explaining
the low efficiency of multi-start for problems with many
local optima. We also provide additional figures for this
problem in Additional file 1.

In contrast, we plot the convergence paths of the
enhanced scatter search (eSS) method in Fig. 2, showing
how the more efficient handling of the local minima
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allows this strategy to successfully and consistently find
the global solution even from initial guesses that are far
from the solution. It should be noted that while NIST lists
this ENSO problem as being of “average” difficulty, this
is largely due to the excellent starting point considered
in their test suite, which are extremely close to the solu-
tion. Indeed, we can see in the aforementioned figures
that the choice of parameter bounds and initial guess can
dramatically change the difficulty of the problem.

An automated regularised estimation approach

Here we present a novel methodology, GEARS (Global
parameter Estimation with Automated Regularisation via
Sampling), that aims to surmount the pitfalls described
above. Our method combines three main strategies: i)
global optimisation, (ii) reduction of the search space
and (iii) regularised parameter estimation. In addition to
these strategies, the method also incorporates identifi-
ability analysis, both structural and practical. All these
strategies are combined in a hands-off procedure, requir-
ing no user supervision after the initial information is
provided.

An overview of the entire procedure can be seen in
Fig. 3. The initial information required by the method
includes the dynamic model to be fitted (as a set of
ODEs), the input-output mapping (including the obser-
vation function) and a data set for the fitting (dataset I).
A second data set is also needed for the purposes of
cross-validation and evaluation of overfitting (dataset II).
Additionally, users can include (although it is not manda-
tory) any prior information about the parameters and
their bounds. If the latter is not available, users can just
declare very ample bounds, since the method is prepared
for this worst-case scenario.

ENSO b(4) vs b(7) contours with local solver progess from various starts
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Fig. 1 ENSO problem NL2SOL contours: contours of the cost function (nonlinear least squares) for parameters b4 and b7, and trajectories of a
multi-start of the NL2SOL local solver
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Fig. 2 ENSO problem eSS contours: contours of the cost function (nonlinear least squares) for parameters b4 and b7, and trajectories of the
enhanced scatter search (eSS) global optimisation solver initialized from various starting points
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The method first performs two pre-processing steps.
The first is a structural identifiability analysis test. A
second pre-processing step involves symbolic manipu-
lation to generate the components needed for the effi-
cient computation of parametric sensitivities. After the
pre-processing steps, the method performs a first global
optimisation run using eSS and a non-regularised cost
function. This step is used to obtain useful sampling
information about the cost function landscape, which is
then used to perform parameter bounding and regular-
isation tuning. This new information is then fed into a
second global optimisation run, again using eSS but now
with a regularised cost function and the new (reduced)
parameter bounds. The outcome of this second optimisa-
tion is the regularised estimate, which is then subject to

several post-fit analysis, including practical identifiability
and cross-validation (using dataset II). Details regarding
each of these steps are given below.

Structural identifiability analysis

The structural identifiability analysis step allows us to
ensure that based on the model input-output (obser-
vation) mapping we are considering, we should in
principle be able to uniquely identify the parame-
ter values of the model (note that it is a necessary
but not sufficient condition). If the problem is found
to be structurally non-identifiable, users should take
appropriate actions, like model reformulation, model
reduction or by changing the input-output mapping if
possible.

Initial information

D '

Optimisation procedure

Results and post analysis

ataset Il

=

Dataset |
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Fig. 3 Workflow of procedure: a schematic diagram of the GEARS method
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In our workflow, we analyse the structural identifiabil-
ity of the model using the STRIKE-GOLDD package [82],
which tests identifiability based on the rank of the sym-
bolic Lie derivatives of the observation function. It can
then detect each structurally non-identifiable parameter
based on rank deficiency.

Symbolic processing for efficient numerics

In GEARS we use a single-shooting approach, i.e. the
initial value problem (IVP) is solved for each valua-
tion of the cost function inside the iterative optimisation
loop. It is well known that gradient-based local methods,
such as those used in eSS, require high-quality gradient
information.

Solving the IVP (original, or extended for sensitivities)
is the most computationally expensive part of the optimi-
sation, so it is important to use efficient IVP solvers. In
GEARS we use AMICI [110], a high level wrapper for the
CVODES solver [111], currently regarded as the state of
the art. In order to obtain the necessary elements for the
IVP solution, the model is first processed symbolically by
AMICI, including the calculation of the Jacobian. It should
be noted that an additional advantage of using AMICI is
that allows the integration of models with discontinuities
(including events and logical operations).

Global optimisation phase 1

The objective of this step is to perform an efficient sam-
pling (storing all the points tested during the optimisa-
tion) of the parameter space. This sampling will then be
used to perform (i) reduction of parameter bounds, and
(ii) tuning of the regularisation term to be used in the
second optimisation phase.

The cost function used is a weighted least-squares cri-
terion as given by Egs. (5-7). The estimation problem
is solved using the enhanced scatter search solver (eSS,
[112]), implemented in the MEIGO toolbox [101]. Within
the eSS method, we use the gradient-based local solver
NL2SOL [109]. In order to maximise its efficiency, we
directly provide the solver with sensitivities calculated
using AMICI. After convergence, eSS finds the optimal

parameters vector for the fitting data @', While this solu-
tion might fit the dataset I very well, it is rather likely that
it will not have the highest predictive power (as overfitting
may have occurred). During the optimization, we store
each for function evaluation the parameter vector 0;»9 and

its cost value Qnis (015) = ¢;, building the sampling:

© = [05,....0%, | € BY x RYS ®)
= [QNLS (0?) ., ONLs (ofvs)] =[a1.. . o] € RN
)
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where Ng is the number of function evaluations, Ny is the
s\ .

number of parameters and each Qs (0 i) is a parameter

vector selected by eSS.

Parameter bounding

The sampling obtained in the global optimisation phase 1
is now used to reduce the bounds of the parameters, mak-
ing the subsequent global optimisation phase 2 more effi-
cient and less prone to the issues detailed above. We first
compute calculate a cost cut-off value for each parameter
using Algorithm 1. This algorithm is used to determine
reasonable costs, whereby costs deemed to be far from the
global optimum are rejected. We calculate one cost cut
off for each parameter, as different parameters have differ-
ent relationships to the cost function. Once these cut-off
values have been calculated for each parameter, we apply
Algorithm 2 to obtain the reduced bounds.

Algorithm 1 Finding the cost cut off for each parameter
cC e RNo,
Require: The parameter samples from the initial estima-
tion ® (Eq. 8).
Require: The cost samples from the initial estimation ¢
(Eq. 9).
1: Transform the samples into log space

©! = log (©) and ¢! = log (¢)

2. fori=1to Ny do
3: Find the largest increase in the parameter range in
the sample Gl.s as the sample cost increases:

(), (el

c .
;l' EC . d;l‘ d;L

4: end for

Regularised cost function

The next step builds an extended cost function using a
Tikhonov-based regularisation term. This is a two norm
regularisation term given by:

re =(o- 0”f)TWTw (0-0) (10)
B elrlef 0 - - 0 7
0 gzrlfff 0 .-.- 0
W = 0 (11)
: 0
] 0 0 0 %_

where W normalises the regularisation term with respect
to 0”7, to avoid bias due to the scaling of the reference
parameter. The extended cost function is as follows:
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Algorithm 2 Finding the reduced parameter bounds
I:QRmm,QRmM] c I:e!mzn’g!max] V@L co.

L 4 4 l

Require: Find the cost cut offs by Algorithm 1 — ¢€
Require: The parameter samples from the initial estima-
tion ® (Eq. 8).
Require: The cost samples from the initial estimation ¢
(Eq.9).
1: fori=1to Ny do
2 Find the samples with costs less than the cost cut
offs:

04 = {91' €0 €0O:Qnis(0) < Cic}
Where the Qnzs (0) values have already be calculated
ing.
3 Exclude outliers to prevent singular sample points
dramatically changing results.

a: Separate the parameter samples into histogram
groups.

04 = [eA,l; .. ‘0A:NG:|

Where each group has Ng,; sample points, such that
N .

Zi:Gl NG, =dim (04).

b: Select the bins that contain at least 90% of the

samples.

o4 = {OA,i €04:) Nei = 0.9 - dim (0A)}
4: Select the extremes of the parameter values:
[041™,079%] = [min (0.4) , max (04)]
5 if[07%] < 6" then
o™ = [
6: else
oR"™ _ o™

7: end if )

& if 07| > 6I"" then
oF"™" = o3|

9: else

Rmt’n _ Imin

10: end if
11: end for

Qr(0) = Qnrs(0) +al'(9) (12)

where « is a weighting parameter regulating the influence
of the regularisation term.

Once the regularised cost function is built, we need to
tune the regularisation parameters. Once again, we start
from the cost cut off values calculated in Algorithm 2. We
also use the reduced parameter bounds to ensure that our
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regularisation parameters and reduced parameter bounds
do not conflict each other. The procedure for calculating
the values for the regularisation parameters o and 8’ can
be found in Algorithm 3.

Algorithm 3 Finding the regularisation parameters o and
07/

Require: The cost cut offs by Algorithm 1 — ¢€
Require: Find the reduced parameter bounds by
Algorithm 2 — 8™, 8™
Require: The parameter samples from the initial estima-
tion © (Eq. 8).
Require: The cost samples from the initial estimation ¢
(Eq. 9).
1: fori=1to Ny do
2 Find the parameter samples with cost less their
cost cut off and within the reduced bounds:

0'={6:c0c0:0¢[6F".68 ], Qus @ <¢F)
where the Qnis (0) values have already be calculated
in¢.

3: Set the reference value to the median of 4:

Qiref = median (BA) VOZ-ref cod

4: end for
5. Calculate the regularisation parameter o such that

Qr (5[) = median (L‘C):
median (;‘C) — QnLs <§1)

r (@)

o= e R!

Global optimisation phase 2
Once we have calculated both the values of the regulari-
sation parameters and the reduced parameter bounds, we
are now able to perform the final regularised optimisation.
We use the same set up for the global optimisation solver
(eSS with NL2SOL as the local solver, and AMICI as
the IVP solver). We then solve the regularised parameter
estimation problem given by:

min Qg(#) = min (Qnzs(9) + aT'()) (13)
Subject to the system described in Eqs. 1-3, and the
reduced parameter bounds given by:

or"™" <0, <0R" " Vo, c0 (14)

We denote the solution to this regularised estimation
~R
problem as 6 .
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Practical identifiability analysis

The next step is to analyse the practical identifiability of
the regularised solution. This is done using an improved
version of the VisId toolbox [87]. The VisId toolbox
accesses practical identifiability based on testing collinear-
ity between parameters. A lack of practical identifiability
is typically due to a lack of information in the available fit-
ting data, and in principle can be surmounted by a more
suitable experimental design [86].

Cross-validation and post-fit analysis

Next, we assess the level of overfitting using cross-
validation. This is typically done by comparing the fitted
model predictions with experimental data obtained under
conditions (e.g. initial conditions) different from the ones
used in the fitting dataset. In other words, cross-validation
tests how generalisable the model is. Here, we perform

D .
cross-validation on both the non-regularised § and regu-

larised solution 8. This allows us to assess the reduction
of overfitting due to the regularised estimation.

In addition to cross-validation, several post-fit statis-
tical metrics are also computed: normalised root mean
square error (NRMSE), R? and yx? tests [113], parame-
ter uncertainty (confidence intervals computed using the
Fisher information matrix, FIM), and parameter corre-
lation matrix (also computed using the FIM). The nor-
malised root mean square error is a convenient metric for

the quality of fit, given by:

22 )

N, Nyi Niij <
k=1j=1 i=1

- 2
Yiji —Vkji
max (9/(,) —min (g’kj)

n

NRMSE (0) = (15)
We use the NRMSE measure to assess both the quality of
fit and quality of prediction. One important caveat to note
here is that some of these post-fit analyses are based on the
Fisher information matrix (FIM) for their calculation. This
is a first order approximation and can be inaccurate for
highly nonlinear models [114]. In those instances, boot-
strapping techniques are better alternatives, although they
are computationally expensive.

Implementation: The GEARS Matlab toolbox

The methodology proposed here has been implemented
in a Matlab toolbox, “GEARS: Global parameter Esti-
mation with Automated Regularisation via Sampling”
GEARS is a software package that can be downloaded
from https://japitt.github.io/ GEARS/, made freely avail-
able under the terms of the GNU general public license
version 3. GEARS runs on Matlab R2015b or later
and is multi-platform (tested on both Windows and
Linux). The Optimisation and Symbolic Math Matlab
toolboxes are required to run GEARS. In addition to
this, GEARS requires the freely available AMICI package
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(http://icb-dcm.github.io/AMICI/) to solve the initial
value problem. Optionally, it also requires the Ghostscript
software (https://www.ghostscript.com) for improved
exportation of results. For more details please see the
documentation within the GEARS toolbox. It should
be noted that for the structural and practical identifi-
ability analysis steps, users need to install the VisId
[87] and STRIKE-GOLDD [82] packages respectively.
These packages are freely available at https://github.
com/gabora/visid and  https://sites.google.com/site/
strikegolddtoolbox/ respectively.

Case studies

Next, we consider four case studies of parameter esti-
mation in dynamic models of biological oscillators. The
general characteristics of these problems are given in
Table 1. While these problems are small in terms the num-
ber of parameters, they exhibit most of the difficult issues
discussed above, such as overfitting and multimodality,
making them rather challenging. For each case study, syn-
thetic datasets (i.e. pseudo-experimental data generated
by simulation from a set of nominal parameters) were
generated. For each case study, 10 fitting datasets with
equivalent initial conditions were produced, plus a set of
10 additional cross-validation data sets (where the initial
conditions were changed randomly within a reasonable
range). All these data sets were generated using a stan-
dard deviation of 10.0% of the nominal signal value and a
detection threshold of 0.1.

FitzHugh-Nagumo (FHN) problem

This problem considers the calibration of a FitzHugh-
Nagumo model, which is a simplified version of the
Hodgkin-Huxley model [115], describing the activation
and deactivation dynamics of a spiking neuron. We
consider the FHN model as described by Eqs. 16-21:

Table 1 Summary of case studies considered

FitzHugh- Goodwin Repressilator Enzymatic
Nagumo Oscillator Oscillator
Abbreviation FHN GO RP EO
Main Reference  [117] [25] [69] [116]
Number of 3 8 4 7
parameters
Number of 3 8 4 7
estimated
parameters
Number of states 2 3 6 3
Number of 1 2 1 2
observables
Numberof data 6 20 20 14
points per
experiment
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v (V—ﬁ+R> (16)

dt 3
i—f:—é(V—a+b~R) 17)
Vi(to,0) = Vo (18)
R(t,0) = Ro (19)
y(t) = V(t) (20)
0 = {a,bg} € [107°,10°] (1)

where y is the observation function considered in the
example. The flexibility of the model dynamics makes this
model prone to overfitting. Synthetic data was generated
taking nominal parameter values {a,b,g} = {0.2,0.2,3}.
The fitting data was generated with initial conditions of
Vo=—-1L,Ry=1.

Goodwin (GO) oscillator problem

The Goodwin oscillator model describes control of
enzyme synthesis by feedback repression. The GO model
is capable of oscillatory behaviour in particular areas of
the parameter space. Griffith [26] showed that limit-cycle
oscillations can be obtained only for values of the Hill
coefficient n > 8 (note that this information could be used
to bound this parameter but here we will not use it, assum-
ing a worst case scenario with little prior information
available). The GO model suffers from some identifiabil-
ity issues as well as tendency to overfitting. The dynamics
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are given by Egs. 22-28:
dx1 k1 . I(in
PR S S 22
i K e (22)
dxg
i — 2
di k3 X1 k4 X2 ( 3)
%Z/@-xg—ks-xg (24)
x1-3(t0,0) = x1-30 (25)
YE(t) = [x1(8), x3(8)] (26)
yv (&) = [x1 (&), %2(8), x3(¢:)] (27)
0 = {k1_¢, K;, n}where {k1_¢, K;}
€[1073,10°] andne [1,12] (28)

where variables {x1,x,x3} represent concentrations of
gene mRNA, the corresponding protein, and a tran-
scriptional inhibitor, respectively; yr is the observation
function for the estimation problem, and yy is the obser-
vation function for the cross-validation procedure. Syn-
thetic data was generated considering nominal parameter
values {ki_¢,K;,n} = {1,0.1,1,0.1,1,0.1,1,10}. The fit-
ting datasets were generated for the initial conditions
x1-3,0 = [0.1,0.2,2.5]. It is important to note that we have
considered an additional observable for cross-validation,
which makes the problem much more challenging (i.e. it
exacerbates the prediction problems due to overfitting).

a b g
I 1 ] sl I i 6l ‘ |
[ Parameter bounds box 10 L 10
Sample points
10%F 4 10%; 1 10%F 1

107 10° 105 10°
Parameter values

Fig. 4 FHN case study: parameter samples. Parameter samples, showing the cost cut off values and the reduced bounds for each parameter

Parameter values

10° 10°  10® 10° 10°
Parameter values
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Table 2 FHN case study: bounds reduction. A table showing the
bounds reduction performed on the FHN model for the first
fitting data set

Parameter Original bounds Reduced bounds
a [1072,10°] [107°,1]

b [107°,10°] [107>,1000]

g [107°,10°] [1073,100]

Repressilator (RP) problem

The Repressilator is a well-known synthetic gene regula-
tory network [17]. We consider the particular parameter
estimation formulation studied by [69] with dynamics
given by Eqs. 29-37:
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where yr is the observation function for the fit-
ting procedure and yy is the observation function
for the cross-validation procedure (i.e. an additional
observable for cross-validation). Synthetic data was
generated considering nominal parameter values
{ki—¢,K;,n} = [0.05,298,8.5,0.3]. The fitting data
was generated for the initial conditions given by
[p1-3,0, m1-30] = [10,0.01,1,1,0.01, 10].

Enzymatic oscillator (EO) problem

The enzymatic oscillator is a small biochemical system
model that illustrates the effect of coupling between two
instability-generating mechanisms [116]. Parameter esti-
mation in this system is particularly challenging due to the
existence of a variety of modes of dynamic behaviour, from

dp: simple periodic oscillations to birhythmicity and chaotic
ar plm —p1) (29 behaviour. The chaotic behaviour is restricted to a partic-
dpy 30 ular region of the parameter space as discussed in [116].
dr Blmz = p2) (30) Its dynamics are difficult even for regions with simple
dﬁ — B(ms — p3) (31) periodic behaviour: the existence of extremely steep oscil-
dt 3T lations causes small shifts in the period of oscillations to
dmy — o+ o —m (32) have a large impact on the estimation cost function. We
dt (1+p%) consider the dynamics described by Egs. 38—43:
dmy o 2
—— =+ ——~ — (33) da _ _ aople@+DE+D a8
ddt (1+p7) dr MM T 10611, + (@ 1 D2(B + 1)2 (38)
—;’f‘ =0t T fpn) — s (38) dB _ 50a-0n(@+1)(B+1)
2 dt — (10°Lls + (o + D)2 (B + 1)
p1-3(to) = p1-3,0,m1-3(to) = mi-3, (35) ( 2t ) ) (ﬂﬂ ’)
yE(t) = m3(4) andV (%) = [p3(t), m3(t)]  (36) 02,3(y +1) (drBW + 1) p
0 = {ao, a, B, n} where {ag, o, B} 5 5 2 (39)
€ [1072,500] and # € [1,10] (37) <L2’3 o+ (d’f“m * 1) )
10°
10tr y

1071

Parameter bounds value
=
<
T

[IReduced bounds

[ Original bounds

0 Regularised estimate with uncertainty

0 Non-regularised estimate with uncertainty|

10° :

Fig. 5 FHN case study: reduction of parameters bounds. Original and reduced parameter bounds, also showing the parameter confidence levels for

the first fitting data set
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b
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Table 3 FHN case study: summary of the regularised results. A
summary of the final results of the procedure applied to the FHN
model for the first fitting data set

Parameter Parameter Confidence  Coefficient of Bounds

names value (95%) variation (%) status

a 0.1069 0.0129 6.1732 Bounds not
active

b 0.6230 0.0551 45130 Bounds not
active

g 2.8490 0.1528 2.7370 Bounds not
active

(y + 12 (d3 o5 + 1
d}/ 02,5y 3100 :B

o7 o —ksray
(50 (Lzrg + ¢ + 12 (dra gy +1) ))

(40)
a(ty) = ap, B(to) = Bo, v (o) = vo (41)
Y(&) = [a (), B(t)] (42)

0 = {Vim1, L1, 012,123, dy3,09,5,kspa} € [107310°]
(43)

where y is the observation function. Synthetic data
was generated considering nominal parameter values
0 = [0.4,500,10,10,0.07,7,2.5]. An important point to
note here is that these parameter values were chosen to be
in the vicinity of, but not inside, the region with chaotic
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behaviour. For the fitting datasets the initial conditions
[0, Bos Yo] = [29.1999, 188.8,0.3367] were used.

Results

All the problems were solved with GEARS using 10 differ-
ent datasets for fitting and 10 additional datasets for cross-
validation. For the RP and GO models an extra observable
was considered in the case of the cross-validation. To
illustrate the results obtained during the different steps,
we will focus on the FHN problem. Detailed results for all
the other case studies are given in Additional files 1 and 3.
The GEARS software distribution includes all the scripts
implementing these case studies.

First, the structural identifiability of these problems
was analysed using STRIKE-GOLDD [82], concluding
that all of them are identifiable a priori. This analysis
also revealed that for the GO case study the ini-
tial conditions for the unobserved state xy must also
be known, otherwise two parameters are structurally
unidentifiable.

Next, the GEARS workflow proceeded performing an
initial estimation. The samples obtained were analysed by
applying a cut off to each parameter as seen in Fig. 4
for the FHN problem. The cost cut-off values were then
used to significantly reduce the parameter bounds, as
shown in Table 2 and Fig. 5. Next, GEARS performed
the regularised estimation step (Table 3). We are suc-
cessful able to avoid the multiple local solutions that are

35FHN distribution of local solutions for noiseless data (for 232 runs performed in a
I I

budget of 53.3055 seconds)
I

I [ - [
Overfitting | Underfitting

25| - >
30

N
o
I

I

I

I,

10 5 10 15
I

I

I

N
[¢]
I

Frequency (%)

-
o

| mLAER

| | | | m

0

-1 1 2

examples of underfitting and overfitting

l0go(Qy s(OVQy 50

Fig. 6 FHN case study: distribution of local solutions. Histogram of the local solutions found with a multi-start local solver; the arrows indicate

3 4 5 6 7
)

true
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Table 4 FHN case study: summary of NRMSE results. A table of
the NRMSE for the FHN case study. The fitting is to one particular
experiment, while the cross-validation covers ten experiments for
the fit to the first fitting data set
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frequently found using local optimisers (see Fig. 6). As
expected, this second estimation reduced the quality of
the calibration to the fitting data, as shown in Table 4,
Figs. 7a and 8. However, it increased the generalisabil-

Experiments Regularised Non-regularised  jty of the model, as can be seen in Fig. 7 and Table 4.

Fitting 02647 0.1095 Finally, GEARS confirmed a satisfactory practical identi-

Cross-validation 14054 14487 fiability for the resulting calibrated FHN, as indicated by
the rather small confidence intervals for the estimated
parameters.

a V fitti
ittin
2.5 \ 9
) i

—Non-regularised

—Regularised

0 5

10
Time

V cross-validation

15

20

numerical results are given in Table 4

4t ]
6 .
—Non-regularised
—Regularised
_8 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time
Fig. 7 FHN problem: effect of regularisation on fitting and cross-validation. An example of how regularisation affects the calibration of the FHN
model: reduction of the quality of the fitting (subplot (a)), but improvement on the quality of the cross-validation (subplot (b)); the corresponding
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V experiment: Exp1l
T T T

10 12 14 16 18
Time

20

Fig. 8 FHN problem fit with uncertainty: final regularised fit with uncertainty intervals coonsidering the first fitting data set

More detailed results for FHN and all the other case
studies can be found in Additional files 1 and 3. Regard-
ing practical identifiability, using the VisId toolbox we
found that both the FHN and RP problems are fully iden-
tifiable in practice indicating that our dataset contains
enough information. In the case of the EO and GO models
we found that there are a number of collinear parame-
ters sets indicating that, at least to some degree, these
parameters are compensating one another due to a lack of
information in the data.

Considering now all the case studies, it is important
to assess the consistency of the effect of regularisation
on their generalisability. In Fig. 9 we show how the reg-
ularised estimation always decreases the quality of cali-
bration to the initial fitting data, as expected. However,
the regularised estimations lead to better cross-validation
results, i.e. these calibrated models have better predictive
power because we have avoided overfitting. It should be
noted, however, that there are a few cases where the proce-
dure is unable to significantly improve the generalisability

Fitting

Cross-validation

200,
150

100

501

-100

-150-

NRMSE variation with regularisation (%)
o

-20

A
i
E ]

BFHN
DGo ||
CIrp
lEo

FHN GO RP EO

FHN GO RP EO

Fig. 9 Effect of regularisation for all the case studies. Violin plots illustrating the effect of regularisation on the fitting and cross-validation errors
(given as normalized root mean square error, NRMSE) for each model and over all the data sets considered. It is shown how regularisation increases
the NRMSE for the fitting, but with the benefit of generally improving the predictive power, i.e. reducing the NRMSE in the cross-validations
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of the model. The explanation is that no real overfit was
present in the initial calibrations.

In summary, using GEARS we have been able to
successfully calibrate these challenging oscillators mod-
els, avoiding the typical pitfalls, including conver-
gence to local optima and overfitting, in an automated
manner.

Conclusions

Parameter estimation in nonlinear dynamic models of
biosystems is a very challenging problem. Models of
biological oscillators are particularly difficult. In this
study, we present a novel automated approach to over-
come the most common pitfalls. Its workflow makes
use of identifiability analysis and two sequential opti-
misation steps incorporating three key algorithms: (1)
sampling strategies to systematically tighten the param-
eter bounds reducing the search space, (2) efficient
global optimisation to avoid convergence to local solu-
tions, (3) an advanced regularisation technique to fight
overfitting.

We evaluate this novel approach considering four diffi-
cult case studies regarding the calibration of well known
biological oscillators (Goodwin, FitzHugh—Nagumo,
Repressilator and a metabolic oscillator). We show how
our approach results in more efficient estimations which
are able to escape convergence to local optima. Further,
the use of regularisation allows us to avoid overfitting,
resulting in more generalisable calibrated models (i.e.
models with greater predictive power).

Additional files

Additional file 1: Remarks on the eSS optimisation solver and detailed
results for the Goodwin Oscillator problem and additional ENSO contour
plots. This file describes our modifications to the eSS global optimisation
solver. It also contains tables and figures showing the detailed results for
the Goodwin Oscillator problem, and additional contour plots for the ENSO
example. (PDF 1730 kb)

Additional file 2: Critical comparison of optimisation solvers. In GEARS,
the optimisation problems are solved using the hybrid metaheuristic eSs.
A comparison of the eSS global optimisation solver used in GEARS with
other competitive local and global optimisation solvers. (PDF 880 kb)

Additional file 3: Detailed results for the Fitzhugh-Nagumo, Repressilator
and Enzymatic Oscillator problems. This file contains tables and figures
showing the detailed results for the Fitzhugh-Nagumo, Repressilator and
Enzymatic Oscillator problems. (PDF 1680 kb)
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