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Abstract

Background: High throughput sequencing technologies have been increasingly used in basic genetic research
as well as in clinical applications. More and more variants underlying Mendelian and complex diseases are being
discovered and documented using these technologies. However, identifying and obtaining a short list of candidate
disease-causing variants remains challenging for most of the users after variant calling, especially for people without
computational skills.

Results: We developed GenESysV (Genome Exploration System for Variants) as a scalable, intuitive and user-friendly
open source tool. It can be used in any high throughput sequencing or genotyping project for storing, managing,
prioritizing and efficient retrieval of variants of interest. GenESysV is designed for use by researchers from a wide range
of disciplines and computational skills, including wet-lab scientists, clinicians, and bioinformaticians.

Conclusions: GenESysV is the first tool to be able to handle genomic variant dataset ranging in size from a few to
thousands of samples and still maintain fast data importation and good query performance. It has a very intuitive
graphical user interface and can also be used in studies where secured data access is an important concern. We
believe this tool will benefit the human disease research community to speed up discoveries for genetic variants
underlying human genetic disorders.

Keywords: High-throughput sequencing, Genotyping, Genome, VCF, WGS, WES, Variants, Annotation, Mendelian
diseases, Complex diseases

Background
The advent of high throughput sequencing technologies
has greatly accelerated the identification of variants that
underlie Mendelian and complex diseases [1–7]. With
the cost of sequencing decreasing and sequencing accur-
acy improving, an increasing number of research labora-
tories/projects have adopted these technologies to
interrogate variants from a few or even hundreds to
thousands of human samples in an attempt to identify
variants that may underline rare monogenic or common
complex diseases. Of the millions of variants typically

found in any given individual, most of them likely only
contribute to human population diversities. Identifying a
subset of variants that are most likely underlying the dis-
ease or traits of interest requires field knowledge com-
bined with the use of software tools to facilitate this
process. The typical workflow in selecting candidate
disease-causing variants starts with variant annotation
using tools such as the Ensembl Variant Effect Predictor
(VEP) [8] or Annovar [9]. Variants are then subse-
quently filtered by their minor allele frequencies and
other criteria such as the functional consequences to
the genes and transcripts they affect, conservation
scores [10, 11], predicted pathogenicity scores [12, 13],
known associations with disease phenotypes [14–16],
etc. After these filtering steps, a short list of candidate
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disease-causing genes or variants can be produced and
reviewed by field experts for downstream validation.
Due to a very large number of variants typically identi-

fied from a sequencing project, retrieving variants of inter-
est based on the above criteria generally requires writing
custom scripts to process VCF [17] format files, a de facto
standard used in reporting genetic variants from high
throughput sequencing or genotyping projects. Given the
importance of identifying these variants, it is not surpris-
ing that a number of software tools have been developed
in the past few years. These include commercial packages
such as Ingenuity Variant Analysis from QIAGEN
(www.qiagen.com/ingenuity), VarSeq (http://goldenhe-
lix.com/products/VarSeq/index.html) and Sequence
Miner (https://www.wuxinextcode.com), as well as several
open source tools, such as GEMINI [18], BrowseVCF [19],
VCF-miner [20], Mendel,MD [21] and BiERapp [22].
During the course of supporting genomics projects en-

gaged by the Buffalo Institute for Genomics and Data
Analytics (https://www.buffalo.edu/genomics.html), we
surveyed existing open source software in order to find a
package that would meet our needs for performance,
ease of use, scalability, and controlled access to its users
and their proprietary data (Table 1). Unfortunately,
many of these open source tools are not designed as
comprehensive variant exploration tools and are unable
to handle all of the commonly known disease models,
neither are they designed for use by multiple researchers
who require secure data storage and access. Further-
more, many of the existing tools lack rapid analysis cap-
ability for large cohorts consisting of thousands of
samples and hundreds of millions of variants.
To overcome these limitations, we developed GenE-

SysV - an open source software system with an intuitive
user interface. GenESysV can be deployed on a single

computer or on a multi-node computer cluster to en-
able a wide range of researchers with varying computa-
tional skills to explore and prioritize variants in both
coding and non-coding regions of the human genome.
It can scale for studies with thousands of samples, yet
still gives satisfactory data loading and querying per-
formance. Below, we describe its design, features and
performance benchmarks.

Implementation
Design overview
Two of the primary goals for developing GenESysV were
ease of use for researchers of any computational skill
level and good VCF file search performance regardless
of the cohort size. Based on these considerations, we de-
signed and implemented GenESysV utilizing the Python
Django Web development framework and Elasticsearch,
a NoSQL database. The choice of Elasticsearch is based
mainly on the sparse nature of genotype data in VCF
files. It is optimized both for a workstation environment
as well as for a parallel computing environment. To fa-
cilitate the development of web applications with an
easy-to-use user interface, we chose the Bootstrap
front-end framework with Django as the backend frame-
work. Django comes with a pre-built feature rich user
management solution, which we used to control access
to data stored in Elasticsearch. Figure 1 shows a sche-
matic view of the design of GenESysV.

User interface
Given the widespread use of high throughput sequencing
technologies, one goal of this initiative was to make candi-
date disease-causing variant identification accessible to a
wide range of users, including scientists and clinicians.

Table 1 Comparison of existing open-source software tools with similar functions

Features GenESysV GEMINI BrowseVCF VCF-Miner Mendel,MD BiERapp

Graphical Usera Interface Yes No Yes Yes Yes Yes

Study type Single cohort
complex disease,
Case/Control, and
Mendelian inheritance

Single cohort
complex disease
and Mendelian
inheritance

Single cohort
complex and
Mendelian
inheritance

Single cohort
complex disease
and Mendelian
inheritance

Mendelian only Single cohort
complex disease,
Case/Control,
and Mendelian
inheritance

Whole
genome, exome
or target study

All All All All WES or targeted
study

WES or target
study

Can handle
studies with
large numbers
of samples

Yes Yes No No No No

Database Type Elasticsearch Sqlite3 Wormtable &
BerkeleyDB

MongoDB PostgreSQL SQLite &
MongoDB

Flag variants for
further filtering

Yes No No No No No

aFeatures listed here are not exhaustive
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This required GenESysV’s interface to strip away the com-
plexity of building queries using hundreds of annotations.
We accomplished the above goal in two ways. First, in-

spired by the GUI design of BioMart [23], we grouped
the hundreds of annotations according to their logical
relevance – thereby facilitating users to locate them in
the filter and attribute sections (Fig. 2) quickly and intui-
tively. For example, all of the variant related attributes
are independent of the sample related fields, therefore
putting them into a single “Variant Related Information”
category. The sample genotype and read-depth, etc. are
specific to each sample and allows them to be grouped

into the “Sample Related Information” category. In
addition, the data type determines how a given attribute
should be used to set up filters. For example, a numeric
data type can be used to create range filters to accept
threshold values for filtering and a categorical data type
can be used to create a dropdown list in the user inter-
face for filter value selection. With this grouping strat-
egy, in conjunction with the use of data types, we
designed our data loading script to generate the GUI
configuration file after the Elasticsearch index creation.
This GUI configuration file guides the automatic cre-
ation for both the filter page and attribute page in the

Fig. 1 Schematic view of GenESysV design. Input VCF file(s) is parsed into json format files using multiple CPU cores in parallel. An Elasticseach index
mapping file, as well as a GUI configure file, are also created during data parsing. The GUI configure file is used to guide the automatic web graphical
interface creation in a later stage. Elasticsearch index creation is also done in parallel to further speed up the entire data importation process
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web interface. Unlike the “MartConfigurator” tool used
in the BioMart system [23], this design simplified user
interface creation and eliminated the need to manually
edit an XML configuration file, a process that is both te-
dious and error-prone. Second, we designed GenESysV
to guide the user through a three-step wizard for identify-
ing candidate disease-causing variants. As shown in Fig. 2,
the first step (Fig. 2a) is for the selection of the study name
followed by the selection of the dataset name and analysis
type. The various analysis types fall in two major modes,
one is for complex diseases or general exploration of the
database, and another is for analyzing data for Mendelian

inheritance. In the second step (Fig. 2b), users are provided
with a filter page that can be used to either include or ex-
clude variants which satisfy the filtering criteria. The third
step (Fig. 2c) is for the selection of the attributes which will
be displayed in the results table. To help users keep track
of the selected filters and attributes, we designed and im-
plemented a panel on the right-hand side of the browser
window to display the selected fields, along with the study
name, dataset name and analysis type. From this panel,
users can review the selected filters and attributes or re-
move some of them if they are not desired. Users can also
re-order the attribute names by dragging-and-dropping,
allowing them to customize the ordering of selected attri-
butes on the output page (Fig. 2d) or in the downloaded
table. By default, the output window will only display the
first 400 records. However, all of the records that satisfy
the filtering criteria are available for download if users
click the “Export to CSV” button on the tool-bar (Fig. 2d,
top right).

Input file(s)
GenESysV takes annotated VCF files as inputs for data
parsing and database (Elasticsearch index) creation. Cur-
rently, GenESysV supports VCF files annotated with ei-
ther of the two commonly used annotation tools: the
Ensembl Variant Effect Predictor (VEP) [8] and Annovar
[9]. However, GenESysV can parse any existing annota-
tions found in the input VCF before being annotated by
the two annotation tools, as long as they are single (as
opposed to the “CSQ” from VEP, which contains a list of
annotations delimited by commas) attribute-value pairs,
separated by semicolons. For single cohort studies of
complex diseases, a single VCF file is required. For
family-based studies, users need to provide an additional
pedigree file. GenESysV also supports studies involving a
case and control cohorts. In this case, an additional VCF
file from the control cohort is required.

Parallel processing of input VCF(s) and Elasticsearch
index creation
GenESysV is designed for cohort studies with thousands
of samples. As data parsing and database index creation
are typically slow processes, analyzing large VCF files in-
volving tens of millions of variants from hundreds to
thousands of samples can take a substantial amount of
time. Thanks to the context independent nature of sim-
ple variants (SNVs and INDELs, as opposed to complex
structural variants such as translocations), a VCF file for
simple variants can be divided into several sections or
genomic intervals based on the number of available CPU
cores allowing each section to be parsed in parallel by a
single CPU core. To this end, we utilized the “grabix”
[24] tool developed in the GEMINI project to simul-
taneously access each of the genomic intervals in the

Fig. 2 The Interface of GenESysV and querying process. Querying
process starts with the selection of study name, dataset name, and
analysis type (a), followed by setting filters (b) and selecting variant/
annotation related attributes (c). The output is a table displaying up to
400 records (d). The full results can be obtained by clicking the “Export
to CSV” button (Top right)
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input VCF file. For case and control cohort VCF data
parsing, we utilized the “tabix” [25] tool developed in
the 1000 Genomes Project [26] for quickly accessing
variants in the same genomic intervals between the
case and control VCF files. In the database index cre-
ation step, we used the “parallel_bulk” tool from the
Elasticsearch Python helpers package. This design
strategy enabled GenESysV to process VCF files con-
taining hundreds to thousands of samples in a short
amount of time (Fig. 3).

Controlled access for authorized users
GenEsysV was also designed for a multi-investigator en-
vironment. Many studies generated genomic variant data
that are intended to be accessed by a small group of au-
thorized users. To meet this need, GenESysV was de-
signed and implemented to allow access control by only
users with proper access privileges. The database admin-
istrator who is involved in the setting up of the software
can create user accounts and specify data access privi-
leges. The lab users can then login from their own com-
puters with the provided login credential.

Supported analysis modes
GenESysV supports analysis for both complex and single
gene Mendelian diseases. In the complex disease analysis
mode, users can additionally analyze case-control data-
sets for differential allele distribution between the two
cohorts if a VCF file from a control cohort is provided.
For family-based studies, supported inheritance patterns
include autosomal de novo, autosomal dominant, auto-
somal recessive, compound heterozygous, as well as
X-linked de novo, X-linked dominant and X-linked re-
cessive (See Additional file 1 for rules used in analyzing
Mendelian analysis).

Post query review and curation of variants
In most cases, the called variants are filtered purely by
computational methods based on certain types of statis-
tics criteria, such as the Variant Quality Score Recalibra-
tion tool in GATK [27], because experimental validation
is only feasible for a short list of variants. Due to the
limitations of the sequencing technologies, which tends
to produce base calls less accurate at the ends of the
short-read sequences as well as the limitations of the
current generation of alignment software, some of the
called variants can be results from alignment artifacts.
To examine variants in the search results, users can use
external software tools such as IGV [28, 29] to examine
the bam files for visualizing the region around the vari-
ants and flag them as “Approved” or “Rejected” on the
individual variant report page. These flags can be saved
and used to remove the “Rejected” variants to further
narrow down the most likely disease-causing variants.
This helps in creating a clean list of variants for pathway
or interaction analysis thus allowing for more meaning-
ful results.

Save queries for subsequent use
It is often desirable to record which filter terms and as-
sociated values/thresholds are used for data extraction
as well as which attributes are selected to build the final
results. Manually recording each of the filters and attri-
butes is tedious and error-prone, especially for datasets
with a large number of filter terms and attributes. To get
around this, GenESysV has a tool that saves user queries
to their associated account. These saved queries can be
conveniently re-run by the same user at a later time
without re-selecting/setting the filters and attributes.

Links to external tools
To get more information from the publicly available re-
sources for variants of interest, GenESysV contains hy-
perlinks for each of the variants in the variant report
page. These hyperlinks can open a UCSC genome
browser [30] page to show the location of the variant
and its surrounding region, or bring the users to the

Fig. 3 Benchmarking of VCF data import. Comparison of VCF
importation between GenESysV and GEMINI. For comparison purposes,
data importation performance for Annovar annotated VCF files is also
shown in this figure. The phase3 VCF file from the 1000 Genomes
Project is downloaded and annotated with VEP or Annovar. A series
of VCF files containing the full or subsets of variants is generated by
including variants from the first 100, 250, 500, 750, 1000, 1250, 1500,
1750, 2000 samples. These VCF files are used as inputs for importation
using the data loading script (load_vcf.py) in our GenESysV package.
These tests were performed using a server computer with 24 CPU cores
(Intel(R) Xeon(R) CPU E5–2620 v3 @ 2.40GHz) and 128 GB memory (max
heap size for Java virtual machine was set to 31 GB using the –Xmx flag,
as recommended by the Elasticsearch documentation)
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DECIPHER [31] website to examine clinical information
related to variants of interest. To further help users to
gain insights into the biological significance of a short
list of selected variants and the genes they affect, GenE-
SysV hyperlinks these genes to the GeneMANIA [32]
website to perform pathway and interaction analysis.

Results
VCF parsing and data loading performance
We compared GenESysV with another well-known sys-
tem, GEMINI, as it can be easily installed locally and is
also capable of handling large whole genome sequencing
datasets from multiple samples. To demonstrate the per-
formance of GenESysV’s VCF parsing and database cre-
ation, we utilized the full 1000 Genomes Project phase3
dataset [26] as well as a series of VCF files containing a
subset of it (See Additional file 1 for details). As shown
in Fig. 3, data loading time grew exponentially as the
number of variants and samples increases for both
GEMINI and GenESysV. However, GenESysV has a
much slower rate of increase in loading time as the
number of variants/samples increases. Unlike GEMINI,
GenESysV can still load VCF files with a number of vari-
ants beyond 85 million (the largest available public data
at the time this writing) in a reasonable amount of time.
In general, GenESysV has a data loading speed approxi-
mately two and a half times faster than GEMINI on the
same hardware. The full 1000 Genomes Project phase 3
dataset containing 85 (excluding chromosome Y) million
variants from 2504 samples can be loaded in less than
34 h using GenESysV under our test system, as com-
pared to nearly 91 h needed by GEMINI (Fig. 3).
Since Annovar is another commonly used annotation

tool and the available annotation fields can be as many
as three hundred (as opposed to ~ 70 in VEP), we add-
itionally benchmarked data loading using the same set of
test files as used above but annotated using Annovar
with 35 annotation sources containing 232 annotated
features. We found that loading these Annovar anno-
tated VCF files took a similar amount of time as the
same set of VCF files annotated with VEP, albeit the
Annovar annotated files are two times larger in size due
to more annotation fields they contain (Additional file 2:
Figure S3).
In addition to testing data loading performance for VCF

files annotated with the two most commonly used annota-
tion tools using a 24 CPU core server computer, we further
benchmarked data loading with a four and eight CPU core
computers, respectively, as many small research groups
may not have access to computers with a large number of
CPU cores. Results are shown in Additional file 3: Table S1.
To further characterize our loading script’s perform-

ance, we also benchmarked VCF data loading under
two additional conditions: 1) with a fixed number of

variants but an increasing number of samples; 2) with
a fixed number of samples but an increasing number
of variants. For condition one, the data importing time
showed a linear dependency (Additional file 4: Figure
S1). However, for condition two, data importing speed
showed overall linear dependency but is slower for
variants in some genomic intervals (Additional file 5:
Figure S2).
One important concern in selecting computational tools

is the storage requirement for storing final and intermedi-
ate files. When comparing disk-space requirements be-
tween GenESysV and GEMINI, we found that GenESysV
has a smaller footprint on both the final database size and
the temporary storage needed for VCF parsing and im-
portation (Additional file 6: Figure S4).
We lastly profiled memory usage for the two paralle-

lizable processes (i.e. VCF data parsing and Elastic-
search index creation) in GenESysV. We found that the
VCF parsing step uses a very small amount of memory,
approximately 200MB/CPU core (Additional file 7:
Table S3). For memory usage in Elasticsearch index cre-
ation step, since Elasticsearch is Java based and requires
a predefined fixed amount of memory to be allocated to
the Java Virtual Machine (JVM, with the -Xmx flag) be-
fore server startup, we profiled the memory usage in-
side the JVM. We found that the actual amount of
memory used inside JVM is independent of the number
of CPU cores used, rather it is proportional to the total
amount of memory allocated to the JVM (approxi-
mately 80%, Additional file 7: Table S3). We observed
that higher number of allocated heap memory does not
seem to speed up the data importation process in Elas-
ticsearch once the heap memory is sufficiently large
(Additional file 8: Figure S5). Taken together, GenESysV
has an overall small memory footprint and is suitable
to be deployed on computers with more CPU cores but
a limited amount of physical memories.

Query performance
Fast data loading is certainly advantageous. On the other
hand, users will spend more time running queries
against the databases. To achieve meaningful and com-
patible query performance testing, we used similar quer-
ies found in the GEMINI paper [18] to test against the
datasets from the 1000 Genomes Project phase 3 [26]
and a smaller three-sample dataset, the Ashkenazim
Trio, generated by the Genome in a Bottle consortium
[33]. In all the queries tested, we found better perform-
ance in GenESysV as compared to GEMINI for queries
executed for the first time (i.e. no caching effect). The
same query if executed subsequently generally take less
than one second in most cases for both GenESysV and
GEMINI (Table 2). Since Elasticsearch can leverage mul-
tiple nodes, we also tested if the same query takes less
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time in a cluster environment. To this end, we imported
the full VEP-annotated 1000 Genomes Project phase 3
VCF file into a single computer and a cluster consist-
ing of four nodes each running an instance of Elastic-
search server, respectively. In general, we found the
first query takes less time to finish if executed in the
cluster environment. However, the execution times for
the same query executed subsequently on a single node
computer out-performs the cluster setup in general
(Additional file 9: Table S2).

Discussion
For larger genome sequencing projects, the resultant
multi-sample VCF file can be tens of gigabytes in the
compressed form and will normally take a prohibitively
long time to load under most currently available sys-
tems. For systems using centralized web-servers,
uploading big VCF files is not practical. Another chal-
lenge that larger datasets may impose is the slowness of
performing queries. In this work, we have benchmarked
data importation and query performance for GenESysV

Table 2 Comparison of query performance between GenESysV and GEMINIa

Query GenESysV filters
and attributes

GEMINI
query

AshkenazimTrio
(6,312,781 variants)

1000 Genomes Project
phase3 (2504 samples,
85,211,311 variants)

GenESysV GEMINI GenESysV GEMINI

Get all novel and
detrimental variants

Filters: Limit Variants
to dbSNP_ID: excluded,
IMPACT: HIGH, FILTER:
PASS.

select chrom, start, ref., alt,
qual, impact_severity, filter
from variants where in_dbsnp
= 0 and impact_severity
== ‘HIGH’ and filter is Null

0.73 s/
0.21 s

2 m41.35 s/
1.06 s

33.22 s/
0.49 s

2 m42.80s/
0.75 s

(64)b (74) (55) (20)

Attributes: CHROM, POS,
REF, ALT, IMPACT, QUAL,
FILTER.

Get all rare,
loss-of-function
variants

Filters: EUR_AF (<): 0.01,
Consequence: frameshift_
variant, splice_acceptor_
variant, splice_donor_variant,
start_lost, start_retained_variant,
stop_gained, stop_lost.

select chrom, start, ref.,
alt, qual, gene from variants
where is_lof = 1 and aaf_
1kg_eur < 0.01 and filter
is Null limit 400

1.20s/0.34 s 2.39 s/0.35 s 9.97 s/0.53 s 2.60s/0.59 s

(315) (269) (400)c (400)c

FILTER: PASS.

Attributes: CHROM, POS,
REF, ALT SYMBOL.

Get rare, loss-of-function
variants and is also
heterozygous in
selected samples

Filters: Consequence:
frameshift_variant, splice_
acceptor_variant, splice_
donor_variant, start_lost,
start_retained_variant,
stop_gained, stop_lost.

select chrom, start, ref.,
alt, qual, gene, gts.HG003,
gts.HG004 from variants
where is_lof = 1 and aaf_
1kg_eur < 0.01 and filter is
Null" --gt-filter “gt_types.
HG003 == HET” or “gt_types.
HG004 == HET”

0.71 s/
0.37 s

3.21 s/0.47 s 51.47 s/
2.28 s

1 m33.57 s/
3.52 s

(239)e (213) (31) (36)

FILTER: PASS, EUR_AF (<):
0.01, Sample_ID: HG003d,
HG004, GT: 0|1,1|0.

Attributes: CHROM, POS,
REF, ALT, SYMBOL,
Sample_ID, GT.

Get missense
variants in human
HLA region

Filters: CHROM: 6, POS (>=):
28477797, POS (<=):
33448354, Consequence:
missense_variant.

Select chrom, start, ref., alt,
gene, max_aaf_all, impact,
rs_ids from variants where
chrom = ‘chr6’ and start
> = 28,477,797 and end
<= 33,448,354 and impact
= ‘missense_variant’ limit 400.

0.41 s/
0.39 s

3.70s/0.51 s 6.77 s/0.62 s 7.72 s/0.78 s

(400)c (400)c (400)c (400)c

Attributes: CHROM, POS,
dbSNP_ID, REF, ALT
SYMBOL, MAX_AF.

aTesting performed in a 16 CPU core (2.3GHz Intel Xeon E312xx (Sandy Bridge, IBRS update)) cloud instance running Ubuntu 16.04 OS, with 32 GB memory
and solid state drive. VCF files are annotated with VEP
bQuery time (No. variants returned). The first number in the query time field is the time spent on the query when the system is cold, i.e. system cache is
empty. The second number is the time spent on repeating queries when the data is cached by the first run of the same query. Each query was run three
times and the median values are used for reporting
cThese queries return more than 400 variants (a default upper value set in GenESysV to return for display in the web-browser). To avoid measuring time spent
in file downloading, we limited the number of variants returned by GEMINI to 400 to make them compatible
dThese sample IDs are for the AshkenazimTrio dataset. They are replaced with HG00096 and HG00097, respectively, when testing against the 1000 Genomes
Project Phase3 dataset
eGenESysV does not always return the same number of variants as GEMINI for the equivalent queries. See supplement material for a possible explanation
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and GEMINI. We have demonstrated that GenESysV
is advantageous over GEMINI for these two bench-
marks. Its intuitive graphical user interface allows a
broader range of researchers to perform data mining
in a very user-friendly way. It is worth noting that
GEMINI performs additional annotations during data
importation and also creates compressed genotype
data, therefore a direct comparison for data parsing
and loading may not be possible. Nevertheless, GenE-
SysV is a time saver for importing large VCF files.
We also shown in this work that although VEP anno-
tated VCF file size is much smaller (with fewer anno-
tations) than the same VCF file annotated with
Annovar (with more annotations, e.g. 25GB vs. 55 GB
for the 1000 Genomes Project phase 3 VCF file anno-
tated with VEP or Annovar, respectively), there is lit-
tle difference in terms of data parsing and
Elasticsearch index creation time. This is most likely
due to the fact that VEP annotation (the CSQ field)
annotates variants based on the individual transcripts,
therefore resulting a “nested structure” (in Elastic-
search term) in the parsed json files required by Elas-
ticsearch. This causes annotations for each of the
variants and transcript combos to be treated as a sin-
gle “document” (in the Elasticsearch term) and there-
fore contributes to a larger index or database size.
In general, we found that data importing time (parsing

and Elasticsearch index creation) is linearly related to
the number of samples in a multi-sample VCF file if the
number of variants is held constant. However, data
importing speed can be slower for variants in some gen-
omic intervals as shown in Additional file 5: Figure S2.
The likely reason could be the differing nature of the
variants in some chromosomal regions. Some variants in
these regions may be more common among the study
population and/or are in gene-rich regions (therefore
have extensive annotation). Since a VCF file is a two-di-
mensional data matrix (variants by samples), increasing
the number of samples under a study also increases the
number of variants. This explains the exponential in-
crease of data importation time when the number of
samples (therefore variants) is increasing (Fig. 3).
At the time of this writing, we noticed other database

technologies [34, 35] are being developed to specifically
handle sparse data like the genomic variants data. These
technologies hold promise for reducing disk space re-
quirement and database creation time as well as improv-
ing query performance, and may provide alternative
options for powering future versions of GenESysV.

Conclusions
High-throughput sequencing technologies are revolutioniz-
ing human genetic research and causal variants discovery.
With the broad adoption of these technologies, obtaining a

short list of highly probable causative or disease-associ-
ated variants in a fast and efficient way becomes a hur-
dle to most researchers. GenESysV is developed to
alleviate this problem and to our knowledge, it is also
the first tool to be able to handle genomic variant data-
set ranging in size from a few to thousands of samples
and still maintain fast data importation and good query
performance. It has a very intuitive graphical user
interface and can also be used in studies where secured
data access is an important concern. We believe this
tool will benefit the human disease research community
who are utilizing high-throughput sequencing or geno-
typing technologies to interrogate the genetic variants
in the human genome.

Availability and requirements
Project name: GenESysV
Project homepage: https://github.com/ubccr/genesysv
Operating system: Linux
Programming language: Python3
Other requirements: Java 1.8.0 or higher, Elastic-

search 6.3.1 or higher
License: GLP-2
Any restrictions to use by non-academics: license

needed
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Additional file 2: Figure S3. Comparison of data parsing and
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annotated VCF files. Input VCF files are the same as used in Fig. 3.
(TIFF 9492 kb)

Additional file 3: Table S1. VCF data loading under two different
hardware settings. (DOCX 9 kb)

Additional file 4: Figure S1. VCF data importing times for input files
with an increasing number of samples but a fixed number of
variants. Variants on chromosome 1 (6,500,542 variants) from an
Annovar annotated 1000 Genomes Project Phase3 VCF file is selected
and used to create a series of VCF files containing the first 100, 250,
500, 750, 1000, 1250, 1500, 1750, 2000, 2250 and 2504 samples. These
VCF files are used for benchmarking data importation. See Additional
file 9 for details. (TIFF 9492 kb)

Additional file 5: Figure S2. VCF data importing times for input files
with a fixed number of samples but an increasing number of variants.
The VEP annotated 1000 Genomes Project Phase3 VCF file is used as
input to create a series of VCF files to include the first 10, 20, 30, 40,
50, 60 and 70 million variants. These files (including the full VCF file
containing the 85 million variants) are used as inputs for benchmarking
data importation. See Additional file 9 for details. (TIFF 9492 kb)
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creation under different hardware and system settings. (DOCX 10 kb)
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