
Amzallag et al. BMC Bioinformatics           (2019) 20:83 
https://doi.org/10.1186/s12859-019-2642-7
METHODOLOGY ARTICLE Open Access
Statistical assessment and visualization of
synergies for large-scale sparse drug
combination datasets

Arnaud Amzallag1,2,3,6* , Sridhar Ramaswamy1,2,3,4,5 and Cyril H. Benes1,2*
Abstract

Background: Drug combinations have the potential to improve efficacy while limiting toxicity. To robustly identify
synergistic combinations, high-throughput screens using full dose-response surface are desirable but require an
impractical number of data points. Screening of a sparse number of doses per drug allows to screen large numbers of
drug pairs, but complicates statistical assessment of synergy. Furthermore, since the number of pairwise combinations
grows with the square of the number of drugs, exploration of large screens necessitates advanced visualization tools.

Results: We describe a statistical and visualization framework for the analysis of large-scale drug combination screens.
We developed an approach suitable for datasets with large number of drugs pairs even if small number of data points
are available per drug pair. We demonstrate our approach using a systematic screen of all possible pairs among 108
cancer drugs applied to melanoma cell lines. In this dataset only two dose-response data points per drug pair and two
data points per single drug test were available. We used a Bliss-based linear model, effectively borrowing data from the
drug pairs to obtain robust estimations of the singlet viabilities, consequently yielding better estimates of drug synergy.
Our method improves data consistency across dosing thus likely reducing the number of false positives. The approach
allows to compute p values accounting for standard errors of the modeled singlets and combination viabilities. We
further develop a synergy specificity score that distinguishes specific synergies from those arising with promiscuous
drugs. Finally, we developed a summarized interactive visualization in a web application, providing efficient access to
any of the 439,000 data points in the combination matrix (http://www.cmtlab.org:3000/combo_app.html). The code of
the analysis and the web application is available at https://github.com/arnaudmgh/synergy-screen.

Conclusions: We show that statistical modeling of single drug response from drug combination data can help
determine significance of synergy and antagonism in drug combination screens with few data point per drug pair. We
provide a web application for the rapid exploration of large combinatorial drug screen. All codes are available to the
community, as a resource for further analysis of published data and for analysis of other drug screens.
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Background
Drug combination can improve treatment efficacy and
overcome drug resistance, combinations with synergistic
effects are generally seen as superior to those with additive
effect because they are more likely to provide efficacy not
otherwise achievable with possibly added benefits of lower
toxicities [1]. Large scale experimental testing of
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combinations is challenging however and predicting
which combinations are synergic and in which context is
difficult. In addition, for anti-cancer drugs it is clear that
single drug efficacy varies widely depending on the gen-
ome of the targeted tumor [2, 3]. This suggests that con-
text specificity will be possibly even more difficult to
predict for drug combinations. Systematic drug combina-
tions testing performed across large collection of cancer
cell lines presents the opportunity to discover new benefi-
cial drug combinations as well as to build better
algorithms for the prediction of synergy. To identify
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synergism, several methods use surface dose response
where all possible dose pairs within the chosen concentra-
tion ranges are tested (full dose matrix) [4, 5] and there-
fore requires a large number of different doses per
combination: For instance, 9 doses per drug amounts to a
surface of 81 data points. Hence, such methods are diffi-
cult to implement for testing a large number of drug com-
binations across many models. Experimental designs
leveraging sparse drug dosage pairs allow for a tractable
number of tests but the limited number of drug doses
and/or the absence of replicates pose a challenge for the
statistical assessment of synergism and antagonism.
We previously acquired a combinatorial drug data

across 40 melanoma cell lines and 5778 combinations at 2
dose pairs. In this dataset, synergism was initially deter-
mined from a single combination data point (i.e. a single
well) and two singlets (single drug wells). This large data-
set did allow for the identification of novel combination
with synergistic activity [6]. Nevertheless, experimental
noise constitutes a challenge for broader data interpret-
ation and further exploration of large-scale combination
datasets. We thus aimed to develop a methodology to
improve synergy calling and assign statistical value to syn-
ergies. In particular, we aimed to solve the issue of noise
in the single agent data propagating through the synergy
calculation: If the single agent effect of a given drug is
incorrectly captured experimentally then all synergies cal-
culated based on this estimate would be incorrect.
Several models to assess synergy have been proposed.

Models can be separated into two distinct classes: effect
based models, which for two drugs at a fixed dose,
model the combination effect from single agent effects,
and dose-effect based models, which model the dose
response of the single agents and the combination
(a dose response surface in the case of the combination
- details of each method are reviewed in [7]). Briefly,
the dose effect methods are mainly four methods: (i)
combination subthresholding compares the combin-
ation effect with untreated cells using statistical tests.
(ii) The highest single agent null model stipulates that
the combination effect will be equivalent to the highest
single agent effect. (iii) The additive effects postulate
that non synergic combination is the sum of effects of
the single agent; effect is defined as one minus viability.
Finally, (iv) Bliss models the effect of a drug as a multi-
plicative factor applied to the number of cells tested
compared to the untreated cells (i.e. the viability meas-
ure). Bliss independence stipulates that the combin-
ation viability is the product of the two singlet
viabilities, as if the two drugs were applied successively.
Note that this model holds whether the drug viabilities
are less than one (killing cells) or greater than one
(growing cells), and does not require the viabilities to
be modelled as probabilities.
All these model have shortcomings, especially in the
context of sparse dose response testing. Combination
subthresholding requires replicates to perform the stat-
istical tests. The Additive model does not have a clear
physical model, and can lead to inconsistency, like pre-
dicting a negative number of cells when the sum of the
two singlet effects is greater than 100%. The highest
single agent model predicts the combination effect to
be equal to the highest single agent effect. This predic-
tion can be quite inaccurate in sparse dose testing,
when there is only one dose per singlet and noise in the
assay. The Bliss model can produce inflated viabilities
when drugs are inactive, and therefore slightly greater
than one by random chance. Here, we used a Bliss inde-
pendence model based on logarithm transformation of
the viabilities.
The main dose-effect model, Loewe additivity, re-

quires determination of the singlet doses that achieve
the same effect as the combination. In the dataset ana-
lyzed here, in 58% of the drug pair-cell line assays, one
of the singlet does not reach the effect of the low dose
combination. This prevented us to use Loewe additiv-
ity in this work. This is mainly due to the fact that a
large range of doses was not tested in this screen:
Loewe additivity is not suitable for analysis of sparse
doses screens.
We reasoned that the combinations between a given

drug A and the 107 other drugs in the screen con-
tained recurrent and leverageable information about
the singlet viability of drug A, and that this informa-
tion could be used to overcome singlet data noise and
overall experimental noise. Here, we use this concept
of information redundancy built into the combination
data to derive better estimates of the singlet viabilities.
Based on this we further propose a method for the
assessment of significance of synergy and antagonism
as well as specificity of drug interaction. Our computa-
tional pipeline is graphically summarized in Fig. 1 and
described in the Methods Section. We found that this
method identified correctly drug pairs previously
described as synergistic or expected to be synergistic
based on previously published mechanistic studies.
The method also captures a number of less expected
synergies with good initial support in the literature.
Below, we describe first the data and the shortcomings
of the existing methods, especially the simple applica-
tion of the Bliss model. Then, we describe this novel
method and its advantages compared to the singlet
versus combination viability derived Bliss score. We
provide a concise and easily readable R code allowing
users to reproduce our results even on a personal com-
puter. In addition, we developed a web application that
allows any user to quickly explore the results through
an interactive drug-drug heat map.
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Fig. 1 Analysis Pipeline. This figure describes the analytical pipeline, from the raw data to the synergy scores. a All pairwise combinations
between the selected drugs (108) where platted in a pseudo-random order on four 1536 plates, and viabilities were computed by dividing the
number of cells in the well by the mean number of cells in the untreated wells. b Combination viabilities were modeled with the Bliss
independence assumption, after passing to the logarithm, yielding a linear model of 5778 equations modeling the combination viabilities, and
108 unknown, representing the singlet viabilities. c Residuals of the linear system were used as a score for synergy. Variance in the DMSO wells
was used to model sample error on the measurement of combination viability, yielding p values and q values for each combination. d For each
cell line, if one of the two dose showed synergy, well considered the combination synergic in that cell line. e We counted the number of cell
lines were the combination synergy was significant (absolute synergy score). f We computed the synergy specificity score from the absolute
synergy scores (see methods). Synergy scores could be modeled using genomic features, as they are available for most cell lines used here on
the GDSC project website (www.cancerrxgene.org)
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Results
Data description and singlet noise propagation
In order to systematically explore a substantial number
of drug combinations, we recently performed a large-
scale drug screen across 40 melanoma cell lines using a
limited number of drug doses. The drug combination
response surface was limited to two concentration pairs:
both drugs at a “standard” dose estimated to inhibit fully
the intended target(s) while avoiding overly broad off
target, or both drugs at low dose (1/5 of the standard
dose) in order to further emphasize on target combin-
ation and synergy detection based on partial target
inhibition [6]. Using this design, all possible pairwise
combinations between 108 drugs were tested systematic-
ally (108*107/2 = 5778 pairwise combinations) on 40 cell
lines, representing more than 439,000 data points. A
heat map representing the 5778 combination viabilities
for one assay (cell line COLO792 at high drug dose) is
shown in Fig. 2a, where the intersection of row i and
column j shows the viability of the combination of drugs
i and j, and singlet viability are represented as crossed
rectangles on the sides of the heat map. Viability is used
to measure drug effect, and is defined as the number of
cells in the treated well divided by the average number
of cells in untreated wells.
Methods to determine drug combinations synergism

encompass several mathematical approaches that each
have advantages and drawbacks and while in many cases
they can yield concordant conclusions that is not always
the case [8]. In addition, in some cases a given method
can also yield discrepant conclusions regarding whether
the tested drugs have a synergistic effect or not [7]. The
most commonly used methods can be broadly sorted in
two types depending on which reference model they use:
Those based on the Bliss independence hypothesis and
those based on the Loewe Additivity principle [9, 10].
Large screening campaigns come with limit to the number
of drug doses that can be tested to allow for high-
throughput and manageable costs. In these conditions,
Loewe Additivity based methods are not applicable
because full dose response curve of each single agents
(and preferably more than one combination of doses) is
required to obtain a synergy estimate [7]. On the other
hand Bliss hypothesis based models can be applied on

https://www.cancerrxgene.org
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Fig. 2 Heat maps of all pairwise drug combination results for cell line COLO792 low drug dose. a Viability (i.e. nuclei count divided by the
average nuclei count in the DMSO treated wells) b-c Excess Over Bliss scores before (b) and after (c) linear modeling of the singlet viabilities (d)
synergy Z values. In all heat maps rows and columns have the same order (sorted by singlet viabilities). Each heat map has a single row and
single column of discs representing measured singlet viabilities (a-b) or estimated singlet viability by the Bliss linear model (c-d). Gray arrows
indicate drugs where singlet viability was high compared with viabilities in combinations with other drugs, producing horizontal dark red rows in
(a). This produces spuriously high Excess Over Bliss scores (b, gray arrows). Moreover, singlets with very high viability tend to produce a large
number of high Excess Over Bliss scores even when the drug combination has no effect on the cells (a-b, top right corners). Such problems are
not observed after the singlets are estimated from the linear model (c-d, top right corners and gray arrows) (e) Comparison between the solutions of
the model (singlet viabilities) and the measured singlet viabilities (that were not used in the model). Error bars in the y axis indicate plus or minus 2
standard errors. Units of the model are shown: negative log10(1 + viability). f Model based on Bliss independence has a R squared of 0.90, indicating
that it is a good model for the combination of drug effects. g Scatter plot of the singlet viabilities, experimentally measured versus estimated. The
vertical error bars indicate the 95% confidence interval. h Scatter plot of combinations viabilities (measured versus estimated) for cell line 501MEL at
high dose, the assay with the lowest R² in this dataset
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sparse data as long as the singlet doses are also used in
combination. The advantages and drawbacks these models
have been discussed in details previously [8].
The Bliss model of independence states that if two

drugs have independent effects, then the viability of the
combination should be equal to the product of the via-
bility of the two single drugs:

V i∙V j ¼ V ij: ð1Þ

Departure from this assumption will lead to a
non-zero Bliss score defined as the difference between
the left hand and the right-hand term of eq. (1):

Sij ¼ V i∙V j−V ij: ð2Þ

Here, a positive Bliss score indicates that the observed
combination viability Vij is lower than expected when the
drug effects are independent (the product Vi ∙Vj), there-
fore it indicates synergy. Conversely, a negative Bliss score
indicates antagonism. While the Bliss score allows to eas-
ily rank synergies across tested combinations, the direct
calculation of the Bliss score in an assay with no or few
replicates poses several problems that we illustrate here
using a large but sparse (dose-wise) combination dataset
of drug pairs across a set of melanoma cell lines [6]:

(i) The single drug viabilities are used in many
different combinations, and the error of
measurement of single viabilities propagates to
many Bliss scores because the error in measuring
Vx propagates to the combination Bliss scores Sxj
(for all 1 < j <N); for instance, when a singlet
viability is overestimated, this will lead to
overestimated Bliss scores for all combinations
involving that singlet (Fig. 2b, gray arrows show
purple stripes of likely overestimated Bliss scores in
our test dataset). Indeed, at the same positions in
Fig. 2a, we can see stripes of low viabilities for these
two drugs, but the viabilities of the singlets are near
1, as indicated by the color of the discs on the left
side of the heat map. One possible interpretation is
that these two drugs produced synergies with
almost all the other 107 drugs we tested; the
implicit assumption made by simply calculating a
Bliss score from this data (Fig. 2b). A more
parsimonious explanation for the high number of
synergies for combinations involving these drugs is
that the viability of the singlet, measured only once
in a single well of the 1536 well plate, was
overestimated due to experimental noise. Therefore,
the stripe of synergies indicated by gray arrows in
Fig. 2b are likely false positives with very large Bliss
values, and risk occulting true positives.
(ii) When single drugs have little or no effect, observed
singlet viabilities are often greater than one (over
100% viability) due to random error on
measurement, and their product can produce high
Bliss scores even if the combination’s viability is
greater than one. For instance, if two drugs have
each a singlet viability of 1.2, and the combination
viability is 1, the combination will have a large Bliss
score of 1.22 − 1 = 0.34 despite the fact that no
substantial growth inhibition was seen with any of
the 3 treatments. This problem is particularly visible
in the top right corner of Fig. 2b (green arrow):
when the singlets have high viabilities, the Bliss
scores seem to be systematically high even though
the combination had little effect (Fig. 2a top right
corner); even more problematic for the
interpretation of the full dataset, it seems that such
Bliss score are among the highest in the full dataset
as can be seen in the heat map. A simple approach
is to cap all viability data at 1 but this is an ad-hoc
solution that is inferior to approaches that could
estimate the experimental noise and suppress it in
statistically rooted manner.

(iii) if the experiment is noisy, any model will have a
poor fit to the data: since the Bliss score is the
deviation from the model of independence of drug
effects, a noisy experiment will tend to yield over
estimated Bliss scores overall: Since viability cannot
be negative the data distribution is likely to be
skewed towards positive synergy values
(underestimating antagonistic interactions).
Figure 2h shows an experiment with the poorest fit
at high dose; it is also the cell line that gave the
highest number of combinations with Bliss scores
greater than 0.3.

To address these issues, we developed a drug combin-
ation data modeling approach that corrects for experi-
mental noise of the single agent data, that is further
overall robust to experimental noise and that provides
robust estimates of synergy and associated p values. The
model uses the full combination dataset to infer the
activity of single drugs and identify synergies and associ-
ated p values. To illustrate our approach, we show the
raw data for single agent activity and corrected (mod-
eled) data in various graphical forms in Fig. 2 (a-g),
focusing on the cell lines tested (COLO792) at the high
concentration pair dosage.
Before applying our model, to determine the validity

of applying the Bliss independence model, we compared
the viability of each drug combinations with the product
of the viability of the two single drugs (Fig. 2e). The Bliss
model postulates that these two variables are equal if
there is no synergy or antagonism. Inspection of the
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viabilities by scatter plot for each cell line shows that the
two variables are related, as the combinations lie along
the x = y line. Furthermore, there is approximately the
same number of points in the upper left semi-plane and
in the lower right, suggesting that there is not a strong
bias towards synergy (upper left) or antagonism (lower
right). Therefore, solving the model should give a rea-
sonable approximation of the singlet viabilities, and for
determining synergism from the data.

Linear modeling of singlet viabilities with the Bliss model
To determine the singlet values from the combination
dataset we linearized the Bliss equation (eq. 1) and applied
a Bliss-based linear model to estimate the singlets with
combination data only. We postulated a linear model
where the singlet viabilities at a given dose are the un-
knowns (108), and used the 5778 measured combination
viabilities to solve the singlet viabilities with far more
accuracy than if we used the measured singlet viabilities.
In Fig. 2f, we plotted the observed viabilities for cell line
COLO792, against the product of the estimated viabilities
by the linear model, as opposed to the product of the
observed singlet viabilities plotted in Fig. 2e. The model
fits the data very well (R2 = 0.90) and values are aligned
along the x = y axis (black line). An interesting outcome of
the singlet modeling is that the number of high predicted
viabilities (viabilities greater than one) is greatly reduced
(Fig. 2e, f, dots above the dashed horizontal line). Viabil-
ities are not expected to be often greater than one,
because cancer drugs are expected to kill or inhibit prolif-
eration of cancer cell lines rather than improve prolifera-
tion over vehicle treated controls. This suggests that such
high viabilities were largely due to noise in measurement
of the singlets. As expected, high measured singlet viabil-
ities (> 1) yielded overall high Bliss scores (Fig. 2b, high
values in the top right corner). However, this trend was
not seen when using the model-estimated singlets (Fig. 2c,
d). Furthermore, singlet modeling suppressed outlier com-
binations where one singlet viability seemed to be overes-
timated and led to a stripe of overestimated Bliss score
associated to one drug (gray arrows). These observations
illustrated here on cell line COLO792 hold true for almost
all the cell lines in the combination dataset analyzed
(see below for statistics).

Bliss models R2 show good fit and may be used for
quality assessment
After applying the Bliss linear model to all the cell line
in the dataset, we found that the model fit the combin-
ation data very well across cell lines (median R2 of 0.81,
Fig. 3a, b). In addition, we fitted models before and after
median polish of the 1536 well plates: the median polish
improved R2 values in most cases. Importantly, combi-
nations were randomly assigned to the wells: neither the
rows nor the columns of the 1536 well plates correspond
to repeatedly the same drug. Therefore, there is no obvi-
ous reason for the median polish to increase R2 values,
other than by removing experimental noise (Fig. 3a, b).
Additionally, we compared the solved singlet viabilities to
the measured singlet viabilities (throughout all singlet
viability were left out of the linear modeling) we found
excellent agreement between calculated and measured
singlet values (median Pearson correlation of 0.82;
Fig. 2g). We also computed the 95% confidence intervals
around the solutions of the estimated singlets. Interest-
ingly, for most cell lines, the confidence intervals are
much smaller than the difference between the estimated
singlet viability and the observed singlet viability from the
screen (Fig. 2g, vertical bars), suggesting that we get more
precise estimates of singlets viabilities from the linear
system using the drug combinations than by using the
observed viabilities in the single drug assay wells.
In the high dose assay, all cell lines had an R2 of 0.66

or above except 501Mel (R2 = 0.23, Fig. 3a and Fig. 2h).
Interestingly, when not using singlet modeling, this is
also the cell line with the most synergies (excess over
Bliss score greater than 0.3): it shows 2577 synergies out
of 5778 possible drug combinations in the high concen-
tration assay (Fig. 3e), a proportion unlikely to be accur-
ate. Indeed, we observed a high variance in observed
synergy values, both in terms of R2 of our linear bliss
models and in terms of viability in the DMSO
(untreated) wells (Fig. 3f ) suggesting high experimental
noise for this particular set of plates: this high number
of synergies was not observed at the lower dose assay.
Therefore, it is overall unlikely that 501Mel is particularly
prone to exhibit synergic drug interactions, and we con-
cluded that this cell line data has a higher measurement
error than the rest of the dataset. Because our method
uses the variance in DMSO wells as the variance for the
null hypothesis (no synergy or antagonism) it requires
very strong deviation from the null hypothesis for signifi-
cance in a case like 501Mel, reducing the impact of
experimental noise onto the synergy calling. Indeed, our
method detected a low number of synergies for 501 Mel,
among the lowest compared to other cell lines (Fig. 3g).
Therefore, by accounting for the variation in DMSO wells,
our method automatically discounts many potential false
positives, compared to the application of the Bliss formula
directly to the raw data, and does not necessitates manual
exclusion of this cell line from the data analysis.

Application of the linear model increases consistency
between the two drug doses
After we applied the singlet estimation for each assay (one
cell line at one dose), we explored the consistency of the
singlets across the cell lines between the high dose and
the low dose pairs (Fig. 3c, d). Although the viability
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Fig. 3 Linear modeling with bliss independence. a-b R2 values show the goodness of fit of the model for the high (a) and low (b) dose assays.
Median R2 is 0.81, showing that the model fits well the majority of the data. Gray bars show R2 values when no median polish is performed in
the pre-processing of the cell line plates, showing that median polish increases R2 values and probably reduce noise. c Pearson Correlation
between low dose and high dose singlet viabilities across cell lines. Correlations are much higher when using the solved singlet viabilities than
when using the viabilities measured on the plate. d Scatter plots of singlet viabilities between high and low dose, for measured singlets (left
panels) and solved singlets (right panels). In these four examples, correlations went from negative to positive and significant. e-g R2 vs other
measures on models at standard drug dose. e Negative correlation between the model R2’s and the number of synergy found using an arbitrary
cutoff (> 0.3) on Excess Over Bliss (showing high dose assays only). The cell line with the worst R2 also had the most synergic combinations
(more than 2500 out of 5778), most of them are probably false positives. f The number of significant synergies does not correlate with the
models R2. g The sample variance measured from the DMSO wells is a surrogate for the experimental noise. It correlates with low R2 for models
with R2 < 0.8; it suggests that very low R2 are mainly due to noise on measurement rather than an abundance of synergism or antagonism
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obviously depends on dosing, we expect some level of cor-
relation between the two doses when considering all data
available. We found that the correlations increased signifi-
cantly when using the estimated singlets compared to the
measured singlets (0.48 median correlation with estimated
singlets, 0.14 with measured singlets, t test p value
< 7*10− 18). Only 28 of the 108 observed singlets were
significantly correlated between the high and the low dose,
versus 79 estimated singlets (testing that the Pearson’s
correlation is different from zero, with R function cor.test,
p value cutoff of 0.05), rejecting the null hypothesis that
the singlet viabilities are un-correlated between the two
doses, for most of the 108 drugs. Further supporting the
value of the approach, several drugs with a negative
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correlation between doses effect using the observed viabil-
ities had a significant positive correlation of the estimated
singlets (Fig. 3d). In addition to singlet viabilities, synergy
values of drug combinations showed higher correlations
across cell lines between the high and the low dose when
using the Z value from the linear model than when using
standard excess over bliss (p value < 2*10− 28, t test).

Promiscuous drugs and specific synergies
For each drug, we then counted the number of synergies
observed in each of its combinations (with 107 other
drugs at either dose in 40 cell lines). We found a large
range of synergy count among the 108 drugs, from 76 to
1065. Here also, we found good concordance between
the assays at low drug dose and high drug dose: There
was a positive correlation between the sensitizing poten-
tials at both doses. For most of the drugs, high synergies
occurrence at low dose is associated with high occur-
rence at high dose (Fig. 4f ). We then asked for each drug
if the specific synergies matched between the high and
the low drug dose. We found a significant overlap of
synergies between the two doses for 77 drugs out of 108
(71%, fisher test p < 0.05, black dots in Fig. 4f ). Note that
such synergies found at two doses increase our confi-
dence in the results, since synergy was observed in two
independent assays; nevertheless, observing a synergy at
only one dose does not dismiss the observation as spuri-
ous, since the synergy profile of each drug may differ
between the high dose and the low dose for a variety of
biochemical reasons (for example the low doses might
be insufficiently inhibiting targets to yield effect or the
high doses might have single agent effects too pro-
nounced to allow for synergy observation in a cellular
viability assay).
Figure 4f shows that some drugs were engaged in

many more synergies than others. Some of these broadly
synergistic drugs that promote activity of many other
drugs have been referred to as “promiscuous” [11]. Most
of the promiscuous drugs showed a significant agree-
ment between the high dose and the low dose, with the
exception of FTY720/fingolimod, which had the highest
number of synergies at high drug dose but not at low
dose. FTY720 also had the lowest median singlet viabil-
ity of all drugs at high dose (0.08). It is possible that the

variance of the log ratio logðV i�V j

V ij
Þ may be underesti-

mated when Vij is very small, and therefore synergies
involving FTY720 singlets should be considered with
caution. We note however that FTY720 is also impli-
cated in a large number of synergies when applying the
excess over bliss formula to the raw data.
Most of the other drugs with a high number of syner-

gies showed significant agreement between the high and
low doses (Fig. 4f ). Interestingly, ABT-263 (navitoclax)
was seen as a top sensitizing drug. This is consistent
with its targeting of anti-apoptotic proteins of the BCL2
family that is expected to lower the apoptotic threshold
across cell lines and potentiate the pro-apoptotic effect
of other drugs. We also found that the proteasome
inhibitor bortezomib was a strong sensitizer, possibly
due to the strong impact that proteasome inhibition has
on many cellular processes. Several cytotoxic drugs
(fludarabine, vincristine and docetaxel) are also among
the top sensitizers. This might again be due to broad ac-
tivity of these drugs across most cell lines inducing
strong cellular stress and making cells more susceptible
to many other additional stresses. Importantly, even with
these broadly synergistic drugs, the pattern of synergy
across partner drug (drug 2) was distinct indicating
some level of specificity in sensitization. For example,
there is little overlap among top synergy drug partners
for the most sensitizing drugs (Fingolimod, Bortezomib,
ABT-263, vincristine) (Fig. 5a, Additional file 1: Table
S1). In addition, we identify lapatinib as a sensitizer. In
contrast to the other sensitizing drugs, this is a much
more specific inhibitor that targets receptor tyrosine
kinases, primarily of the EGFR family. However, we
recently demonstrated that several synergistic events
identified for combination including lapatinib are actu-
ally due to its capacity to inhibit multidrug resistance
(drug pumps that expelled a range of compounds from
the intracellular space). In fact, this activity can be a
major confounding factor in analyzing synergies with
this and likely other “specific” drugs [6].
The sensitizing potential of a drug has been historic-

ally called potentiation; it has been described as a dis-
tinct effect from synergy, not specific to the biology of
the drug combined, for instance when drugs act on
pumps that expels other drugs out of the cell, leading to
broad potentiation of the effect of these drugs [10].
Here, we distinguished specific synergy from promiscu-
ous synergy and broad potentiation through the use of
the specificity score (see Methods).
The specificity score compares the absolute synergy

score of drug combination A-B with the mean of all the
combinations including drug A and the mean of all the
combinations including drug B. It allows to prioritize
specific synergies over more general ones. Based on the
specificity and the absolute synergies scores, we can
establish a ranked list of drug combinations correspond-
ing to strong drug interactions and highest confidence
(Additional file 1: Table S1). Many of the top combina-
tions have synergistic interactions supported by pub-
lished studies and known biological functions. For
example, AZD-7762 an inhibitor of the DNA damage
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Fig. 4 Synergy Square and histograms. a Black bars: Distribution of absolute synergy scores (i.e. the number of cell lines that showed synergy) for
each tested drug pair. Gray bars: a randomization that conserved the number of synergies per cell line, but reassigned synergic drug pairs within
a cell line. The observed distribution has much more 0 scores and high scores than the randomized one. b-e Randomization that conserves the
sensitizing property of each drug. b A random absolute synergy score matrix that conserves the total synergy score per drug, in order to
conserve each drug sensitizing properties in the randomization (generated with binomials distributions). c The observed absolute synergy score
matrix. Drugs are ordered according to their sensitizing potential. d Comparison of the random and observed distributions (e) Number of synergy
scores greater than 12, observed (vertical line) versus 1000 randomizations (histogram bars). f Sensitizing potential of each individual drug. For
each drug, the number of synergies observed across all second drugs and cell lines, in the high dose assay versus the low dose assay. The
number of synergies in common between the low dose and high dose assays was tested for each drug with the fisher test (black dots represent
the 77 drugs with significant overlap)
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response kinases CHK1/2 presents with high synergy
scores with the Wee-1 inhibitor MK-1775 and high spe-
cificity score (Synergy score 20 and specificity score 5.2;
top 0.1% with the top 1% score across 5778 combina-
tions tested corresponding to a specificity score of 2.26).
Wee-1 and CHK1/2 are known to regulate mitotic entry
and progression and indeed combined inhibition was
recently shown to be synergistic via forced mitotic entry
[12]. We also identify the combination of AZD-7762 and
gemcitabine (a DNA damaging agent) as the second top



a
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Fig. 5 Snapshot of the Web Application and selected synergies. a Selected examples of synergies across some of the drugs: Absolute synergy
(size of the dot) and specificity score (color code) are displayed. The top promiscuous drugs have a diverse profile of synergistic pairs and synergy
pattern are different across different a selection of drugs synergies is. b The synergy score for all the drug pairs are displayed in a square
heatmap. The lower triangle displays the absolute number of cell lines that displayed synergy for the drug pair, in a white to red color scale; the
upper triangle displays the specificity score. When a drug pair is clicked, the corresponding viabilities for all cell lines is displayed in a dot plot.
c Dot plot with the details on the synergy score. At the top the names of the drugs are shown, together with the absolute synergy score and the
specificity score; then the detailed standard concentration results, and below the low concentration results, per cell line. The singlet viabilities for each
drug estimated from the linear model are displayed in blue and green with standard error as a bar. The black dots show theoretical viability under
assumption of independence of drug effect (no synergy). The red dots show the observed viability, with error bars as the standard deviation of the
un-drugged wells. The error bars of the estimated singlet and the estimated combination under the independence assumption are the standard errors
derived from the linear model (see methods). Hence, the distance between the black and red dots show the magnitude of the synergy (or antagonism).
Significant synergies (p adjusted < 0.05) are shown with a black tick, and significant antagonism are shown with a pink tick
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synergy among combinations with the CHK1/2 inhibitor
as well as the combination with fludarabine another DNA
damaging agent as the top 4th; These are expected out-
comes for combinations of DNA damaging agents with an
inhibitor of the DNA damage response. Addressing a dif-
ferent cancer pathway, the catalytic mTOR/PI3K inhibitor
BEZ-235 was seen to display strong synergy with the
non-catalytic mTOR inhibitor rapamycin – an outcome



Amzallag et al. BMC Bioinformatics           (2019) 20:83 Page 11 of 15
that is strongly mechanistically supported in a recent pub-
lication showing that rapalogues and catalytic mTORC
inhibitors can suppress mTOR activity synergistically [13].
Among less expected outcomes we also flagged the com-
bination between ABT–263 and Wnt agonist as highly
synergistic with 28 cell lines showing synergy and a speci-
ficity score of 3.82 (top 5% overall). Although we are not
aware of any literature evidence for this exact drug com-
bination, an interesting corroboration is found in a large
pharmacogenomics study, revealing that activating muta-
tions of beta-catenin predict for sensitivity to ABT-263
[14]. The Wnt agonist in our screen would indeed be
expected to recapitulate the effect of the beta-catenin mu-
tation. Another set of synergies of interest are seen with
stibogluconate, a compound with an unclear mechanism
of action but that was recently shown to inhibit the tyro-
sine phosphatases SHP1 and SHP2. Our analysis identifies
the MEK1/2 (MAPK Kinase) inhibitor selumetinib and
the SRC inhibitors SU6656 and dasatinib as top synergies
for stibogluconate. SHP2 is indeed a known positive regu-
lator of the MEK1/2-ERK1/2 pathway [15] at least in part
through activation of SRC [16] and other evidence sup-
ports a SRC regulatory role of SHP2 [17].

A web portal for the exploration of synergies across large
datasets
Our dataset of drug-drug synergies across melanoma cell
lines can be represented by a cube of 108 drugs × 108
drugs × 40 cell lines. In order to allow rapid, in-depth
exploration of this large dataset by other investigators,
we designed an interactive, user-responsive, web applica-
tion based on the d3 library [18]. The web-based portal
(http://www.cmtlab.org:3000/combo_app.html) displays
an interactive visualization of the drug by drug data
square, symmetric with respect to each drug listed in
identical order along the x and y axis (Fig. 5a). The color
coding of the square represents the count of significant
synergies obtained with the corresponding x + y combin-
ation across the 40 cell lines, or the synergy specificity
score, or both, based on user preferences. With a mouse
over or a click, the name of the combined drugs, the num-
ber of synergic cell lines and the synergy specificity scores
are displayed above the data matrix, along with the known
drug target, which allows easy look up of the drug names
and targets with a search engine. In addition, to explore
the third dimension of the cube (synergies behavior for a
given combination across cell lines), a dynamic query is
sent to the server when a data point in the matrix is
selected, and the combinatorial viability data across all cell
lines is instantly displayed as a dot plot (Fig. 5b). The dot plot
shows viability of the drug combination (red) and the ex-
pected viability under the assumption of Bliss independence
(black), with error bars. Significant synergies and indicated
with a black tick near the cell line name, and significant an-
tagonisms with a pink tick.

Discussion
Combining drugs is largely considered a requisite for
durable clinical responses in oncology, particularly in
solid tumors. Rational combination building with small
number of combinations testing remains very challen-
ging and is unlikely to address the vast majority of
clinical cases in the near future. Thus, systematic com-
bination screening is needed in order to discover com-
binatorial therapeutic strategies. Furthermore, because
of the known heterogeneity of tumors even within a
given cancer type or genetically defined subtype (such as
BRAF V600E melanoma) there is a need to perform
these combination screens across large numbers of
models. This would allow to understand how broadly
effective across patients a candidate combination might
be and ideally give insight into associated predictive bio-
markers to be used for patient selection. Even for tar-
geted therapeutics, toxicity is a major challenge and
often limits efficacy because dose reduction becomes
necessary during the course of treatment. Although,
there are example of combinations being better tolerated
than single agents (BRAF plus MEK inhibitors in melan-
oma) this is unlikely to be observed in the vast majority
of cases. Hence, combination treatments are generally
more toxic than single agent ones. Thus, it is largely
considered that synergistic drug pairs (or higher order
combinations) are preferable over those presenting with
additive effect not only to yield efficacy not observed
with single agents but also to minimize toxicity. Com-
binatorial drug screening is however technically and ana-
lytically challenging and very resource intensive. Thus,
in order to screen large sets of tumor derived models,
often compromises have to be made to allow for enough
testing of each combination in a sufficient number of
models. This translate generally into a reduction in the
number of experimental tests aimed used to estimate
each combination effect and synergy. Estimating synergy
is complex in part because a given drug pair might not
be synergistic in some dosing conditions but strongly so
in others. For example, if the targets of the drugs are
insufficiently engaged it is likely that this might not dis-
turb their function sufficiently to observe effect or syn-
ergy. Unfortunately, for many drugs in development
there is often insufficient information available to ro-
bustly determine which doses should be tested. Thus,
sparse combination datasets represent an even greater
challenge than more dense ones not only because of lack
of technical redundancy but because of the potential to
miss the conditions that would yield maximum synergy
in the tests performed. Overall, these challenges call for

http://www.cmtlab.org:3000/combo_app.html
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a more robust estimation of synergy ideally allowing for
a statistical estimate rather than relying on arbitrary
choice of arbitrary threshold to designate outcome as
synergistic. Here, we describe a method for the assess-
ment of significance of drug combination synergies from
viability cell line screens with sparse data that reduces
noise in synergy calling and provides a statistical value
for synergism for each test performed. To overcome the
absence of replicates and low number of tested drug
doses, we exploited information redundancy: Each drug
was part of a large number of combination tests. To do
so we used a Bliss based linear model of 5778 equations
(the total number of pairwise combinations that were
tested in the dataset) to yield better estimates of singlet
drug viabilities and therefore yield better synergy esti-
mates. To our knowledge, this is the first time the
Bliss model is applied as a large linear model to solve
for singlet viability with higher accuracy before
computing excess-over Bliss scores. Because there is
currently no other publicly available combination
screening with sufficient overlap in drugs and cell
lines with the one used here, we cannot rely on a
gold standard set of results to measure the accuracy
of our method, an issue that will be encountered by
other researchers until a large compendium of com-
binatorial drug screening data in cancer cell lines is
available. To quantitatively estimate the improvement
that our approach, we used viabilities measured at
different doses with the same combination in the
same cell line as a proxy for replication. We showed
that, after applying our regression method to estimate
the singlets, the correlation between high dose and
low dose singlets improved. In addition to the singlet
viabilities, we also observed that our synergy Z values
are moderately more consistent between high and low
dose. We note however that we should not expect
consistency of synergy to be high, since the difference
between the two doses is quite large (5x), and synergy
between two drugs might be observed only at one of
the two doses. Estimation of error rate through large
number of experimental replicates is prohibitive at
scale but could nevertheless be built in the future to
establish better gold standard for estimating error rate
and advantages of new modeling methods, such as
the one presented here.
Our model was designed to address challenges of

synergy estimates and noise in sparse combination
datasets. However, our approach could be applied to
denser datasets such as those allowing to build drug
dose response surfaces. In this case our method could
be applied by considering each dose test separately
and solving for singlets in a large Bliss linear model.
Another beneficial aspect of our method is that it
gives a p value per unique test (here each well in an
assay plate) in the screen. In these cases of denser
datasets, our method could also be extended to yield
a single p value for a full combination surface
response.

Conclusion
Our analysis of a large combination dataset across can-
cer cell lines shows that the resulting matrix of data can
be interpreted using the Bliss model of synergy. Based
on the Bliss hypothesis, using linearization of the matrix
of combination viability outcome, we efficiently and ro-
bustly identify statistically significant synergistic events
directly from the combination data without relying on
single agent data. Importantly, we present evidence that
our approach reduces the noise in the dataset and allows
for identification of context specific synergies. Unlike
the traditional use of synergy calculation using the Bliss
hypothesis directly on the primary experimental data or
other approaches based on different models of synergy,
our approach associates a statistical value to each com-
bination outcome, allowing for a less biased decision of
hit calling threshold. Taken together, by comparing our
results with previously described synergies, we show that
by deriving a robust synergy score across the full dataset
we identify well defined combinations as well as more
novel ones with initial supporting mechanistic evidence
in the literature. In addition to a statistical (p value)
score for each combination tested in each cell line we
present an approach to determine a specificity score for
each drug pair allowing for prioritization of hits for
follow-up analyses and experimentation.

Methods
Overview of the analytics pipeline (Fig. 1)
The main statistical procedure to determine synergism is
performed on a single cell line and a single concentra-
tion pair. The 5778 combinations are spread on four
1536 well plates (Fig. 1a). The transformation of the
Bliss independence eq. (1) with the logarithmic function
yields a linear system that can be solved to obtain single
drug viabilities (Fig. 1b). Conveniently, the residuals of
the model represent the deviation from Bliss independ-
ence, our null hypothesis, and therefore indicate synergy
and antagonism. We tested whether the residuals (each
residual corresponds to one drug combination) are
significantly different from zero. The mean of the null
distribution is zero, and the variance, ideally, should be
the variance that is due to the error on measurement
and other variability not due to interaction between the
two drugs tested in this combination. We approximated
the variance using the sample variance of the multiple
un-drugged wells present in each plate (as a measure of
the experimental noise) plus the standard errors of the
solved singlet viabilities. Using this null distribution, we
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could assign p values to the residuals (Fig. 1c) that is the
probability of a viability to be lower (resp. higher) than
observed under the null hypothesis; This p value was
used to determine synergism (resp. antagonism). The
variance of the null hypothesis allows to attribute statis-
tical significance to synergism in each cell line independ-
ently, and therefore serves as a normalizing factor to
compare synergism scores of a given combination across
various cell lines. The p value was corrected for false dis-
covery with the Benjamini Hochberg method [19] over
the 5778 drug combinations. We consider a drug pair to
yield synergy in a given cell line if one of the two drug
doses passed significance (Fig. 1d).

Absolute score and specificity score
For each drug pair (i, j), we counted among the 40 cell
lines how many showed synergy, and we called it the
absolute synergy score Tij. (Fig. 5b, lower triangle; darker
color shade corresponds to higher synergy score). Since
some drugs are promiscuous and produce many more
synergies that other drugs, we aimed at obtaining value
compensating for this imbalance across the dataset. We
computed “specificity score” for synergy events (Fig. 5b,
upper triangle). The specificity score allows to better
identify (i) cases where synergy is observed solely
because of a promiscuous drug, from (ii) cases where
the synergy score for the combination was above and
beyond an expected absolute synergy score. The score
compares the synergy (i, j), to all (i, k) and (k, j) synergies
with k representing all other drugs tested in combination
with i and j. Specificity score Scij compares Tij to all the
synergies involving either drug i or drug j as follows:

Scij ¼ min
Tij− < Tik>k∈D

SD Tikð Þk∈D
;
Tij− < Tkj>k∈D

SD Tkj
� �

k∈D

 !

ð3Þ

Where <Tik>k ∈D is the average absolute synergy score
of the combinations of drug i with all other drugs, and
SD(Tik)k ∈D is the standard deviation. Therefore, the spe-
cificity score measures synergy effect that is above the
synergy caused any potential promiscuous effect of drug
i or drug j.

Preprocessing and computation of viabilities
We median polished [20] the logarithm of nuclei counts
using the rows and columns of the 1536 well plate
(one iteration), and re-exponentiated the results. Using
the logarithm for median polish avoids the occurrence
of negative counts and negative viabilities. For each plate,
we computed a DMSO control value: the trimmed mean
on the control wells nuclei counts (10% trimmed on each
side). Finally, we computed viabilities by dividing the
nuclei counts by the plate’s DMSO control value. The
median polish procedure increased the R2 of the inde-
pendence model for almost all the cell lines tested,
suggesting that it did remove noise in the assay (Fig. 3a-b).

Significance assessment of synergy
Given or limited dose response coverage, we used Bliss
independence to model synergy [9, 10] given by the Bliss
score when Sij is null (no synergy):

Sij ¼ Vi:V j−Vij;

where Vi is the viability of the singlet i and Vij is the via-
bility of the combination of the drugs i and j. Since repli-
cates are not available in our dataset, it is difficult to
assess statistical significance of synergy after computing
a Bliss score. Furthermore, single measurements of
single drugs (singlets) are noisy and measurement error
in one singlet propagates to all Bliss values that involve
that singlet across all 108 combinations involving drug
A, leading to inflated Bliss scores. In order to overcome
these difficulties, we built a linear model based on the
assumption that deviations from Bliss independence are
centered on zero (i.e. synergism is as (in)frequent as
antagonism). We reasoned that if this assumption holds
the model Vij~Vi. Vj should fit the data. Indeed, we
observed that for the large majority of the cell lines the
combination viability is similar to the product of the via-
bility of the single agents, thus confirming the validity of
the Bliss independence assumption for the drugs and
doses we used (Fig. 2e).

Solving the single drug viabilities from the combination
viabilities
Since the Bliss model seems to fit the data, we used
the log transform of the Bliss independence assump-
tion [9, 10]. in order to create a linear model where a
linear combination of the log singlet viabilities yield
the drug combination viability:

W 1 þW 2 � W 1;2 þ ϵ
…

Wi þW j � Wij þ ϵ

8
<

:
ð4Þ

where Wij = − log10Vij,Vij is the viability of the combin-
ation of the drugs i and j, Wi = − log10Vi corresponds to
the single drug i, and ϵ is a random noise term centered
on zero.
We solve the system of 5778 equations to obtain

estimates for the 108 singlets at once. This avoids relying
on measurement of one well for singlet viability deter-
mination: this system is largely over-defined as we use all
the combinations to infer only 108 singlet viabilities.
This allows an accurate estimates of singlets, and by
extension, better estimates of synergy than relying on
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experimental singlet values (see results). In contrast, the
Excess Over Bliss score (or Bliss score) is defined by: Sij
= Vi.Vj −Vij. The measurement error in one singlet Vi

propagates to Bliss scores Sik for all k within the 108
drugs.
Number of synergies per drug pair and randomization of
the synergy cube
The distribution of the number of synergies per combin-
ation found across cell lines was compared with ran-
domizations of the synergy cube of two kinds. In the
first method, we computed an indicator variable that
indicates whether the synergy is significant, at a thresh-
old of 0.05 FDR-corrected p value. We then randomly
permuted the 5778 synergies within each cell line. We
show that the observed distribution, compared to the
randomization, 1) has more combinations that show
synergy across a large number of cell lines and 2) has far
more combinations that consistently show no synergy
at all across the cell lines (Fig. 4a). Some drugs
showed many synergies, but most did not (Fig. 4).
The goal of the second randomization was to ask
whether the non-random structure of the observed
synergy cube was only due to the presence of promis-
cuous drugs that sensitizing the cells to many other
drugs, or whether it was evidence of a number of
specific synergies. We simulated the drug-drug matrix
containing the number of synergies from a binomial distri-
bution such that the number of synergies per drug is con-
served in the random matrix. The binomial parameter p
for combination (i,j) is function of the sum of two drug
specific parameters pi and pj; and N is 40 (for the 40 cell
lines). 1000 random matrices were generated and the dis-
tributions compared to the observed distribution. None of
the random matrices had large numbers of synergies as
seen in the observed one (comparison of the number
combinations with more than 12 synergies, p < 0.001; 141
drug pairs produced synergies in more than 12 cell lines
compared to a mean of 45.30 in the randomizations –
Fig. 4d-e).
Web application for interactive data visualization
In order to allow rapid, in-depth exploration of this and
other similar large datasets, we designed an interactive,
user-responsive, web application based on the d3 library
[18]. The server was written in Node JS. The data table
is stored in memory as a javascript object, which natively
implements a hash table, to permit a short response time
when multiple users explore the web application.
The full code to generate the results presented here,

obtain statistics and run the web application are freely
accessible on Github at https://github.com/arnaudmgh/
synergy-screen.
Additional file

Additional file 1: Table of Synergy Scores. Table of absolute synergy
scores and specificity scores for the 5778 combinations tested. Table S1.
is generated in the source code script combos_script.R with the name
combo_ranking_n.syn_score3.csv. (CSV 442 kb)
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