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Abstract

Background: The inference of splicing orthology relationships between gene transcripts is a basic step for the
prediction of transcripts and the annotation of gene structures in genomes. The splicing structure of a sequence refers
to the exon extremity information in a CDS or the exon-intron extremity information in a gene sequence. Splicing
orthologous CDS are pairs of CDS with similar sequences and conserved splicing structures from orthologous genes.
Spliced alignment that consists in aligning a spliced cDNA sequence against an unspliced genomic sequence,
constitutes a promising, yet unexplored approach for the identification of splicing orthology relationships. Existing
spliced alignment algorithms do not exploit the information on the splicing structure of the input sequences, namely
the exon structure of the cDNA sequence and the exon-intron structure of the genomic sequences. Yet, this
information is often available for coding DNA sequences (CDS) and gene sequences annotated in databases, and it
can help improve the accuracy of the computed spliced alignments. To address this issue, we introduce a new spliced
alignment problem and a method called SplicedFamAlign (SFA) for computing the alignment of a spliced CDS
against a gene sequence while accounting for the splicing structures of the input sequences, and then the inference
of transcript splicing orthology groups in a gene family based on spliced alignments.

Results: The experimental results show that SFA outperforms existing spliced alignment methods in terms of
accuracy and execution time for CDS-to-gene alignment. We also show that the performance of SFA remains high for
various levels of sequence similarity between input sequences, thanks to accounting for the splicing structure of the
input sequences. It is important to notice that unlike all current spliced alignment methods that are meant for
cDNA-to-genome alignments and can be used for CDS-to-gene alignments, SFA is the first method specifically
designed for CDS-to-gene alignments.

Conclusion: We show the usefulness of SFA for the comparison of genes and transcripts within a gene family for the
purpose of analyzing splicing orthologies. It can also be used for gene structure annotation and alternative splicing
analyses. SplicedFamAlign was implemented in Python. Source code is freely available at https://github.com/UdeS-
CoBIUS/SpliceFamAlign.
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Background
A spliced alignment is an alignment of a partial or full
length spliced transcript sequence against an unspliced
genomic sequence [1]. A spliced alignment allows to high-
light the boundaries and the alignment of exons of the
transcript sequence on the genomic sequence. It is an
effective method for gene recognition, gene structure pre-
diction, alternative splicing analyses and the annotation of
protein-coding genes in non-model genomes [2–6].

Several methods have been developed to address differ-
ent versions of the cDNA-to-genome spliced alignment
problem, which consists in finding an optimal align-
ment of a spliced cDNA sequence against an unspliced
genomic sequence, given an optimal function [7–12]. A
complete overview of these methods is provided in [12]
and complemented by [9]. These methods follow a general
scheme that consists in first identifying candidate tar-
get alignment locations on the genomic sequence for the
cDNA sequence, and then computing approximate spliced
alignments of the cDNA sequence against each candi-
date target genomic regions. For computing approximate
spliced alignments, the first criterion of optimality used
by all spliced alignment methods is the sequence simi-
larity. In addition to sequence similarity, some methods
also account for splice signals on the unspliced genomic
sequence such as canonical dinucleotide splice signals
"GT" and "AG" at extremities of an intron, in their criterion
of optimality in order to infer accurate exon boundaries in
the alignments. It has been shown that the performance
of methods accounting for splice signals is superior to
that of only sequence similarity-based methods [9, 12].
Indeed, splice signals constitute strong structural signals
that are used by splice signal-based methods for infer-
ring accurate splice sites. Thus, the use of splice signals
explains the superiority of splice signal-based methods
over only sequence similarity-based methods. However,
none of the existing spliced alignment methods takes into
account the splicing structure of the input sequences,
namely the exon structure of the cDNA sequence and
the exon-intron structure of the genomic sequences, in
addition to splice signals and sequence similarity. Yet, the
information on the splicing structure and known splice
sites is often available in annotation of CDS and gene
sequences. This information can be used to improve the
accuracy of spliced alignments.

In this paper, we re-visit the spliced alignment prob-
lem for the purpose of computing accurate CDS-to-gene
spliced alignments and identifying transcript orthology
groups within a set of transcripts from a coding gene fam-
ily. Identifying orthologous isoforms at transcript level
is a pre-requisite to describing evolutionary relationships
between genes in terms of splicing structure and sets of
splice variants [13, 14]. Here, we focus on the spliced
alignment of full CDS against gene sequences within a

gene family, that allows to identify splicing orthologous
CDS which are pairs of CDS with similar sequences and
splicing structures from genes that have evolved from a
common ancestral gene [15, 16]. Splicing orthologs are
supposed to have retained the same function in the course
of evolution. Identifying splicing orthologs using spliced
alignments requires precise alignment of exons and loca-
tion of their boundaries in the spliced alignments. To
achieve this aim, we introduce a new version of the spliced
alignment problem that accounts for the splicing structure
of the input sequences. For this version of the problem,
we propose SplicedFamAlign (SFA), a method for fast and
accurate alignment of spliced CDS against unspliced gene
sequences (SFA-align), and for the identification of splic-
ing orthologs using spliced alignments (SFA-ortholog).

The SFA-align algorithm (see overview in Fig. 1) starts
by fastly computing local alignments in order to iden-
tify highly conserved sequences between the input CDS
and gene sequences. These local alignments are used as
anchors and each anchor alignment is trimmed at the
extremities in order to cover at most one exon on the
CDS. Next, a gapped extension algorithm accounting for
CDS exon boundaries is used to extend anchor alignments
in both direction in order to maximize the coverage of
CDS exons. Finally a global spliced alignment algorithm
accounting for the exon boundaries of the CDS and the
gene sequence can be applied for aligning the remaining
segments between the extended anchors. This anchored
spliced alignment approach has been used by several other
methods such as Splign [9], Spidey [17] and MGAlign
[18]. The added value of the SFA method is that it makes
use of the splicing structure of the input sequences in its
local and global spliced alignment steps, in addition to
the splice signals on the genomic sequence, in order to
produce more accurate spliced alignments.

The SFA-ortholog algorithm starts by identifying pair-
wise orthologous CDS. The definition of the orthology
relation between two CDS relies on the preservation of
their splicing structures. We say that a spliced alignment
of a CDS sequence against a gene sequence preserves
the exon structure of the CDS, if the spliced alignment
induces a sequence conservation of all the exons of the
CDS on the gene sequence, and it also induces an intron
between any two consecutive exons of the CDS, and no
intron within an exon of the CDS (see Fig. 2 for exam-
ple in which the exon structures of both CDS1 and CDS2
are preserved by their spliced alignments against a gene
sequence).

Next, two CDS are splicing orthologs if their spliced
alignments against the gene of one of the two CDS a) pre-
serve their exon structures, and b) induce a one-to-one
correspondence between the exons of the two CDS (see
Fig. 2 for example). Finally, the pairs of orthologous CDS
within a gene family are used to define an orthology graph
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Fig. 1 Overview of the SFA-align algorithm

whose nodes are all the CDS of the family and edges repre-
sent pairwise orthology relations between the CDS. Then,
assuming perfect pairwise orthology relations, the CDS
orthology groups are defined as the connected compo-
nents of the orthology graph.

The main contributions of SplicedFamAlign can be
described as follows:

1 It allows fast computing of accurate CDS-to-gene
spliced alignments, and accurate CDS splicing
orthology groups within a gene family.

2 Its performance remains high for various levels of
sequence similarity, thanks to the use of the splicing
structure of input sequences, which allows to detect
splicing structure conservation even in the cases of
low sequence conservation.

3 In the case where the splicing structure of sequences
are not given as input, SplicedFamAlign includes a

preliminary step that allows computing the splicing
structure of input sequences by aligning each CDS
against its own gene.

Results and discussion
Dataset
SplicedFamAlign was evaluated based on a dataset of
three real sets of homologous genes and three simulated
sets of gene families.

Real data
The dataset contains homologous genes with their CDS
sequences from 3 gene families FAM86, MAG and TP53
from the Ensembl-Compara database release 85 [19]. For
each family, 8 homologous genes were selected with 14
CDS for FAM86, 26 for MAG and 51 for TP53. For each
set of homologous genes, the genes are from 6 differ-
ent amniote species, human, chimpanzee, mouse, rat, cow

Fig. 2 Two orthologous CDS, according to the definition of splicing orthology: a) the exon structures of the two CDS are preserved by their splicing
alignments against the gene sequence and b) the induced one-to-one correspondence between the exons of CDS1 and CDS2 is
(exon1.1,exon2.1),(exon1.2,exon2.2), (exon1.3,exon2.3)
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and chicken (for FAM86 and TP53) or lizard (for MAG).
Table 1 gives more details about the real dataset. FAM86
is a group of genes with sequence similarity and unknown
function. MAG is the family of Myelin Associated Gly-
coprotein genes whose proteins are type I membrane
protein and member of the immunoglobulin superfamily.
TP53 is a family of genes encoding for tumor suppressor
proteins p53.

Simulated data
We generated a dataset of simulated gene families with
gene and cDNA sequences accounting for gene splicing
structure evolution and alternative splicing events. We
designed a simulation method that takes as input a gene
tree with branch lengths representing evolutionary rates,
generates an ancestral gene at the root of the tree, and
makes this gene evolve along branches of the gene tree.
The ancestral root gene is generated with an exon-intron
structure and an initial set of CDS of alternative tran-
scripts for the gene, based on parameters learned from a
dataset of 10.000 vertebrate genes from amniote species
from the Ensembl database [19]. The evolution simu-
lated along branches of the tree accounts for two levels of
evolution. First, at the level of genes, the following evolu-
tionary events acting on the splicing structure of genes are
included, exon duplication, exon gain and exon loss. Evo-
lutionary events acting on the sequence of coding exons,
namely nucleotide insertion, deletion and substitution
events are also included at the level of genes, using empir-
ical codon evolution models [20]. Second, at the level of
transcripts, we account for two events acting on the sets of

transcripts and CDS generated by genes, isoform creation,
and isoform loss. The isoform creation event corresponds
to the acquisition by a gene of the ability to produce a new
transcript through a new combination of exons. The iso-
form loss event corresponds to the loss of the ability to
produce a given transcript.

Using the simulation method, we generated three sets of
gene family, a first set called Small for which the evolu-
tionary rates on the gene tree branches are low, a second
set called Medium with medium evolutionary rate, and
a third set called Large with a high evolutionary rates.
Each of the three set contains 36 simulated gene families
with 5 genes and 5 to 17 CDS in total. For each family
in each set, we generated a set of 5 gene sequences with
their CDS, all true pairwise spliced alignments between
any CDS and any gene of the family, the true multiple
sequence alignment of all CDS and gene sequences, and
all true splicing orthology relations between CDS. Table 2
gives more details about the simulated datasets used for
the evaluation.

Evaluated methods
SplicedFamAlign results were compared with the results
of Splign [9], the most recent and current best perform-
ing cDNA-to-genome spliced alignment method. In [9],
Splign was compared with SIM4 [21], Spidey [17], BLAT
[10], GMAP [12], and Spa [11] in terms of the capacity
of the method to realize alignments at various levels of
similarity between input sequences. Splign was shown to
be more performant that other methods in the compar-
ison for all levels of sequence similarity. Three version

Table 1 Detailed description of the real data, from the Ensembl-Comapara database, used for the evaluation

Family

FAM86 MAG TP53

Species Gene_ID # Gene_ID # Gene_ID #

Human ENSG00000158483 3 ENSG00000105492 6 ENSG00000141510 15
ENSG00000186523 4 ENSG00000142512 7 ENSG00000073282 11
ENSG00000145002 2 ENSG00000105695 4 ENSG00000078900 9

Chimp. ENSPTRG00000007738 1 ENSPTRG00000011374 1 ENSPTRG00000008703 1

Mouse ENSMUSG00000022544 1 ENSMUSG00000051504 4 ENSMUSG00000022510 8

Rat ENSRNOG00000002876 1 ENSRNOG00000021023 2 ENSRNOG00000010756 4

Cow ENSBTAG00000008222 1 ENSBTAG00000017044 1 ENSBTAG00000001069 1

Chiken ENSGALG00000002044 1 ENSGALG00000007324 2

Lizard ENSACAG00000005408 1

Total 8 genes 14 8 genes 26 8 genes 51

Avg. CDS length 726 1397.42 1277.41

Avg. gene length 22782.37 26049.75 109457.75

Avg. pairwise PID 56.57 41.41 57.21

For each gene family, the following information are given: the species name, the Ensembl identifier of gene, the number of CDS for each gene (#), the average CDS length,
the average gene length, and the average pairwise Percent Sequence Identity (PID). The average pairwise PID were computed based on pairwise alignments of the CDS
obtained from the multiple alignments of their proteins families provided by Ensembl-Comapara
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Table 2 Detailed description of the simulated data used for the
evaluation: For each simulated dataset, the number of families,
the number of genes per family, the average number of CDS, the
average CDS length, the average gene length, and the average
pairwise PID in families are given

Small Medium Large

Number of families 36 36 36

Number of genes per family 5 5 5

Avg. number of CDS 8.86 8.03 9.30
(2.95) (2.78) (2.87)

Avg. CDS length 808.24 779.44 799.40
(175.79) (186.66) (214.40)

Avg. gene length 2556.83 2358.60 2477.95
(537.93) (548.06) (552.02)

Avg. pairwise PID 76.25 39.20 11.42
(18.92) (13.85) (3.86)

For the average measures, the standard deviations are also given

of SplicedFamAlign were tested. SFA_L corresponds to
the first local alignment step of SplicedFamAlign. SFA_E
is SFA_L followed by the gapped extension step of the
method. SFA_G is SFA_E followed by the final global
alignment step of the method. SFA_E_ws corresponds to
SFA_E in the case where the splicing structures of the
input sequences are not provided, but predicted in a pre-
liminary step by aligning each CDS against its own gene. A
description of the methods used in the evaluation is given
in Table 3. A more detailed description of the prediction
method of splicing structures is given in Algorithm 1 in
Additional file 1.

For SFA_E, the maximum number of gaps in a left
or right extension of an anchor alignment is α = 21.
For SFA_E and SFA_G, the additional aligned segments
obtained after the anchor extension step or the global
alignment step are kept if and only if they have a Per-
cent Sequence Identity (PID) greater or equal to β = 30%
(See “The SFA-align algorithm for the SAP_III problem”
section for a more detailed description of the parame-
ters of algorithms used in the anchor extension and the
global alignment steps of SFA). For Splign, the parame-
ter min_exon_identity is set to 0 in order to allow Splign

achieve the highest coverage of CDS possible. Setting
this parameter to higher values makes Splign get worse
performance (data not shown).

Discussion
First, we compared the ability of the methods to compute
spliced alignments with high coverage of CDS (Fig. 3),
relevant Percent Sequence Identity (PID) (Fig. 4), and
induced exon extremities corresponding to actual exon
extremities in the CDS and the gene sequence (Fig. 5).
For the simulated data, for which the true alignment of
the sequences in provided, we compared the ability of the
methods to recover the true spliced alignments (Fig. 6).

Second, the true splicing orthology relationships
between the CDS are also known for the simulated data.
We compared the ability of the methods to be used for
computing the true CDS orthology groups within a gene
family based on spliced alignments (Fig. 7).

Third, we compared the execution time of the methods
(Fig. 8).

Evaluation of the quality of spliced alignments
CDS coverage. We compared the CDS coverage of the
spliced alignments computed using the methods. The
results are shown in Fig. 3. In terms of CDS coverage,
SFA methods and especially SFA_G, show the best results
and their performances remain high for various levels of
similarity between input sequences, covering in average
more than 90% of CDS for all simulated datasets (Small,
Medium, Large). Splign achieves a high CDS coverage
when the sequences have a high level of similarity (Small
dataset), but the performance decreases for medium and
low similarity levels.

Percent Sequence Identity (PID). The PID of the
spliced alignments constitutes also a good criterion to
evaluate the quality of the alignments. For all methods and
all datasets, the PID computed for their spliced alignment
results are shown in Fig. 4. The PID for SFA_L and SFA_E
decreases when the input sequence similarity decreases,
which is expected. However, for the other methods, espe-
cially Splign, the PID remains high for most datasets
(more than 80%). For instance, while Splign achieves the
lowest CDS coverage for the MAG family (Fig. 3), it

Table 3 Description of the methods used in the evaluation: For each method, the optimization criteria and the specific parameters are
given

Method Optimization criteria Specific parameters

SFA_L

sequence similarity splice signal splicing structure

tblastx e-value= 10−7

SFA_E max. number of gaps in extension α = 21 min. PID of aligned segments β = 30
SFA_G min. PID of aligned segments β = 30

Splign sequence similarity splice signal Default parameters min_exon_identity = 0

SFA_E_ws same as SFA_E with predicted splicing structure
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Fig. 3 Average CDS coverage of spliced alignments obtaining using the methods (SFA_L, SFA_E, SFA_G, Splign, SFA_E_ws) on the real and
simulated dataset. For the simulated datasets composed of several gene families, the standard deviations are also given

achieves the highest PID for this family. Taken together,
the results on the CDS coverage and the PID (Figs. 3 and 4)
suggest that Splign is very stringent and aligns only highly
sequence-conserved segments, whereas the SFA methods
are also able to align less similar segments with conserved
splicing structures.

Inference of real exon extremities. We compared the
ability of the methods to correctly identify actual exon
extremities in the CDS and the gene sequence and canoni-
cal splice sites in the gene sequence. We used the following
performance metrics. The precision measure represents
the fraction of inferred exon extremities that corresponds
to real CDS exon extremities (A), real gene exon extremi-
ties (B), canonical gene splice sites (C). The recall measure

represents the fraction of real CDS exon extremities (A) ,
real gene exon extremities (B), canonical gene splice sites
(C) that are correctly inferred by the spliced alignments.
The f-score is the harmonic mean of precision and recall.

f-score = 2 ∗ precision ∗ recall
precision+ recall

The results of the comparison are shown in Fig. 5. In
terms of precision, we observe that, for all references (A),
(B) and (C), all methods achieve a good performance.
Globally, they perform better for gene exon extremities (B)
and canonical splice sites (C) than for CDS exon extremi-
ties (A). In particular, Splign performs almost perfectly for

Fig. 4 Average Percent Sequence Identity (PID) for each method and each dataset used in the evaluation. For the simulated datasets composed of
several gene families, the standard deviation are also given



Jammali et al. BMC Bioinformatics 2019, 20(Suppl 3):133 Page 43 of 118

a b c

Fig. 5 Precision, recall and f-score measure, for all methods (SFA_L, SFA_E, and SFA_G, Splign, SFA_E_ws), for the comparison of inferred exon
extremities with real CDS exon extremities (a) , real gene exon extremities (b), canonical gene splice sites (c). For the simulated datasets composed
of several gene families, the standard deviation are also given for precision and recall

(B) and (C). SFA_E is the second one in terms of precision
and also performs well.

In terms of recall, SFA_G is the best performing method
for all references (A), (B) and (C), closely followed by
SFA_E and SFA_L. The performance of SFA methods
remains similar for various levels of sequence similarity
(Small, Medium and Large datasets). However, the per-
formance of Splign decreases when the level of sequence
similarity decreases. This observation is coherent with
the results obtained for the evaluation of the CDS cover-
age achieved by the methods. Indeed, the lower the CDS
coverage, the lower the recall measure achieved.

Combining the precision and the recall measures, the f-
score measure shows that SFA_E and SFA_L are the best
performing methods. Note also that SFA_E_ws, without
using prior information on the splicing structure of input
sequences, achieves a higher performance than Splign,
thanks to its preliminary step of splicing structure predic-
tion. The robustness of the SFA methods to changes in
the level of sequence similarity can be explained by the
use of prior or predicted splicing structure information
that allows to detect structure conservation even when the
sequence conservation signal is low.

Comparison with true alignments. For the simulated
datasets for which the true spliced alignments of CDS
against gene sequences are provided, we evaluated the
ability of the methods to correctly recover the true spliced
alignments. We evaluated the precision, recall and f-score

measure of a computed spliced alignment as follows.
The precision measure is the fraction of pairs of aligned
nucleotides in the computed alignment that are also
aligned together in the true alignment. The recall measure
is the fraction of pairs of aligned nucleotides in the true
alignment that are also aligned together in the computed
alignment. The f-score is a combination of the precision
and recall as defined for the evaluation of the ability to
infer real exon extremities.

The results of the evaluation are shown in Fig. 6. We
can observe that all methods achieve high and compa-
rable precision rates. In terms of recall, the SFA meth-
ods also have a high performance for various levels of
sequence similarity. Splign also performs very well for
high sequence similarities (Small dataset), but the perfor-
mance decreases with the decrease of sequence similarity.

Evaluation of the quality for CDS orthology groups
identification
We applied our algorithm for the identification of CDS
orthology groups based on structural similarity, using
spliced alignments computed by the methods SFA_L,
SFA_E, and SFA_G and Splign. For each method, we then
obtained a set of CDS orthology groups. We evaluated and
compared the ability of the methods to recover the true
CDS orthology groups. Two CDS are true orthologs if the
sets of exons composing them are in bijection in such a
way that any pair of exons in bijection descend from a
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Fig. 6 Precision, recall and f-score measure, for all methods (SFA_L, SFA_E, and SFA_G, Splign, SFA_E_ws), for the comparison of the computed
spliced alignments with the true spliced alignments. For each simulated dataset, the standard deviation are also given for precision and recall

same ancestral exon. Thus, we compared the CDS orthol-
ogy groups obtained using each method with the true
CDS orthology groups given in the simulated datasets.
The precision, recall and f-score measures of a computed
clustering are defined as follows.

The precision represents the fraction of pairs of CDS
found as orthologs by the computed clustering that are
true orthologs. The recall represents the fraction of
true pairs of orthologous CDS that are also found as
orthologs by the computed clustering. The f-score is a
combination of the precision and recall as defined in
“Evaluation of the quality of spliced alignments” section.

Figure 7 shows the results for each method. The preci-
sion score for Splign on the dataset Large is N/A because
no pair of CDS were found as orthologs by the computed
clustering. As for previous comparisons, the precision
scores are high for all methods, but smaller for SFA_E_ws.
For the SFA methods with prior splicing information, the
recall scores are also high and robust to changes in the
level of sequence similarity, whereas for Splign, the recall
score decreases when the level of sequence similarity

decreases. For SFA_E_ws the results are sensitive to the
accuracy of the splicing structure prediction, but still less
sensitive to sequence similarity than Splign.

Evaluation of the execution time
Finally, we compared the execution time of the meth-
ods. The average execution times of the SFA_L, SFA_E,
SFA_E_ws and Splign methods to compute spliced align-
ments for each dataset are shown in Fig. 8. The exe-
cution times of SFA_G are not displayed in the same
figure as they are more than 500 times higher than
the execution times of other methods. The very high
execution times of SFA_G are explained by the global
alignment step of the method that uses a dynamic pro-
gramming algorithm of quadratic time complexity with
a multiplicative constant Imax − Imin = 5000 (See
“The SFA-align algorithm for the SAP_III problem”
section, Step 3 for a description of the main recurrence
formula used by the dynamic programming algorithm).
For instance, in contrast to Splign which stops without
achieving its global alignment step when the sequence
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Fig. 7 Precision, recall and f-score measures, for all methods (SFA_L, SFA_E, and SFA_G, Splign, SFA_E_ws), for the comparison of the computed CDS
orthology groups with the true CDS orthology groups. For each simulated dataset, the standard deviation are also given for precision and recall

similarity is low, the global alignment step of SFA_G is
achieved even if the preceding steps of local alignment
and anchor extension end up with a spliced alignment
having a low CDS coverage. Thus, we discard SFA_G and
consider SFA_E as the default method of the SFA frame-
work, as it achieves similar accuracy as SFA_G, but with
fast execution time. Figure 8 shows that the execution
times of SFA_E are slightly higher than those of SFA_L.
SFA_E_ws has slightly higher execution time than SFA_E
due to its preliminary step of splicing structure prediction.
Splign has higher execution times than SFA_L, SFA_E and
SFA_E_ws for real datasets, but slightly lower execution
times for simulated datasets. This can be explained by the
smaller difference between CDS lengths and gene lengths
in the simulated datasets compared to the real data. (See
the average CDS and gene lengths of datasets in Tables 1

and 2). So, when the time-consuming global alignment
step of Splign is achieved, it is applied on larger instances
in the real dataset than in the simulated dataset.

Methods
In this section, we first give some formal definitions that
will be useful for the remaining of the section. In the
second subsection, the definitions of three versions of
the spliced alignment problem are given under a unified
framework allowing to compare theoretically the opti-
mization criteria of the different versions of the problem.
All existing cDNA-to-genome spliced alignment methods
correspond either to the first or the second version of the
problem that account for sequence similarity and splice
signals in the input genomic sequence. The last version of
the problems introduced in this paper additionally takes
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Fig. 8 Average execution times in second (sec) of SFA_L, SFA_E,
SFA_E_ws, and Splign to compute spliced alignments for all datasets.
For each simulated dataset, the standard deviation are also given

into account the splicing structure of the input sequences.
In the third subsection, we describe our SFA-align algo-
rithm for the new version of the spliced alignment prob-
lem. In the fourth subsection, we describe SFA-ortholog
algorithm for the computation of CDS orthology groups,
using spliced alignments.

Preliminary definitions: gene, CDS, spliced alignment
Given a set S, |S| denotes the size of S, and given a
sequence T, length(T) denotes the length of T. Note
that in the nomenclature used in this section, we call
CDS the exon structure of a coding sequence and
CDS sequence the nucleotide sequence of the coding
sequence.

Gene and CDS: A gene sequence is a DNA sequence
on the alphabet of nucleotides � = {A, C, G, T}. Given a
gene sequence g, an exon of g is represented as a pair of
integers (a, b) such that a ≤ b and a and b are the start
and end locations of the exon on the gene sequence. The
sequence of the exon (a, b) is then denoted by g[a, b]. A
CDS of the gene sequence g is represented as a chain c =
{(a1, b1), . . . , (aj, bj)} of exons of g such that for any two
successive exons (ai, bi) and (ai+1, bi+1), bi < ai+1. The
ith exon of the CDS c is then denoted by c[ i]. The set of
introns induced by the CDS c is denoted by Intron(c) =
{(b1, a2), (b2, a3) . . . , (bj−1, aj)}. The set of known CDS of
a gene g is denoted by C(g) and the set of all exons of all
konwn CDS of g is denoted by E(g) = ⋃

c∈C(g) c (see Fig. 9
for an illustration).

The sequence of a CDS c of g is denoted by g[c]. g[c]
is the concatenation of the sequences of the exons com-
posing c. An exon of a CDS sequence g[ c] is represented
as a pair of integers (k, l) such that k ≤ l, and k and l
are the start and end locations of the exon on the CDS
sequence. In this case, the sequence of the exon (k, l) of
g[c] is denoted by g[c] [k, l]. The set of exons composing a
CDS sequence g[c] is denoted by E(g[c] ) (see Fig. 9 for an
illustration).

Spliced alignment: A spliced alignment is an align-
ment of a CDS sequence against a gene sequence
that allows to identify conserved exons sequences. For-
mally, a spliced alignment of a CDS sequence g[c]
against a gene sequence h is represented as a chain
A = {(k1, l1, a1, b1), . . . , (kj, lj, aj, bj)} of quadruplets called
blocks such that for any block (k, l, a, b) of A, k ≤ l and k
and l are the start and end locations of a segment on the
CDS sequence, and a ≤ b and a and b are the start and end
locations of a segment on the gene sequence or a = b = 0;
The ith block of a spliced alignment A is denoted by A[i],
and:

1 k1 = 1, lj = length(g[c]) and for any two
successive blocks A[i] = (ki, li, ai, bi) and
A[ i + 1] = (ki+1, li+1, ai+1, bi+1), we have
li = ki+1 − 1.

Fig. 9 Toy example of a gene sequence g with nucleotides numbered by position from 1 to 63, and a set of two CDS C(g) = {c1, c2} such that c1 = {(9, 12),
(18, 29), (49, 56)} and c2 = {(4, 12), (18, 23), (35, 43), (49, 60)}, inducing a set of exons E(g) = {(4, 12), (9, 12), (18, 23), (18, 29), (35, 43), (49, 56),
(49, 60)}. The sequence of the CDS c1 is g[ c1] =ATGCAAGCAGGTCTGGGGGAATGA with a set of exons E(g[ c1] ) = {(1, 4), (5, 16), (17, 24)}. The first
exon of the CDS sequence g[ c1] is (1, 4) with exon sequence g[ c1] [ 1, 4]=ATGC
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2 for any two blocks A[i1] and A[i2] with i1 < i2, we
have bi1 < ai2 if ai1 �= 0 and ai2 �= 0.

A block (k, l, a, b) represents an alignment of a segment
g[c] [ k, l] of the CDS sequence with a segment h[a, b] of
the gene sequence. If a = b = 0, then the gene seg-
ment h[a, b] is empty and the block (k, l, a, b) represents a
deletion of the CDS segment g[c] [k, l] in the spliced align-
ment. We call such a block a deleted block. Otherwise,
the block (k, l, a, b) represents a conservation between a
putative CDS exon sequence g[c] [k, l] and a putative gene
exon sequence h[a, b], and we call such a block a conserved
block (see Fig. 10 for an illustration).

Condition 1. of the spliced alignment definition implies
that the set of conserved and deleted blocks of the spliced
alignment covers the entire CDS sequence. Condition 2.
implies that the blocks are ordered in the alignment fol-
lowing an increasing order of their location on the CDS
sequence, and this order is also preserved on the gene
sequence.

For instance, in Fig. 9, the spliced alignment of g[c1]
against g is A = {(1, 4, 9, 12), (5, 16, 18, 29),(17, 24, 49, 56)}
(see Fig. 10 for more general examples of spliced align-
ments with conserved and deleted blocks ).

A spliced alignment A induces a set of putative gene
intron segments. These intron segments are the gene
segments that lie between two successive blocks of
the spliced alignment that are conserved blocks. For-
mally, the set of introns induced by a spliced align-
ment A = {(k1, l1, a1, b1), . . . , (kj, lj, aj, bj)} is denoted
by Intron(A) = {(bi, ai+1) such that (ki, li, ai, bi) and

(ki+1, li+1, ai+1, bi+1) are conserved blocks}. Two succes-
sive conserved blocks of the spliced alignment A also
induce a junction between two successive segments in
the CDS sequence that are separated by an intron seg-
ment in the gene sequence. The set of putative exon
junctions induced the spliced alignment A is denoted
by Junction(A) = {li such that (ki, li, ai, bi) and
(ki+1, li+1, ai+1, bi+1) are conserved blocks}. Note that
if all blocks composing A are conserved, then the
number of introns induced by A is |Intron(A)| =
|Junction(A)| = |A| − 1.

A new constrained version of the spliced alignment
problem
In this subsection, we first re-call two existing versions of
the spliced alignment problem and we introduce a third
more constrained version that takes additionally account
of the splicing structure of input sequences. We discuss
the motivations and limits of the different versions as we
give their definitions.

Given a block (k, l, a, b) of a spliced alignment of
a CDS sequence g[c] against a gene sequence h, let
sim(g[c] [k, l] , h[a, b]) denote the score of an optimal
global alignment between the CDS segment g[c] [k, l] and
the gene segment h[a, b] in a given scoring scheme. Note
that if a = b = 0, then h[a, b] is an empty segment.
The following is a reformulation of the less constrained
version of the spliced alignment problem introduced in
[1]. This formulation gives a unified framework to for-
mally define and compare all the versions of the spliced
alignment problem formulated thereafter.

Fig. 10 Top. Illustration of a spliced alignment between a CDS sequence g[c] and a gene sequence h, composed of 5 blocks, 3 conserved blocks
(A[2], A[4] and A[5]) and 2 deleted blocks (A[1] and A[3]). It induces 1 putative intron between the successive conserved blocks A[4] and A[5]. The
deleted blocks A[1] = (k1, l1, a1, b1) and A[3] = (k3, l3, a3, b3) are such that a1 = b1 = 0 and a3 = b3 = 0. Bottom. A spliced alignment composed
of 3 conserved blocks that induce 2 putative introns between A[1] and A[2] and between A[2] and A[3]
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SPLICED ALIGNMENT PROBLEM I (SAP_I):
Input: A CDS sequence g[c] from a gene sequence g ; a
gene sequence h.
Output: A spliced alignment A of g[c] against h that
maximizes

∑

(k,l,a,b)∈A
sim(g[c] [k, l] , h[a, b] )

The SAP_I problem accounts only for the sequence sim-
ilarity between the segments composing the blocks of the
spliced alignment. In practice, in more than 99% of real
cases of splicing, the spliced intron sequences start with a
dinucleotide sequence “GT” and ends with a dinucleotide
sequence “AG” corresponding to canonical splice sites
[22, 23]. They exists also other non-canonical splice site
pairs such as GC-AG, AT-AC that occur less frequently.
Thus, in order to improve the accuracy of spliced align-
ments, a more constrained version of the problem allows
to account for the extremities of intron segments induced
by a spliced alignment. Given an intron (b, a) induced
by two successive conserved blocks of a spliced align-
ment of a CDS sequence g[c] against a gene sequence
h, let splicesignals(h[b, a] ) denote a score of the
putative intron segment h[b, a] accounting for the pres-
ence or absence of known splice signals at the extremities
of h[b, a]. A putative intron segment with two canonical
splice signals at its extremities has a higher score than a
segment with only one which has a higher score than a
segment without any canonical splice signal at its extrem-
ities. A more constrained version of the spliced alignment
problem studied in [9, 12] for instance is the following.

SPLICED ALIGNMENT PROBLEM II (SAP_II):
Input: A CDS sequence g[c] from a gene sequence g ; a
gene sequence h.
Output: A spliced alignment A of g[c] against h that
maximizes

∑

(k,l,a,b)∈A
sim(g[c] [k, l] , h[a, b] )

+
∑

(b,a)∈Intron(A)

splicesignals(h[b, a] )

The SAP_I and SAP_II problems do not account for the
splicing structure of the input sequences. In order to fur-
ther improve the accuracy of spliced alignments, we define
a more constrained version of the problem that takes into
account the exon structure of the CDS sequence and the
exon-intron structure of the gene sequence.

Given a putative intron (b, a) ∈ Intron(A) induced
by two successive conserved blocks of a spliced alignment
A of a CDS sequence g[c] against a gene sequence h, let
splicesitesE(h)(b, a) denote a score of the putative
intron segment h[b, a] accounting for the correspondance
of its extremities with known splice sites in the gene

sequence h. A putative intron segment whose extremi-
ties both correspond to known splice sites in the gene
sequence receives a higher score than a segment with
only one extremity corresponding to a known splice site
which has a higher score than a segment without any
correspondance to known splice sites at its extremities.

Similarly, for a putative CDS exon junction l ∈ Junction
(A) induced by two successive conserved blocks of the
spliced alignment A, let exonjunctionE(g[c])(l) denote
a score of the putative CDS exon junction l accounting
for its correspondance with a real exon junction in the
CDS sequence g[c]. If l corresponds to a real exon junc-
tion in E(g[c]) it receives a higher score than if it does
not correspond to a junction in E(g[c]). The more con-
strained version of the problem introduced here is defined
as follows.

SPLICED ALIGNMENT PROBLEM III (SAP_III):
Input: A CDS sequence g[c] from a gene sequence g ; the
set of exons E(g[c]) of g[c] ; a gene sequence h ; the set of
exons E(h) of h.
Output: A spliced alignment A of g[c] against h that
maximizes

∑

(k,l,a,b)∈A
sim(g[c] [k, l] , h[a, b] )

+
∑

(b,a)∈Intron(A)

splicesignals(h[b, a] )

+
∑

(b,a)∈Intron(A)

splicesitesE(h)(b, a)

+
∑

l∈Junction(A)

exonjunctionE(g[c])(l)

Examples of algorithms developed for the SAP_I prob-
lem which accounts only for the sequence similarity at
the nucleotide or at the amino acid level are BLAT [10],
DDS/GAP2 [24], SOAPsplice [8] and HSA [7]. Several
algorithms have also been developed for the SAP_II prob-
lem, for instance Geneseqer [25], Sipdey [17], Splign [9],
SIM4 [21], MGAlign [18], GMAP [12] and Spa [11].
These algorithms account for splice signals in addition to
sequence similarity. A comparison of a subset of these
tools has demonstrated the superiority of splice signal-
based methods compared to only sequence similarity-
based methods [12]. Moreover, it was shown in [9] that,
among splice signal-based methods, the best perform-
ing current spliced alignment method for cDNA-to-gene
alignment was Splign. Thus, taking account of more infor-
mation about the input sequences improves the accuracy
of spliced alignments. We then expect that accounting for
information on the exon structure of CDS sequences and
the exon-intron structure of gene sequences will further
improve spliced alignments.
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The SFA-align algorithm for the SAP_III problem
In this section, we describe a heuristic algorithm called
SFA-align for the SAP_III problem. The algorithm follows
a general approach followed by most heuristic methods
developed for the SAP_I and SAP_II problems. The algo-
rithm is decomposed into three steps that each accounts
for the splicing structure of the input sequences. Note
that in the case where the splicing structures of the input
sequences are not provided, SFA-align includes a pre-
liminary step in which the splicing structure of input
sequences are inferred by computing a spliced align-
ment of each CDS against its own gene having a Percent
Sequence Identity (PID) of 100. An overview of the main
steps of SFA-align is depicted in Fig. 1. It starts with a fast
local alignment to compute highly conserved local seg-
ments used as anchors in the alignment. Next, the anchor
alignment are extended in order to maximize the exon
coverage. Finally, between the anchors, a global alignment
of the remaining segments can be applied to complete the
alignment.

Step 1. Local alignments using tblastx. This step is
achieved using Translated Blast (tblastx) [26] in order to
obtain a preliminary set of local alignments between the
input CDS sequence and gene sequence. Tblastx is used in
order to account for the translation of the sequences into
amino acid sequences. This allows to detect conserved
exon segments translated into amino acid sequences even
in the presence of translational frameshifts or nucleotide
silent mutations.

Given the set of hits obtained using tblastx with a given
threshold E-value, the following procedure is applied to
obtain the final set of local alignments. i) Each hit is
assigned to the exon of the CDS that the hit covers the
more, and the hit is minimally trimmed at its extremities
to cover only this CDS exon. Thus, the boundaries of a
trimmed hit never exceed the boundaries of the CDS exon
that it is assigned to ; ii) All hits within the same CDS

exon are compared and only a subset of pairwise com-
patible hits with the lowest E-values is kept ; iii) Finally,
the hits within different exons are compared and only
compatible hits with the lowest E-values are kept ; iv) For
each exon, the remaining compatible hits are gathered into
a set of non-overlapping local alignments for the exon.
A more detailed description of this procedure is given in
Algorithm 2 in Additional file 1. Figure 11 provides an
illustration of the result of the procedure on an example.
In this example, Step i of the local alignment procedure
associates hits 1 and 2 to exon E1, hits 3 and 4 to exon E2,
hit 5 to exon E3, and hit 6 to exon E4. The extremities of
the hit 5 are also trimmed so that the hit covers only exon
E3. Step ii removes hit 4 from the list of hits associated
to exon E2 because it is incompatible with hit 3 that has a
lower E-value. Next, Step iii removes hit 6 from the list of
hits associated to exon E4 because it is incompatible with
hit 5 associated to exon E3 with a lower E-value. Finally,
Step iv ends up with three local alignments covering exons
E1, E2 and E3 illustrated by hits 1, 3, 5 in Fig. 12.

Step 2. Gapped extension of anchors. In this step,
each local alignment obtained from Step 1 is extended in
both directions in order to increase as much as possible
the coverage of the CDS exon to which it is associated.
The extension procedure allows an extended portion of
an alignment to start with a succession of gaps whose
number must be a multiple of 3 and shall not exceed
a given number α of gaps. For example, a local align-
ment (“AAUCGGA”,“AAUCGGA”) that partially covers a
CDS exon "AAUCGGAUGGGUG" could be extended on th
e right until the extremity of the exon following three poss
ible configurations. It can be extended as (a) (“AAUCGGAU
GGGUG”,“AAUCGGAUGGGUG”) without any gap at the star
t of the extension, or (b) (“AAUCGGAUGGGUG”,“AAUCGGA
---GUG”) starting with 3 gaps in the gene sequence, or
(c) (“AAUCGGA---UGGGUG”, “AAUCGGACCCUGGGUG”)
starting with 3 gaps in the CDS.

Fig. 11 Example of a set of six hits obtained using tblastx between a CDS and a gene sequence, with hits numbered from 1 to 6 by increasing
E-values. The local alignment algorithm ends up with the three local alignments 1, 3, 5 covering exons E1, E2 and E3
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Fig. 12 Example of a set of three local alignments 1, 3, 5 between a CDS and a gene sequence obtained at the end of the local alignment step. All
possible configurations (a), (b) and (c) of left extension of the local alignments 3 are illustrated. The maximum number of gaps α for configurations
(b) and (c) is also illustrated

Given a local alignment of a CDS segment and a gene
segment represented by a block (k, l, a, b) such that k and
l are the start and end positions of the segment in the
CDS, and a and b are the start and end positions of the
segment in the gene sequence, the gapped extension pro-
cedure applied on (k, l, a, b) is as follows. Let (k′, l′) be the
exon of the CDS to which the local alignment (k, l, a, b)

is associated. Note that k′ ≤ k ≤ l ≤ l′. i) If k′ < k,
then the alignment (k, l, a, b) can be extended on the left.
The procedure tries all possible configurations of exten-
sion, (a) without any gap at the start of the extension, (b)
starting with gaps in the gene sequence or (c) starting with
gaps in the CDS, such that the extension does not overlap
any other local alignment. For configurations (b) and (c),
all possible numbers of gaps 3 ∗ i with i ranging from 1
and α/3 are evaluated, the extension configuration having
the highest identity score is returned. If this identity score
is above a given identity threshold β , then the alignment
is extended on the left, otherwise no extension is applied.
i) If l < l′, then the alignment (k, l, a, b) can also be
extended on the right. A procedure similar to the previous
one is applied in order to try all possible configurations
of extension on the right. A more detailed description of
the procedure is given in Algorithm 3 in Additional file 1.
Figure 12 also provides an illustration of the configura-
tions of left extension that are explored by the procedure
on an example.

Step 3. Global spliced alignment algorithm. For all
CDS exons that were left completely unaligned by the pre-
vious steps, a dynamic programming algorithm for global

spliced alignment is applied. Restricting the global align-
ment to remaining unaligned exons of the CDS allows
to accelerate the global algorithm step by dividing the
dynamic programming space. The following main recur-
rence formula is used.

S(i, j)=max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(i − 1, j − 1) + score(i, j)
S(i − 1, j) + score(i, −);
S(i, j − 1) + score(−, j);
max(j′,j)∈E(h){S(i, j′)

+ exonjunction(i)
+ splicesignals(h[ j′, j] )

+ splicesites(j′, j)};
maxl∈[Imin,Imax]{S(i, j − l)

+ exonjunction(i)
+ splicesignals(h[ j − l, j] )

+ splicesites(j − l, j)};

(1)

In Formula (1), when computing the global spliced
alignment between a CDS segment g[c] [k, l] and a gene
segment h[a, b], S(i, j) is the maximum score of a global
spliced alignment of the segment g[c] [k, k + i − 1] and the
segment h[a, a+ i−1]. For instance, if g[c] [k, l] has length
m and h[a, b] has length n, then S(m, n) is the maximum
score of a global spliced alignment of g[c] [k, l] and the
segment h[a, b].

In the formula, the three first cases contribute to the
computation of sequence alignment scores within blocks
of the spliced alignment, given score(i, j), score(i, −),
score(−, j) that denote the scores of substitution, insertion
and deletion of nucleotides. The two last cases contribute
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to evaluating the structure alignment score according to
the correspondence of induced introns with known splic-
ing signals and the splicing structure of input sequences.
Formula (1) is an extension of the main recurrence for-
mula used in the global alignment step of Splign [9]. The
extension consists in accounting for exonjunction(i)
and splicesites(j′, j) that are the scores for CDS
exon junctions and genomic introns introduced for the
definition of the SAP_III problem. The last case of the
formula also contributes to the extension and allows to
further account for the splicing structure of the unspliced
genomic sequence.

Finally, any new alignment block computed in this step
is kept if and only if its identity score is above a given
identity threshold β , otherwise it is not added to spliced
alignment.

The SFA-ortholog algorithm for the identification of CDS
orthology groups
In this section, we give a definition of CDS orthology
groups computed by the SFA-ortholog algorithm based on
pairwise spliced alignments. We first start with a defini-
tion of orthologous CDS based on spliced alignment.

In [15], an extension of the concept of gene orthology
to spliced transcript orthology was introduced. They
defined orthologous transcripts as two structurally similar
transcripts from two orthologous genes. The orthology
relationship between two transcripts relies on the struc-
tural similarity between the transcripts. This structural
similarity is evaluated using the CDS associated to the
transcripts and their spliced alignments against genes.

CDS orthology: Let c1 and c2 be two CDS from two
homologous genes g and h respectively. Let A1 be a spliced
alignment of the CDS sequence g[ c1] against the gene
sequence h. The CDS c1 and c2 are orthologs if:
(1) | c1 | = | c2 | ;
(2) Intron(A1) = Intron(c2) ;
(3) for any i, 1 ≤ i ≤ | c1 |, [length(c1[ i] ) −
length(c2[ i] )] % 3 = 0.

In other terms, c1 are c2 as orthologs if (1) they
have the same number of exons | c1 | = | c2 | ; (2)
the spliced alignment of c1 against h induces the same
introns for c1 and c2, Intron(A1) = Intron(c2) ;
(3) the lengths of each pair of corresponding exons in
c1 and c2 are congruent modulo 3. Conditions (1) and
(2) ensure that the two CDS have the same splicing
structure. Condition (3) ensures that the two CDS are
translated in the same codon phase in each pair of cor-
responding exons in order to generate similar protein
sequences.

Note that this definition only requires that one of the
spliced alignments of g[c1] against h or h[c2] against g sup-
ports the orthology relation. An alternative more stringent

definition of CDS orthology consists in requiring the
reciprocity, i.e. that both spliced alignment support the
orthology relation.

CDS orthology groups: Given a set of CDS C from a
set of homologous genes G, the transitivity of the CDS
orthology relation is assumed and used to identify distant
orthologs in C that cannot be directlty identified by means
of the CDS structural similarity. Such orthologs could be
missed because of partial spliced alignments due to low
sequence similarity.

The CDS orthology relation on C is then extended
into an equivalence relation such that for any three CDS
c1, c2, c3 in C, if c1 and c2 are orthologs and c2 and c3 are
orthologs, then c1 and c3 are also orthologs. The CDS
orthology groups are defined as the equivalence classes of
the resulting equivalence relation.

Conclusion
The article introduces a new version of the spliced align-
ment problem accounting for the splicing structure of
input sequences. It constitutes a new approach to compute
accurate CDS-to-gene spliced alignments, by detecting
conservation in the splicing structure of input sequences.

We present a heuristic algorithm for the problem, and
we show that it is useful to improve the accuracy of
spliced alignments. The application of the algorithm to
real and simulated datasets shows that the new method
outperforms existing spliced alignment methods in terms
of accuracy, with comparable execution times for CDS-
to-gene spliced alignment. Moreover, its performance is
robust to changes in the level of input sequence simi-
larity. The method is particularly useful for identifying
CDS splicing orthology groups that are conserved accross
a set of homologous genes. It can also be used for the
functional annotation of protein-coding genes in non-
model genomes. On the algorithmic side, the pairwise
spliced alignment problems studied in this paper can
be extended to multiple spliced alignment problems that
require more in-depth investigation. Future work will
include the extension of the SFA method toward multiple
spliced alignment. We hypothesize that aligning simulta-
neously multiple CDS and genes from a gene family can
increase the accuracy of spliced alignment and splicing
ortholog identification.

Additional file

Additional file 1: Pseudocode of algorithms for SplicedFamAlign steps. A
file at the PDF format describing the algorithms used in the SFA method
for the preliminary step of splicing structure prediction (Algorithm 1), the
first step of local alignment (Algorithm 2), and the second step of gapped
extension of anchors (Algorithm 3). (PDF 110 kb)
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