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Abstract

Background: Non-coding RNAs (ncRNAs) are emerging as key regulators and play critical roles in a wide range of
tumorigenesis. Recent studies have suggested that long non-coding RNAs (lncRNAs) could interact with microRNAs
(miRNAs) and indirectly regulate miRNA targets through competing interactions. Therefore, uncovering the
competing endogenous RNA (ceRNA) regulatory mechanism of lncRNAs, miRNAs and mRNAs in post-transcriptional
level will aid in deciphering the underlying pathogenesis of human polygenic diseases and may unveil new
diagnostic and therapeutic opportunities. However, the functional roles of vast majority of cancer specific ncRNAs
and their combinational regulation patterns are still insufficiently understood.

Results: Here we develop an integrative framework called CeModule to discover lncRNA, miRNA and mRNA-
associated regulatory modules. We fully utilize the matched expression profiles of lncRNAs, miRNAs and mRNAs and
establish a model based on joint orthogonality non-negative matrix factorization for identifying modules.
Meanwhile, we impose the experimentally verified miRNA-lncRNA interactions, the validated miRNA-mRNA
interactions and the weighted gene-gene network into this framework to improve the module accuracy through
the network-based penalties. The sparse regularizations are also used to help this model obtain modular sparse
solutions. Finally, an iterative multiplicative updating algorithm is adopted to solve the optimization problem.

Conclusions: We applied CeModule to two cancer datasets including ovarian cancer (OV) and uterine corpus
endometrial carcinoma (UCEC) obtained from TCGA. The modular analysis indicated that the identified modules
involving lncRNAs, miRNAs and mRNAs are significantly associated and functionally enriched in cancer-related
biological processes and pathways, which may provide new insights into the complex regulatory mechanism of
human diseases at the system level.
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Background
MicroRNAs (miRNAs) are small (~ 22 nt), endogenous,
single-stranded and non-coding RNA molecules, which
play crucial roles in post-transcriptional regulation by
repressing mRNA translation or destabilizing target
mRNAs [1]. Many studies have revealed that the muta-
tion and dysregulated miRNA expression may cause
various human diseases [2, 3]. MiRNAs act as essential
components of complex regulatory networks and are

involved in many different biological processes, such as
cell proliferation, metabolism, and oncogenesis [4–6].
Therefore, understanding the functional roles and regu-
latory mechanisms of miRNAs will greatly facilitate the
diagnosis and treatment of human diseases [7, 8].
Recently, a competing endogenous RNA (ceRNA) hy-

pothesis has been presented by Salmena et al. [9], which has
dramatically shifted our understanding of miRNA regula-
tory mechanism. The complex ceRNA post-transcriptional
regulatory mechanism reported that by sharing common
miRNA response elements (MREs), several types of com-
peting endogenous RNAs or miRNA sponges (e.g.
lncRNAs, pseudogenes and circRNAs) compete with
protein-coding RNAs for binding to miRNAs, thereby
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relieving miRNA-mediated target repression. Numerous
convincing evidence has been discovered in a variety of spe-
cies by biological experiments [10, 11]. For example, the
study found that lncRNA HULS plays an important role in
liver cancer, which serves as an endogenous sponge by re-
ducing miR-372-mediated translational repression of
PRKACB [12]. IPS1 overexpression has also been reported
to increase the expression of PHO2 by competitively inter-
acting with miR-399 in arabidopsis [13]. In addition, numer-
ous studies have shown that ceRNA crosstalk exists in a
variety of cellular behaviors, and many diseases are affected
by their disturbances [14, 15]. However, the cooperative
regulation mechanisms and the roles of ceRNA–associated
activities in physiologic and pathologic conditions are in
their infancy, and thus require further research.
The development of high-throughput techniques has made

a vast amount of omics data to be publicly available, thereby
enabling systematic investigation of the complex regulatory
networks. Great efforts have been made to decipher the
interaction mechanism of numerous biomolecules in a tran-
scriptional or post-transcriptional level, such as co-regulatory
motif discovery [16], miRNA-mRNA regulatory module
identification [17, 18], miRNA and TF (transcription factor)
co-regulation inference [19]. Meanwhile, other methods have
been developed to prioritize cancer-related biological mole-
cules, such as miRNAs [20, 21]. Undoubtedly, all these
studies provide a global perspective for the study of combina-
torial effects and human complex diseases.
In recent years, lncRNAs as a class of ncRNAs and

miRNA sponges have been identified in many human can-
cers [22]. Some systematic studies on many diseases have
been carried out [23–25]. In addition, some tools related to
lncRNA, such as DIANA-LncBase [26], Linc2GO [27] and
LncRNADisease [28], have been developed. However, the
functions and modular organizations of most of lncRNAs
are still not clear, and the novel regulatory mechanism
based on ceRNA hypothesis requires comprehensive inves-
tigation. To the best of our knowledge, little effort has been
devoted to methods that are specifically designed to investi-
gate the cancer-specific regulatory patterns involved in
miRNA and miRNA sponges on a large scale.
In this study, we develop a novel integrative framework

called CeModule to systematically detect regulatory
patterns involving lncRNAs, miRNAs, and mRNAs. The
proposed method fully exploits the lncRNA/miRNA/
mRNA expression profiles, the experimentally determined
miRNA-lncRNA interactions, the verified miRNA-mRNA
interactions, and the weighted gene-gene functional inter-
actions. Here, inspired by [29–31], we adopt a model with
joint orthogonality non-negative matrix factorization to de-
tect these modules. In addition, both network-regularized
constraints and sparsity penalties are incorporated into the
model for helping to discover and characteriz the
lncRNA-miRNA-mRNA associated regulatory modules.

Finally, we apply the proposed method to ovarian cancer
(OV) and uterine corpus endometrial carcinoma (UCEC)
datasets downloaded from TCGA [32]. The results indicate
that CeModule could be effectively applied to the discovery
of biologically function modules, which greatly advances
our understanding of the coordination mechanisms on a
system level.

Methods
In the following sections, we will first introduce the math-
ematical formulation of CeModule. Afterwards, the modules
are identified based on the decomposed matrix components.
Finally, several experiments and literature surveys are per-
formed to systematically evaluate these modules.

The CeModule algorithm for identifying modules by
integrating massive genomic data
Joint orthogonal non-negative matrix factorization
In this study, we identify the lncRNA, miRNA and
mRNA-associated regulatory modules by a non-negative
matrix factorization (NMF)-based framework. The cor-
responding objective function of standard NMF [31, 33]
is formulated as follows:

min
W ;H

X−WHT
�� ��2

F
s:t: W ≥0;H ≥0 ð1Þ

where ||.||F denotes the Frobenius norm.
Existing studies have indicated that orthogonality

NMF could produce a better modularity interpretation
[6, 30, 34]. Therefore, we present a integrative frame-
work using joint orthogonality NMF to determine the
module regulation and membership through simultan-
eously integrating multiple data sources. To clearly de-
scribe the problem, let X1∈R

S ×N1, X2∈R
S ×N2, and

X3∈R
S ×N3 denote the lncRNA, miRNA, and mRNA ex-

pression matrices, respectively. Subsequently, we define
an objective function of joint orthogonality NMF as
follows:

min
W ;H1;H2;H3

X
i¼1;2;3

Xi−WHT
i

2
F þ

1
2
α HT

i Hi−I 2
F

����
����

����
� �

s:t W ≥0;Hi≥0

ð2Þ
where W(size:S × K) denotes the common basic matrix;
coefficient matrices H1, H2, and H3 have dimensions
N1 × K, N2 × K, and N3 × K, respectively; α is the hyper-
parameter that controls the trade-off of Hi.; dimension K
represents the desired number of modules.
However, many data sources often contain noise, and sev-

eral investigations of NMF have been conducted to improve
the performance [35]. To obtain sparse solutions and regu-
latory modules with better biological interpretation, the
sparse constraints were incorporated into this model
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similar to that suggested by Hoyer [36], which can effect-
ively make matrices Hi sparse. The objective function of
joint orthogonality NMF with sparsity penalties can be writ-
ten as follows:

min
W ;H1;H2;H3

X
i¼1;2;3

Xi−WHi
T

�� ��2
F þ

1
2
α Hi

THi−I
�� ��2

F

� �

þγ1 Wk k2F þ γ2
X

i¼1;2;3

Hik k1
s:t: W ≥0;Hi≥0

ð3Þ
where γ1 and γ2 are the regularization coefficients.

The mathematical formulation of CeModule
Apart from the expression profiles, the data sources includ-
ing miRNA-lncRNA interactions, miRNA-mRNA interac-
tions and gene-gene network have also been fully utilized to
improve the performance. Here, to improve the quality of
identified modules, the network-based penalties are imposed
on this computational model based on Hoyer’s work [6, 36]
and make sure that those tightly linked lncRNAs/miRNAs/
mRNAs are forced to assign into the same module.
Let A∈RN2×N1 and B∈RN2×N3 denote the adjacency matri-

ces of miRNA-lncRNA and miRNA-mRNA interaction net-
works, respectively, C∈RN3 ×N3 is the matrix of gene-gene
functional interaction network. For the miRNA-lncRNA
interaction network, we perform the network-based con-
straints according to the objective function as follows:

O1 ¼
X
ij

aijhi
2ð Þ hj

1ð Þ
� �T

¼ Tr H2
TAH1

� � ð4Þ

where aij is the entity of A; hi
(2) and hj

(1) represent the
ith and jth rows of H2 and H1, respectively. Similarly, the
corresponding objective functions of two other networks
can be obtained as follows:

O2 ¼
X
ij

bijhi
2ð Þ hj

3ð Þ
� �T

¼ Tr H2
TBH3

� � ð5Þ

O3 ¼
X
ij

cijhi
3ð Þ hj

3ð Þ
� �T

¼ Tr H3
TCH3

� � ð6Þ

Then, combining the function in Eq. (3) with three
network-based regularization terms, we can mathematically
formulate the optimization problem of CeModule as follows:

min
W ;H1;H2;H3

X
i¼1;2;3

Xi−WHi
T

�� ��2
F
þ 1
2
α Hi

THi−I
�� ��2

F

� �

−λ1Tr H2
TAH1

� �
−λ2Tr H2

TBH3
� �

−λ3Tr H3
TCH3

� �
þγ1 Wk k2F þ γ2

X
i¼1;2;3

Hik k1
s:t: W ≥0;Hi≥0

ð7Þ

where λ1, λ2 and λ3 are the regularization parameters. In
the following, we adopt an iterative updating method
[37] to obtain local optimal solution for the optimization
problem.
Let Φ = [φlk],Ψ = [ψjk], Ω = [ωpk], and Θ = [θqk] be the

Lagrange multipliers for constrain wlk ≥ 0, hjk
(1) ≥ 0,

hpk
(2) ≥ 0, and hpk

(3) ≥ 0, respectively. We can obtain the
Lagrange function of Eq. (7) as follows:

Lf ¼
X3

i¼1
Tr XiXi

T
� �

−2Tr XiHiW
T

� �þ Tr WHi
THiW

T
� �	

þ 1
2
α Tr Hi

THiHi
THi

� �
−2Tr Hi

THi
� �þ Tr IT I

� �� ��
−λ1Tr H2

TAH1
� �

−λ2Tr H2
TBH3

� �
−λ3Tr H3

TCH3
� �

þγ1Tr WWT
� �þ γ2

X3
i¼1

Tr Ei
THi

� �þ Tr ΦWT
� �

þTr ΨH1
T

� �þ Tr ΩH2
T

� �þ Tr ΘH3
T

� �

ð8Þ

where E1∈{1}
N1 × K, E2∈{1}

N2 × K, and E3∈{1}
N3 × K. The

partial derivatives of the above function for W and Hi

are:

∂Lf

∂W
¼

X3

i¼1
−2XiHi þ 2WHi

THi
	 
þ 2γ1W þΦ

∂Lf

∂H1
¼ −2X1

TW þ 2H1W
TW þ 1

2
α 4H1H1

TH1−4H1
� �

−λ1ATH2 þ γ2E1 þΨ
∂Lf

∂H2
¼ −2X2

TW þ 2H2W
TW þ 1

2
α 4H2H2

TH2−4H2
� �

−λ1AH1−λ2BH3 þ γ2E2 þΩ
∂Lf

∂H3
¼ −2X3

TW þ 2H3W
TW þ 1

2
α 4H3H3

TH3−4H3
� �

−λ2BTH2−2λ3CH3 þ γ2E3 þΘ

ð9Þ

Using the KKT conditions [38, 39] φlkwlk = 0, ψjkhjk
(1)

= 0, ωpkhpk
(2) = 0, and θqkhpk

(3) = 0, we obtain the follow-
ing equations for wlk, hjk

(1), hpk
(2), and hpk

(3):

−2
X3
i¼1

XiHið Þlkwlk þ 2
X3

i¼1
WHi

THi
� �þ γ1Wð Þ

h i
ik
wlk ¼ 0

−2X1
TW−2αH1−λ1ATH2

� �
jkh

1ð Þ
jk

þ 2H1W
TW þ 2αH1H1

TH1 þ γ2E1
� �

jkh
1ð Þ
jk ¼ 0

−2X2
TW−2αH2−λ1AH1−λ2BH3

� �
pkh

2ð Þ
pk

þ 2H2W
TW þ 2αH2H2

TH2 þ γ2E2
� �

pkh
2ð Þ
pk ¼ 0

−2X3
TW−2αH3−λ2BTH2−2λ3CH3

� �
qkh

3ð Þ
qk

þ 2H3W
TW þ 2αH3H3

TH3 þ γ2E3
� �

qkh
3ð Þ
qk ¼ 0

ð10Þ

Finally, we determine the multiplicative update rules
for W and Hi as follows:
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wlk←wlk
X1H1 þ X2H2 þ X3H3ð Þlk

WH1
TH1 þWH2

TH2 þWH3
TH3 þ γ1W

� �
lk

h 1ð Þ
jk ←h 1ð Þ

jk

X1
TW þ αH1 þ λ1

2 A
TH2

� �
jk

H1WTW þ αH1H1
TH1 þ γ2

2 E1
� �

jk

h 2ð Þ
pk ←h 2ð Þ

pk

X2
TW þ αH2 þ λ1

2 AH1 þ λ2
2 BH3

� �
pk

H2WTW þ αH2H2
TH2 þ γ2

2 E2
� �

pk

h 3ð Þ
qk ←h 3ð Þ

qk

X3
TW þ αH3 þ λ2

2 B
TH2 þ λ3CH3

� �
qk

H3WTW þ αH3H3
TH3 þ γ2

2 E3
� �

qk

ð11Þ

The four non-negative matrices W, H1, H2 and H3 are
updated according to the above rules until convergence.
More details about the derivations and proof for the
convergence of the optimization problem are provided
in the Additional file 1.

Determining ceRNA modules
The obtained coefficient matrices H1, H2, and H3 will
guide us to detect ceRNA-associated regulatory modules.
Here, similar to the way for identifying co-modules devel-
oped by Chen et al. [40], we obtain a z-score for each
element based on the columns of H1, H2, and H3 as fol-
lows: zij = (xij-μj)/σj, where μj denotes the average value of
lncRNA (or miRNA, mRNA) i in H1 (or H2, H3), and σj is
the standard deviation. Subsequently, we assign lncRNA
(or miRNA, mRNA) i into module j if zij exceeds a given
threshold T, and then all the ceRNA-associated modules
can be obtained. The overall workflow of the proposed
CeModule framework for identifying regulatory module is
shown in Fig. 1.

Experimental setup and module validation
We systematically evaluate the performance of CeMo-
dule by conducting a functional enrichment analysis for
genes in each module. We downloaded the GO (Gene

Fig. 1 Overall workflow of CeModule for detecting lncRNA, miRNA, and mRNA-associated regulatory patterns
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Ontology) terms in biological process from http://
www.geneontology.org/, and obtained the canonical
pathways from MSigDB [41]. We removed the GO terms
with evidence codes equal to NAS (Non-traceable Au-
thor Statement), ND (No biological Data available) or
EA (Electronic Annotation) and those with fewer than 5
genes similar to Li et al. [18]. The hypergeometric test
was used to calculate the statistical significance for genes
in each module with respect to each GO term or path-
way. Meanwhile, we used TAM [42], which is a free on-
line tool for annotations of human miRNAs, to perform
enrichment analysis for miRNAs in the identified
modules.
We also investigate the miRNA cluster/family enrich-

ment for each module, and obtained the miRNA cluster
information and miRNA families from miRBase (http://
www.mirbase.org/) (release 21) [43]. Furthermore, to de-
termine whether these modules related to specific cancer,
we acquired those known cancer-related lncRNAs from
LncRNADisease [28] and Lnc2Cancer [44]. The verified
disease-related miRNAs and genes were collected from
HMDD v2.0 [45], and DisGeNET [46], respectively.
Additionally, the method contains several parame-

ters, more detailed information about them are illus-
trated in Additional file 1. Here, we determined the
values of reduced dimension K on the basis of a
miRNA cluster analysis. The results show that the
miRNAs used in this study covered 69/76 miRNA
clusters with an average of about 2.7/2.3 miRNAs per
cluster for OV/UCEC dataset. Therefore, we set K to
70 in the two cancer datasets, which is approximately
equal to the number of miRNA clusters.

Results
Data sources and preprocessing
We applied CeModule to ovarian cancer (OV) and uterine
corpus endometrial carcinoma (UCEC) genomic data and
downloaded the matched mRNA and lncRNA expression
profiles from http://www.larssonlab.org/tcga-lncrnas/ [47].
Due to the expression values of many lncRNAs/mRNAs in
the original data source are all zeros or close to zeros, as
done in [48], we removed some lncRNAs/mRNAs in the
expression profiles with a variance less than the percentile
specified by a cutoff (30%) and filter those lncRNAs/
mRNAs with overall small absolute values less than another
percentile cutoff (60%). The corresponding Matlab func-
tions are genevarfilter and genelowvalfilter, respectively. We
obtained the miRNA expression profiles of OV/UCEC from
the TCGA data portal (http://cancergenome.nih.gov/) and
removed the rows (or miRNAs) where all the expres-
sion values are zeros. These expression data were
further log2-transformed. Finally, the datasets contain
7982(8056) lncRNAs, 415(505) miRNAs, and
10,618(10308) mRNAs across 385(183) matched

samples for OV (UCEC), which were represented in
three matrices X1, X2 and X3, and then the method in
[49] is adopted to ensure non-negative constraints.
The experimentally verified interactions between

miRNAs and lncRNAs were downloaded from
DIANA-LncBase [26] and starBase v2.0 [50]. We obtained
the miRNA targets from three experimentally verified da-
tabases, including miRecords (version 4.0) [51], TarBase
(version 6.0) [52], and miRTarBase (version 6.1) [53]. After
filtering out duplicate interactions or interactions involv-
ing lncRNAs, miRNAs, and mRNAs that were absent in
the expression profiles, 12,969/6165 miRNA-lncRNA and
20,848/25447 miRNA-mRNA interactions were finally
retained for OV/UCEC dataset. The weighted gene-gene
network is derived from HumanNet [54], which is a prob-
abilistic functional gene network. After filtering those
genes absent from the expression data, 536,698/252021
interactions are retained for OV/UCEC. Finally, we ob-
tained the miRNA-lncRNA matrix A, the miRNA-mRNA
matrix B and the gene-gene matrix C.

Topological characteristics analysis
We identified modules in ovarian cancer and uterine
corpus endometrial carcinoma by integrating multiple
heterogeneous data sources, and obtained 70 modules
for OV/UCEC (Additional file 2: Table S1) with an aver-
age of 68.2/46.1 lncRNAs, 6.3/5.5 miRNAs, and 55.5/
48.1 mRNAs per module. The distributions of number
of lncRNAs, miRNAs, and mRNAs for the identified
modules for OV and UCEC datasets are displayed in
Additional file 1: Figure S1 and S2.
According to the constructed regulatory networks by

merging those modules identified by our method, we
found that a small number of nodes are more likely to be
hubs or act as bridges, and tend to be involved in more
competing interactions and participate in more human
diseases. For instance, Fig. 2a presents a global view of the
regulatory network for OV, which demonstrated that the
network was densely connected and a small fraction of
the nodes presented significantly higher degree, between-
ness centrality, and closeness centrality than other nodes.
The top 10 lncRNAs/miRNAs/mRNAs for each dimen-
sion (degree, closeness, and betweenness) in the networks
of OV and UCEC datasets are listed in Table 1 and
Additional file 1: Table S2, and there are substantial over-
laps exist across the three dimensions (Fig. 2b and Add-
itional file 1: Figure S3 and S4). Meanwhile, as shown in
Fig. 2c and Additional file 1: Table S2, we found that all
the top 10 lncRNAs (MALAT1, NEAT1, GAS5, H19,
SNHG1, TUG1, FGD5-AS1, SNHG5, XIST, MEG3) and 8
out of the top 10 lncRNAs (MAL2, XIST, SCAMP1,
C17orf76-AS1, MALAT1, C11orf95, SEC22B, UBXN8)
with the highest degree participate in at least 5 or more
modules in OV and UCEC datasets, respectively. The
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number distributions of modules for all the module
members (lncRNAs/miRNAs/mRNAs) are provided in
Additional file 2: Table S1.
On the other hand, most of the above lncRNAs are sup-

ported to be associated with different cancers by public da-
tabases or literature. For example, MALAT1 was found to
be overexpressed in many solid tumors such as hepatocel-
lular carcinoma [55] and lung cancer [56]. The downregula-
tion of MEG3 is related to poor prognosis and promotes
cell proliferation in gastric cancer [57] and bladder cancer
[58]. Moreover, MALAT1, NEAT1, GAS5, H19 and XIST
have been experimentally validated to be ovarian
cancer-related lncRNAs [44], which were identified as hubs
that connect 26, 15, 22, 20 and 9 modules in OV dataset,
respectively. Additionally, MALAT1 also has been sup-
ported to be related to uterine corpus endometrial

carcinoma and connected 7 modules in UCEC dataset. The
above observations indicate that these lncRNAs can control
communication among different functional components in
the two datasets. Meanwhile, 8 (let-7b, mir-99b, mir-10b,
mir-30a, mir-182, mir-183, mir-200c, mir-25) and 5
(mir-141, mir-10a, mir-200a, let-7b, mir-200b) of the 10
miRNAs with the highest degree are confirmed to be the
well-known OV-related and UCEC-related miRNAs by
HMDD [45]. We also found that these miRNAs are signifi-
cantly enriched in cell cycle-related biological processes
(Fig. 3a). In addition, we performed the same analysis for
mRNAs and also came to the similar observations.

Functional enrichments of modules
To investigate the functional significance of the identi-
fied modules in ovarian cancer and uterine corpus

Fig. 2 Topological features of the identified modules and the ceRNA regulatory network for ovarian cancer. a View of the ceRNA module
network in OV. If two nodes are members of a module and their interactions exist in the databases as mentioned in the aforementioned
interaction databases, then an edge between the two nodes is displayed. Three colors (black, purple and green) correspond to three types of
interactions (lncRNA-miRNA, miRNA-gene and gene-gene). Nodes with no edges are omitted to improve visualization. b Overlap of the top 10
lncRNAs across three dimensions for OV. c The distributions of number of modules identified by CeModule for the top 10 lncRNAs, miRNAs, and
mRNAs with the highest degree in OV dataset
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endometrial carcinoma datasets, we perform GO bio-
logical process and KEGG pathway enrichment analyses
using hypergeometric test for coding genes in each of
the modules (FDR < 0.05). The enriched GO terms and
KEGG pathways of all the identified modules for OV
and UCEC datasets are listed in Additional file 3: Table
S3 and Additional file 4: Table S4. The results show that
about 88.6%/91.4% of the modules in OV/UCEC are

significantly enriched in at least one GO terms, and 110/
129 different enriched pathways are discovered for the
identified modules. The most frequently enriched bio-
logical processes contain cell adhesion, immune re-
sponse, signal transduction, cell cycle and inflammatory
response. For instance, Table 2 lists the representative
enriched GO terms for the selected modules in OV data-
set, and we found that these modules are involved in

Table 1 The top 10 lncRNAs, miRNAs and mRNAs with the highest degree, closeness centrality, and betweenness centrality in OV

Rank Degree Betweenness Closeness

lncRNAs miRNAs mRNAs lncRNAs miRNAs mRNAs lncRNAs miRNAs mRNAs

1 MALAT1 let-7b RPS16 MALAT1 mir-10a TCF7L1 LINC00240 mir-155 NME5

2 NEAT1 mir-10a RPS11 NEAT1 let-7b SNRPF RP11-403I13.8 mir-506 HIF3A

3 GAS5 mir-99b RPS5 H19 mir-30a PTP4A3 MALAT1 mir-206 TCF7L1

4 H19 mir-10b RPS18 GAS5 mir-146a PRRX2 NEAT1 mir-223 LRRC6

5 SNHG1 mir-30a RPS8 TUG1 mir-375 PNISR FGD5-AS1 mir-10a ACTG1

6 TUG1 mir-143 SRGN FGD5-AS1 mir-149 NR5A1 H19 mir-30a PNISR

7 FGD5-AS1 mir-182 TYROBP SNHG5 mir-99b LRRC6 TUG1 let-7b PRRX2

8 SNHG5 mir-183 RPL11 XIST mir-183 HIF3A XIST mir-197 PTP4A3

9 XIST mir-200c ALOX5AP SNHG1 mir-143 CTSD SNHG1 mir-146a CTSD

10 MEG3 mir-25 RPL3 SNHG3 mir-320a ACTG1 SNHG14 mir-25 SNRPF

Fig. 3 a Functional enrichment analysis for the 10 miRNAs with the highest degree using TAM in OV. b Pathway enrichment analysis of the
module 15 in OV dataset. c Pathway enrichment analysis of the module 17 in OV dataset. The area proportion of each pathway presents the
number of genes enriched in this pathway
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many biological processes or pathways that related to
cancers [59, 60]. For example, module 2 is enriched in
regulation of cell activation (GO:0050865) and immune
system process (GO:0002376), and modules 7 and 15 are

enriched in p53 signaling pathway (KEGG: hsa04115)
and Focal adhesion (KEGG: hsa04510), respectively. As
shown in Fig. 3b and c, we also found that some
enriched pathways are shared by several modules, and

Table 2 Representative enriched GO terms of the selected modules for OV dataset

Module GO term Description q-value Cancer lncRNAs Cancer miRNAs Cancer mRNAs

2 GO:0002376 immune
system process

1.04E-12 MALAT1, MIR155HG, NEAT1,
PVT1

mir-10a APOC1, APOE, BTG3,
C1QA, C1QB, CBS, CCL2,
etc

GO:0009605 response to
external
stimulus

2.31E-07

GO:0006954 inflammatory
response

2.76E-04

GO:0050865 regulation of
cell activation

2.25E-03

GO:0007154 cell
communication

2.25E-03

7 GO:0032502 developmental
process

1.32E-06 DLEU2, DNM3OS, GAS5,
HOTAIRM1, MALAT1, SNHG1,
SNHG3, SNHG5, TP53TG1

mir-196b, mir-199b CHST2,CLDN11,COX6B1,
MGP, DACT3, DCHS1,
DLK1, etc

GO:0030154 cell
differentiation

1.62E-05

GO:0060284 regulation of
cell
development

1.06E-04

GO:0010942 positive
regulation of
cell death

2.89E-04

GO:0007275 multicellular
organismal
development

7.77E-07

15 GO:0007155 cell adhesion 2.57E-06 GAS5, H19, MEG3, SNHG5 mir-202, mir-506, mir-508, mir-513c FSTL1, LHX1, MEST,
MFAP2, CDH3, NR5A1,
MMP2, etcGO:0022610 biological

adhesion
2.64E-06

GO:0009968 negative
regulation of
signal
transduction

1.38E-03

GO:0042698 ovulation cycle 3.10E-04

GO:0050896 response to
stimulus

2.54E-05

17 GO:0022411 cellular
component
disassembly

1.43E-20 DNM3OS, GAS5, H19,
LINC00467, MEG3, RMRP,
RP11-304 L19.5, RP11-385 J1.2,
SNHG5

mir-127,mir-134,mir-379, mir-370,mir-
382,mir-409, mir-410, mir-431, mir-432,
mir-433,mir-485, mir-493, mir-654, mir-
758

GPC3, SPARC, LHX1,
LUM, MEST, MFAP2,
IGF2BP2, etc

GO:0009968 negative
regulation of
signal
transduction

7.65E-04

GO:0060284 regulation of
cell
development

8.80E-04

GO:0045595 regulation of
cell
differentiation

5.91E-04

GO:0006413 translational
initiation

8.31E-21

Note: The bold letters represent the lncRNAs/miRNAs/mRNAs related to ovarian cancer; q-value represents the corrected p-value using the
Benjamini-Hochberg method
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some of them have been reported to be involved in OV
[61]. Interestingly, these two modules contain three
common mRNAs (EMILIN1, COL1A2, ENC1) and one
of them (COL1A2) is related to cancer, suggesting that
these modules (e.g. modules 15 and 17, modules 31 and
32 in OV) with many overlaps of mRNAs are more likely
to have similar biological functions.
Accumulating evidence has demonstrated that miRNAs

located in the same cluster or belonging to the same fam-
ily are likely to function synergistically or are related to
the same diseases [42]. In this study, we also conducted a
miRNA cluster/family enrichment analysis for the identi-
fied modules based on TAM (http://www.cuilab.cn/tam)
[42]. The results indicated that 35/27 of the identified
modules are significantly enriched in at least one miRNA
cluster or miRNA family for OV/UCEC (p-value< 0.05)
(Additional file 5: Table S5). For instance (see Table 3),
module 1 in OV contains 9 miRNAs, 4 of which (mir-362,
mir-532, mir-500, mir-501) belong to the miR-188 cluster,
and three miRNAs (mir-362, mir-532, mir-501) have been
supported to be associated with cancer by HMDD. More-
over, two miRNAs (mir-200b, mir-200c) in this module,
which belong to the miRNA family MIPF0000019, have
been shown to be related to OV [45], while another two
miRNAs (mir-500, mir-501) also belong to the miRNA
family MIPF0000139. As another example, two of 8 miR-
NAs (let-7c, mir-99a) in module 20 are from the let-7c
cluster and have been shown to be dysregulated in various
cancers [17]. All the findings indicate the capability of
CeModule in discovering cancer-specific modules.

Co-expression analysis of lncRNA-miRNA-mRNA
regulatory modules
We also performed an analysis to evaluate the statistical
significance of (anti)-correlations between lncRNAs,
miRNAs and mRNAs within modules for both datasets.
We expect that the molecules within those modules
identified by CeModule are more (anti)-correlated than
random sets of genes. Here, we define a correlation
evaluation score to quantify the strength of competition
in any given module Cv as follows:

S Cvð Þ ¼
P j corrlmiR j þP j corrmiRmR j þP j corrlmR j

N
ð12Þ

which is defined as the average absolute values of PCCs
(Pearson correlation coefficients) for all lncRNA-miRNA,
miRNA-mRNA, and lncRNA-mRNA pairs, where N is the
number of all the possible pairs for the three types of rela-
tionships in Cv, corr is a function for calculating the
pair-wise PCC based on the corresponding expression data.
To investigate the statistical significance, we adopt a

permutation test by shuffling these lncRNAs, miRNAs
and mRNAs according to those identified modules, and
then compute the average competing evaluation score for
them. As shown in Fig. 4a, the correlation evaluation
scores of our method ranged from 0.072 to 0.352 for OV,
and ranged from 0.100 to 0.489 for UCEC, they exhibit
significantly higher correlation than the random modules
(p-value = 1.20e-20 for OV, p-value = 3.03e-17 for UCEC,
Wilcoxon rank sum test). We can also obtain the same
conclusions on the two examples for modules 1 (p-value
= 2.70e-06, Student’s t-test) and 2 (p-value = 1.04e-09)
(Fig. 4b). Here, the correlation evaluation scores of these
identified modules are generally weak, this is mainly due
to the fact that the vast majority of Pearson correlation co-
efficients (PCCs) of lncRNA-miRNA, miRNA-mRNA and
lncRNA-mRNA pairs were weak in the used datasets of
OV and UCEC (Table 4).

Regulatory modules are strongly implicated in cancer
Base on the fact that the input data included the
lncRNA, miRNA and mRNA expression profiles of OV
and UCEC samples, we expect the modules indentified
by our method to be related to cancers, especially OV/
UCEC. Here, we obtained 82/265/4288 (116/322/4721)
cancer-related lncRNAs/miRNAs/mRNAs that are in-
volved in the expression profiles as the benchmark sets
for OV (UCEC), and collected 11/5 lncRNAs, 83/75
miRNAs and 73/158 mRNAs related to OV/UCEC
from several reliable databases as mentioned in the Sec-
tion of Methods.

Table 3 Overlapping miRNAs for the identified modules and clusters/families in OV

Module Overlap miRsa p-value Overlap miRsb p-value

1 mir-362,mir-532, mir-500, mir-501 1.22e-06 mir-200b,mir-200c 7.33e-04

– – mir-500,mir-501 2.40e-03

18 mir-99b,mir-152a 9.15e-04 mir-100,mir-99b 9.15e-04

20 let-7c, mir-99a 1.03e-04 mir-200a,mir-200b 1.01e-03

mir-200a, mir-200b 3.07e-04 – –

30 – – let-7b,let-7c 4.96e-03

70 mir-516a,mir-519a, mir-522,mir-518e 1.45e-03 mir-516a,mir-519a, mir-522,mir-518e 7.66e-04

Note: a/b represent the miRNAs that overlap between modules and miRNA clusters as well as families
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As shown in Fig. 5a, 45.7% (92.9%), 71.4% (90.0%)
and 22.9% (100%) of all the identified modules in OV
dataset contained at least two OV-related (cancer-re-
lated) lncRNAs, miRNAs and mRNAs, respectively.
Meanwhile, the corresponding ratios in UCEC dataset
are 1.4% (62.9%), 64.3% (91.4%) and 10.0% (100%) for
uterine corpus endometrial carcinoma-related (can-
cer-related) lncRNAs, miRNAs and mRNAs. The sig-
nificant level of overlap between every module and
cancer (OV/UCEC) lncRNAs/miRNAs/mRNAs is eval-
uated by hypergeometric test, and Table 5 lists the
OV-related and cancer-related lncRNAs for several
representative modules. For example, module 66 in
OV dataset contains 58 lncRNAs, 9 of which are can-
cer lncRNAs and 6 of them are ovarian cancer
lncRNAs. To take another example, module 51 in
UCEC dataset contains 61 lncRNAs, 8 of which are
cancer lncRNAs and 3 of them are uterine corpus
endometrial carcinoma-related lncRNAs. We provided
all the cancer (OV/UCEC) related modules for both
datasets in Additional file 6: Table S6.
For OV (UCEC) dataset, the identified modules in-

volve 1258/171/2172 (1252/172/2498) different
lncRNAs/miRNAs/mRNAs. In the results of OV, as
shown in Fig. 5b, 43 lncRNAs belong to the bench-
mark set of cancer lncRNAs (p-value = 1.18e-14,
hypergeometric test), and 8 of them are relevant to
ovarian cancer (p-value = 3.93e-05). In UCEC, 47
lncRNAs in those modules belong to the corre-
sponding benchmark set (p-value = 6.05e-11) and 3

of which are UCEC specific lncRNAs (p-value =
2.93e-02). For miRNAs, 64.9%/77.3% of the 171/172
miRNAs are known to be involved in cancer in both
datasets, and 51/43 miRNAs are specifically associ-
ated with OV/UCEC (p-value = 2.70e-05 for OV,
p-value = 6.29e-06 for UCEC). Meanwhile, 1058/1186
mRNAs have been verified to be related to cancer,
and 27/29 mRNAs are confirmed to be associated
with ovarian cancer and uterine corpus endometrial
carcinoma in OV and UCEC datasets, respectively.
All the cancer-related and OV (UCEC) related mole-
cules in those modules for both datasets are listed in
Additional file 6: Table S6.
We also performed a differential expression analysis

by two-sample t-test for those OV-related miRNAs (83
miRNAs) to investigate the cancer-specific abnormal
changes in expression profile data. As a result, we iden-
tified 13 differentially expressed miRNAs (mir-200c,
mir-99b, mir-183, mir-187, mir-10b, mir-625, mir-92b,
mir-182, mir-449b, mir-107, mir-134, mir-98, mir-141,
Additional file 7: Table S7) from those miRNAs, and
found that 62.9% (44/70, Additional file 7: Table S7) of
the modules contain at least one miRNAs that are dif-
ferential expression. There are four modules (modules
13, 57, 60, and 69) are significantly enriched in ovarian
cancer related differentially expressed miRNAs (hyper-
geometric test, FDR < 0.05, Additional file 7: Table S7).
For example, module 57 contains 5 OV-related miRNAs
(mir-182, mir-183, mir-200c, mir-625, mir-99b) and all
of them are differential expression (FDR = 2.40e-05).
The above observations imply that the lncRNAs/miR-
NAs/mRNAs in the identified modules are involved in
various cancers, which confirm that the proposed
method has a potential capability to discover modules
related to cancers.

Discussion
Increasing evidence indicates that a novel competitive en-
dogenous RNA (ceRNA) regulatory mechanism exists be-
tween non-coding RNAs and protein-coding RNAs.

Fig. 4 a Comparison of the correlation evaluation scores between all the identified modules by CeModule and the randomly generated modules
for ovarian cancer dataset. b Distribution of the correlation evaluation scores of the 1000 random modules with the same size for modules 1 and
2 in ovarian cancer dataset

Table 4 Statistics of the correlation coefficients in OV and UCEC
datasets

Dataset Ave (lnc-miR) Ave (miR-mR) Ave (lnc-mR) Ave-mod

OV 0.0546 0.0659 0.0678 0.119

UCEC 0.0639 0.0772 0.0854 0.173

Note: Ave (lnc-miR), Ave (miR-mR) and Ave (lnc-mR) are the average absolute
Pearson correlation coefficients of all lncRNA-miRNA, miRNA-mRNA and
lncRNA-mRNA pairs, respectively; Ave-mod is the correlation evaluation score
across all modules
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LncRNAs and miRNAs are two kinds of crucial regulators
and participate in many important biological processes.
The aberrant expression of lncRNAs and miRNAs often
contribute to tumorigenesis. To utilize the tremendous
amounts of heterogeneous omics data and investigate the
synergistic and cooperative mechanisms involve in
lncRNAs, miRNAs, and mRNAs, our method integrates
lncRNA/miRNA/mRNA expression profile data in an NMF
framework, and simultaneously incorporates interaction
networks in a regularized manner. The results of both
(OV/UCEC) datasets indicate that the modules identified
by CeModule contain many lncRNAs/miRNAs/mRNAs
with specific topological patterns that are involved in some
crucial biological processes and may cause cancers. Mean-
while, we further investigated whether the discovered mod-
ules were associated with the survival of ovarian cancer
patients. The clinical data are downloaded from TCGA,
and 383 samples are retained after removing those not in-
cluded in the expression data or those with unavailable sur-
vival time. Kaplan-Meier survival analysis also indicates the
ability of the method to discover modules that provide use-
ful information for the prediction of cancer prognosis
(Additional file 1).

Conclusions
In this study, we systematically investigate the effi-
ciency of CeModule in identifying biologically func-
tional modules that related to specific biological
processes or cancers. We applied our method on the
lncRNA/miRNA/mRNA expression data with matched
samples of ovarian cancer and uterine corpus endo-
metrial carcinoma from TCGA, and finally obtained
70 regulatory modules in both datasets. The observa-
tions indicate that these modules are densely con-
nected and show specific topological characteristics.
Meanwhile, these modules are significantly associated
with many disease-related biological processes and
pathways. Furthermore, a large number of lncRNAs/
miRNAs/mRNAs in the modules are involved in vari-
ous human complex diseases, such as ovarian cancer.
All the results fully demonstrate the capability of
CeModule for identifying of biologically functional
modules. As a large number of sample-matched
lncRNAs/miRNAs/mRNAs expression profile data be-
come available, we believe that CeModule can serve
as a potential tool for revealing condition-specific
ceRNA regulatory patterns for cancer.

Table 5 Known ovarian cancer-associated and cancer- associated lncRNAs for these representative modules in OV

Module Cancer lncRNAs Numa q-value OV lncRNAs Numb q-value

2 MALAT1,MIR155HG,NEAT1,PVT1 4/74 1.05e-02 MALAT1, NEAT1, PVT1 3/74 4.65e-04

7 DLEU2,DNM3OS,GAS5,HOTAIRM1,MALAT1,
SNHG1,SNHG3,SNHG5,TP53TG1

9/86 2.30e-06 DNM3OS, GAS5, MALAT1 3/86 6.55e-04

12 MALAT1,RMRP,RP11-385 J1.2,XIST 4/30 6.00e-04 MALAT1, XIST 2/30 2.34e-03

31 GAS5,MALAT1,NEAT1,RP11-304 L19.5,SNHG3,SNHG5,TP53TG1,UCA1 8/75 6.59e-06 GAS5,MALAT1,NEAT1, UCA1 4/75 3.95e-05

41 DLEU2,GAS5,LINC00467,MALAT1,NEAT1, SNHG1,SNHG3 7/57 9.50e-06 GAS5, MALAT1, NEAT1 3/57 3.91e-04

62 DNM3OS,H19,HOTAIRM1,LINC00152,MALAT1,MEG3,NEAT1,PVT1,RMRP,RP11-
304 L19.5,RP11-401P9.4,SNHG5,UCA1,XIST

14/79 2.35e-12 DNM3OS, MALAT1, PVT1,
NEAT1, UCA1, XIST, H19

7/79 1.59e-10

66 H19,MALAT1,MEG3,NEAT1,PVT1,SNHG1, SNHG3,UCA1,XIST 9/58 2.02e-07 H19, MALAT1, NEAT1, PVT1,
UCA1, XIST

6/58 1.78e-09

Note: Numa and Numb are the ratios of lncRNAs that associated with cancer and OV in these modules. q-value is the FDR-corrected p-value after multiple
testing correction

Fig. 5 a Percentage of modules with at least two known cancer-related (ovarian cancer-related)lncRNAs/miRNAs/mRNAs in ovarian cancer
dataset. b Overlap of cancer lncRNAs, and ovarian cancer lncRNAs between the benchmark set and lncRNAs in the identified modules for ovarian
cancer dataset
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