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Abstract

Background: The standard genetic code is a recipe for assigning unambiguously 21 labels, i.e. amino acids and stop
translation signal, to 64 codons. However, at early stages of the translational machinery development, the codons did
not have to be read unambiguously and the early genetic codes could have contained some ambiguous assignments
of codons to amino acids. Therefore, the goal of this work was to obtain the genetic code structures which could have
evolved assuming different types of inaccuracy of the translational machinery starting from unambiguous
assignments of codons to amino acids.

Results: We developed a theoretical model assuming that the level of uncertainty of codon assignments can
gradually decrease during the simulations. Since it is postulated that the standard code has evolved to be robust
against point mutations and mistranslations, we developed three simulation scenarios assuming that such errors can
influence one, two or three codon positions. The simulated codes were selected using the evolutionary algorithm
methodology to decrease coding ambiguity and increase their robustness against mistranslation.

Conclusions: The results indicate that the typical codon block structure of the genetic code could have evolved to
decrease the ambiguity of amino acid to codon assignments and to increase the fidelity of reading the genetic
information. However, the robustness to errors was not the decisive factor that influenced the genetic code evolution
because it is possible to find theoretical codes that minimize the reading errors better than the standard genetic code.

Keywords: Amino acid, Codon, Evolution, Evolutionary algorithm, Graph theory, Optimization, The standard genetic

code

Background

The standard genetic code (SGC) is a template accord-
ing to which the information stored in a DNA molecule
is transmitted to the protein world in the process called
translation. This coding system is nearly universal, with
some rare exceptions, for almost all living organisms on
Earth. The investigations of the unique organization and
properties of this code have been carried out ever since
the first encoding rules were determined [1, 2]. Many
hypotheses were developed to explain the origin and evo-
lution of the SGC (see for review: [3—7]). However, it is
still unclear which factor had the decisive impact on its
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present structure because the results so far are inconclu-
sive and do not allow us to formulate a final explanatory
theory [8]. One of the popular hypotheses assumes that
the SGC structure has evolved to minimize harmful con-
sequences of mutations or mistranslations of coded pro-
teins [9-24]. Originally, it was assumed that the optimality
of the SGC was directly selected.

However, other models of the genetic code evolution
were also proposed. In one of such simulation models
both the code and the coded message (i.e. genes) could
coevolve [25]. The simulations resulted in the codes that
were substantially, but not optimally, error-correcting and
reproduced the error-correcting patterns of the SGC. In
another model, an important role was assigned to hori-
zontal gene transfer, which made the code not only uni-
versal and compatible between translational machineries
but also optimal [26]. The self-referential model for the
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formation of the SGC assumes that peptides and RNAs
coevolved and were mutual stimulators for the whole sys-
tem [27]. In this model, a big role was played by tRNA
dimers, which directed the initial protein synthesis and
showed peptidyl-transferase activity in creation of peptide
bonds.

The models assuming a gradual addition of amino acids
to the code postulated that this incorporation was: (i)
associated with the minimization of disturbance in already
synthesized proteins [28], (ii) favoured to promote the
diversity of amino acids in proteins [5, 8, 28, 29], (iii)
initially driven by catalytic propensity of amino acids
functioning in ribozymes [30], (iv) proceeded according
to biosynthetic pathways [31-40], or (v) a consequence of
duplications of genes coding for tRNAs and aminoacyl-
tRNA synthetases (aaRS) [6, 8, 41-47]. The latter propo-
sition, however, was recently criticized in favour of the
coevolution theory assuming that the structure of the
genetic code was determined by biosynthetic relationships
between amino acids [48], although other authors believe
that there was a coevolution between the aaRS and the
anticodon code as well as an operational code [49]. Thus,
the coevolution theory does not necessarily discard the
proposition that aaRS and tRNAs played a major role in
the formation of the SGC [39].

Considering many factors together, the evolution of the
code was probably a combination of adaptation and frozen
accident, although contributions of metabolic pathways
and weak affinities between amino acids and nucleotide
triplets cannot be ruled out [50, 51].

The optimality of the SGC can be reformulated as an
attractive problem from the computational and mathe-
matical points of view. For example, a general method of
constructing error-correcting binary group codes, repre-
sented by channels transmitting binary information, was
proposed [52]. Moreover, the analysis of the structure and
symmetry of the genetic code using binary dichotomy
algorithms also showed its immunity to noise in terms of
error-detection and error-correction [53—55]. The code
can be also described as a single- or multi-objective opti-
mization problem using the Evolutionary Algorithms (EA)
technique to find optimal genetic codes under various cri-
teria [11, 50, 56—58]. Such approach revealed that it is pos-
sible to find the theoretical codes much better optimized
than the SGC.

The properties of the genetic code can be also tested
using techniques borrowed from graph theory [59, 60].
The analysis of the SGC as a partition of an undirected
and unweighted graph showed that the majority of codon
blocks are optimal in terms of the conductance mea-
sure, which is the ratio of non-synonymous substitutions
between the codons in this group to all possible sin-
gle nucleotide substitutions affecting these codons [60].
Therefore, this parameter can be interpreted as a measure
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of robustness against the potential changes in protein-
coding sequences generated by point mutations. The SGC
turned out to be far from the optimum according to the
conductance but many codon groups in this code reached
the minimum conductance for their size [60].

The unique features of the SGC indicate that the struc-
ture of this coding system is not fully random and must
have evolved under some mechanisms. It is obvious that
if we assume that 64 codons encode 20 amino acids and
stop coding signal in a potential genetic code then this
code must be redundant, i.e. there must exist an amino
acid which is encoded by more than one codon. In conse-
quence, such code can be represented as a partition of the
set of 64 codons into 21 disjoint subsets (codon groups) so
that each codon group encodes unambiguously a respec-
tive amino acid or stop signal. Interestingly, these codon
groups are generally characterized by a very specific struc-
ture in the SGC, namely, the codons belonging to the same
group differ usually in the same codon position. Most
often the third codon position is different, whereas the
first and the second ones stay the same. To explain this
specific pattern, Crick developed the wobble rule, which
states that the first nucleotide of the tRNA anticodon
can interact with one of the several possible nucleotides
in the third codon position of a transcript (mRNA) [61].
This non-standard base pairing is often associated with
the post-transcriptional modifications of the nucleotide
at the first position of the anticodon in the tRNA [62].
The weakened specificity in the base interaction has many
consequences. Particularly, it reduces the number of dif-
ferent tRNA molecules which have to recognize codons
during the protein synthesis process. Moreover, single
point mutations in the third codon position can be syn-
onymous, i.e. do not change the coded amino acid. The
wobble base pairing plays also a role in the adoption of
the proper structure by tRNA and determines whether the
tRNA will be aminoacylated with a specific amino acid.

Our approach to the study of the origins and the possi-
ble evolution of the specific structure of the SGC assumes
that the early translational machinery was not perfect and
codons could be translated ambiguously. Such assumption
is in agreement with a hypothesis that protoribosomes
could form spontaneously and were able to produce a
variety of random peptides, whose sequences depended
on the distribution of various amino acids in their vicin-
ity, without the need of a code [63, 64]. Our model also
concerns the evolvability of the genetic code as shown
in the case of the alternative variants of the genetic code
[5, 65—70]. The evolutionary models of these codes pos-
tulate the presence of ambiguous assignments of codons
to amino acids [71, 72]. Indeed, such assignments were
found in Condylostoma, Blastocrithidia and Karyorelict
nuclear codes [73-75] as well as Bacillus subtilis and
Candida [76-78]. For these reasons we assumed that the
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genetic code structure went through intermediate stages
in which a particular codon could be translated into more
than one amino acid. Obviously, such property of the
genetic code is directly related to the level of inaccuracy
of the translational machinery. Therefore the goal of our
work was to learn which structures of the genetic code can
evolve assuming different types of inaccuracy in codon
reading in comparison to the structure of the SGC.

Using the approach based on an evolutionary algorithm
[79, 80], we analysed a population of randomly generated
genetic codes whose codons encoded ambiguously more
than one amino acid. The population evolved under the
conditions which preferred unambiguous encoding. The
scenario which was run under the assumption similar to
the wobble rule, produced very quickly the coding sys-
tems that are more unambiguous and robust to errors in
comparison to other scenarios.

Methods

In this section we give a brief overview of the technical
aspects of our work. First, we set up the notation and
the terminology necessary to present the crucial steps of
our simulation procedure. Then, we introduce a detailed
description of the fitness function F, which was used
during the selection process. Finally, we describe several
measures to study the properties of the optimal genetic
codes extracted from the simulations.

Evolutionary algorithm

To simulate the process of the genetic code emergence,
we applied an adapted version of EA class algorithm. This
technique is widely used in many optimization tasks, espe-
cially in the case when analytical solutions do not exist or
they are computationally infeasible [80].

The simulation starts with a population of 1000 candi-
date solutions (individuals). Each candidate represents a
random assignment of 64 codons ¢ to 21 labels / corre-
sponding to 20 amino acids and stop translation signal.
For simplicity of notation, we use the following set of
labels / = 1,2,3,...,20,21 and denote the codons ¢ =
1,2,3,...,63,64. Therefore, P = (p.) is a matrix with 64
rows and 21 columns. Each entry p,; in the matrix P is a
probability that a given codon c encodes a given label / and
every row sums up to one. At the beginning of our simula-
tions, we used the genetic code matrices whose rows were
generated according to the uniform distribution. These
codes create an unbiased starting population with high
volatility.

The simulation process is divided into consecutive steps
called generations. During each step, two important oper-
ators, i.e. mutation and selection, are applied to the pop-
ulation. The mutation is a classical genetic operator used
in all EA algorithms because it is responsible for ran-
dom modifications of selected individuals, thus creating
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new solutions. Here this operator is realized by chang-
ing the probability that the selected codon encodes one of
21 possible labels. All changes are introduced using ran-
dom values generated from the normal distribution and
normalized to obtain a probability function in each row.
The selection operator requires a fitness function F which
allows for assessing the quality of solutions, i.e. the fit-
ness value. Candidate solutions with greater fitness values
(scores) are more likely selected to survive and reproduce
for the next generation. In this case, we applied a random
process of drawing candidate solutions to the next genera-
tion with the probability proportional to their fitness. We
run the simulations up to 50,000 steps and repeated them
50 times using different seeds.

Fitness function

The fitness function F plays the decisive role in the pro-
cedure of genetic codes selection. As a fitness measure,
we used a modified version of the total probability func-
tion, i.e. the probability that a given genetic code encodes
20 amino acids and stop translation signal. This measure
assumes some restrictions on the structure of the codon
group assigned to a specific label, e.g. the size of the poten-
tial codon group. Moreover, it favours greater probability
of encoding a selected label, which reduces the ambiguity
in coding. Below we present a detailed description of F in
three consecutive steps:

1 LetL =1,0y,...,l1 beasequence of all labels and
let C=cpCryeeesCry, vi=1,2,...,64bea
sequence of random codons where every codon ¢,
encodes a respective label /;. Each codon ¢, € Cis
drawn randomly from the set of all possible codons

€ =(1,C2,...,Ces according to the following
probability:
P (li |Cj)
Plen=¢) =Pgll) = — 09 ()
1‘6i1 P (ilcj)
where p (li|cj) = Pl s an element from lfh—row and

cjh -column of the matrix P. It is evident that

Zfil P(l;|cj) is a sum of all elements extracted from
the column /; of the matrix P. Therefore, the Eq. (1)
is clearly an application of Bayes rule under the
assumption that a priori probability, i.e. the
probability of choosing a given codon c;, is uniformly
distributed i.e. P (¢j) = 1/64.

2 For each codon ¢,, belonging to C, we define a codon
neighbourhood N (cy,). N (c,) is a set of codons that
contains the original codon ¢,, and the codons ¢},
differing in one nucleotide from ¢;,. The size of
N (Cn) depends on the simulation assumptions. We
considered three possible scenarios:
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M, - all codons belonging to a given N (cy,) have
two fixed codon positions identical and differ
in exactly one nucleotide at the other position
in codon;

My - all codons belonging to a given N (c,,.) have
one fixed codon position identical and differ
in exactly one nucleotide in one of the other
two codon positions;

M3 - all codons belonging to a given N (c,,.) differ
in exactly one nucleotide in any codon
position.

For example, the neighbourhood for the codon GGG
is:

o GGG, GGA, GGC, GGT for the scenario My;

e GGG, AGG, CGG, TGG, GAG, GCG, GTG for
the scenario Mo;

e GGG, AGG, CGG, TGG, GAG, GCG, GTG,
GGA, GGC, GGT for the scenario Ms.

Thus, the size of the neighbourhood for M; is
IN(cy)| = 4, for My is [N (c,)| = 7 and for M3 is
IN(cr)| = 10.

3 Using the assumptions presented in step 1 and 2, we
can define the fitness function F as:

>

/ / . ol
ChyreeesCryy €, EN (1)

P(11|C;1)P(l2|clr2)""'P (l21|clr21) :

)

It is evident that assuming
P(c,) = 6—14, ¢;, = 1,2,...,64 and the independence

of P (I,|c},) in the formula (2), we obtain the
following equality:

1,2
P, l,...,l01)) =F - — ,
(l, by 21) (64)

which is the total probability that a given genetic
code generates a sequence of labels L. Therefore, a
high value of F suggests that a given genetic code is
more likely to encode 20 amino acids and stop
coding signal unambiguously.

It should be noted that the computation of F, using the
formula (2) directly, involves the order of O(|N (c,)|21)
calculations [81]. Therefore, fast calculation of the fitness
values for many candidate solutions becomes a problem
because the “direct” method is computationally infeasible
even for small sizes of N(c,). To deal with it, we incor-
porated a modified version of the forward algorithm [81],
which is more efficient in computing the exact fitness val-
ues than the direct approach. This procedure follows from
some basic observations. Let us consider «;(c) defined
inductively as:

Page 4 of 14

a1(c)=P(l]c), ceN(e)
ak(c):ZC,EN( )ak_l (¢')-Pkle), 1<k <21,¢ € N(cr).

Crp

a(0)=

From this definition we can deduce that
F = ZceN(Cm) an1(c). If we take into account the com-
putational effort required to calculate «;(c) ¢ € N(c)
and then compute the fitness value, we need the order
of O (|N (c,l)|2) calculations. Thereby, assuming that
‘N (Crz)‘ = 10, which is the maximum size of the codon
neighbourhood in the M3 model, we need about 2100
computations for the modified forward method in com-
parison to about 10%! computations for the “direct”
approach. This forward procedure allowed us to calculate
the fitness values fast and effectively, which is essential in
the case of many individuals constantly modified during
simulations.

There is also another important feature related to the
fitness function, namely, F is non-deterministic. This is
because the fitness value is dependent on a randomly gen-
erated codon sequence C. Therefore, F is a random vari-
able and in consequence, genetic codes are rated accord-
ing to their randomly generated fitness values during the
selection process. However, the chance to be selected to
the next generation is not only a matter of luck because the
selection of the sequence C prefers the codons that have
relatively high probabilities to encode respective labels
(see Eq. (1)). Thereby, the distribution of F prefers larger
values. They are compared during the selection process
and finally, the method of codon selection is crucial in
terms of the convergence of genetic codes to the stable
solutions. We observed such convergence of the fitness
values to the stable solution during the simulations steps.
An example of the variation in the fitness function values
calculated for 50 independent simulations under the same
parameters but different seeds is presented in the Fig. 1.

Measures of the properties of genetic codes

Because of the large amount of data to analyse, we intro-
duced some definitions to test in details the properties
of the obtained genetic codes. One of the most impor-
tant questions which arose in our investigations was how
to measure the level of the genetic code ambiguity at the
global scale, because the fitness function delivered us only
a piece of information about the probability of encoding
21 labels. To test the quality of a given genetic code, we
defined the genetic code entropy.

Definition 1 Let P = (py) be a matrix of a genetic
code, where each row contains a discrete probability dis-
tribution, then the entropy of the genetic code H(P) is
defined as:

64 21

HP) ==Y palogpa) - (3)

c=1 [=1
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Fitness

20000 30000 40000 50000

Generations
Fig. 1 Changes in the best approximation of the fitness function F
with the number of generations (the black line). All approximations
were done for 50 simulations using the Generalized Additive Models.
The simulations were run under My scenario with different initial
seeds. The independent simulations show a very narrow confidence
interval depicted by the grey strip. The results were compared with
the average fitness value calculated for the standard genetic code
(the orange line)

0 10000

It should be noted that H(P) is in fact the sum of
Shannon entropy calculated for each row of the matrix
P, separately. Therefore, H(P) corresponds to the mul-
tidimensional entropy of independent distributions. The
definition 1 appears useful in testing the general prop-
erties of genetic codes in terms of changes in their
ambiguity. Moreover, it allows us to make more detailed
comparisons between the results obtained under dif-
ferent scenarios ie. Mj, My and M3. In our analyses
we also calculated the average genetic code entropy
value H,,(P), which is the arithmetic mean of the
genetic code entropy H(P) evaluated for all candidate
solutions.

Furthermore, we used a graph representation of the
genetic code. This approach was effectively applied by [59]
and [60]. The authors considered a graph G(V,E) with
64 nodes (codons) V and the set of edges E represent-
ing point mutations between codons. According to this
approach, every genetic code C is a partition of V into 21
disjoint subsets S;, [ = 11,1, ..., 121, i.e. groups of codons.
To investigate further the properties of a given graph clus-
tering, [60] introduced the set conductance, which turned
out a very useful measure in testing the properties of
codon groups. The definition of the set conductance is as
follows:
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Definition 2 For a given graph G, let S be a subset of V.
The conductance of S is defined as:

E(S,S)
vol(S) ’

(S =

where E (S, S) is the number of edges of G crossing from S
to its complement S and vol(S) is the sum of all degrees of
the vertices belonging to S.

The set conductance has a useful interpretation from
the biological point of view because for a given codon
group S, ¢(S) is the ratio of non-synonymous codon
changes to all possible changes concerning all codons
belonging to this set. Therefore, it is interesting to find the
optimal codon blocks in terms of ¢ (S). To do so, we used
the k-size-conductance ¢;(G) described as the minimal
set conductance over all subsets of V' with the fixed size k.

Definition 3 The k-size-conductance of the graph G, for
k > 1, is defined as:

$x(G) = minscy,sj=kp(S) -

Moreover, the properties of a given genetic code C
can be expressed as the average code conductance ®(C),
which is the arithmetic mean calculated from all set con-
ductances of all codon groups. The detailed definition of
the average code conductance is given in the following
way:

Definition 4 The average conductance of a genetic code
C is defined as:

1
PC) =) ).

SeC

The relationship between matrix and graph representation
of the genetic code

As mentioned in the previous section, we used two dif-
ferent representations of the genetic code. The first one
describes the genetic codes as a matrix, whereas the other
one presents the genetic code as a partition of graph nodes
into 21 non-empty disjoint clusters. It is evident that for
every graph representation we can construct directly a
unique matrix. Then, each row ¢ of the matrix P con-
tains a degenerated probability distribution, i.e. p;; = 1,
where a codon ¢ encodes a label /. On the other hand,
without additional assumptions, it is impossible to obtain
a unique graph partition from a selected matrix repre-
sentation. Therefore, we have to assume that each row of
the matrix P contains a unimodal probability distribution.
Only in such case we can transform P unambiguously into
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an equivalent graph representation. To do so, we intro-
duced the maximum likelihood graph partition (MLGP)
approach.

Definition 5 Let P = (p.;) be a matrix representation
of a genetic code, where each row contains a unimodal dis-
crete probability distribution. Assume also that for every
label [ there exists a codon c such that:

Pl = mMaxi<y<21pPcl’ -

Then the maximum likelihood graph partition is a par-
tition of the set of the graph G nodes into 21 non-empty
disjoint subsets S1,S2,...,S21 according to the following
formula:

c€S & pg=maxi<y<pcl -

To measure the quality of the selected codon block
S, 1 =1,2,...,21, created according to the definition 5,
we defined the coding strength of the set S;.

Definition 6 Let P = (p;) be a matrix representation
of a genetic code, where each row contains a unimodal dis-
crete probability distribution and let C = {S1,Ss,...S21}
be its respective MLGP representation, then for every S;
we define (S)), the coding strength of the set S;, in the
following way:

1
S) = — ol -
W”|MZ“

ce§;

Following the definition 6 of the coding strength, we
can also consider the average coding strength W(C) of
a genetic code C, which is defined as the arithmetic
mean of all coding strengths v (S;) computed for all
S; belonging to the graph representation of a genetic
code C:

21

1
GRS DINIE
=1

Results

The uncertainty level of simulated genetic codes

The aim of these simulations was to learn, which struc-
tures of the genetic codes can evolve assuming different
inaccuracy of the translational machinery. We simulated
three scenarios of the genetic code evolution that started
from an ambiguous coding state. The scenarios My, M;
and M3 assumed that respectively one, two or three codon
positions can be mutated or erroneously read during the
translation process. We started our analysis by looking at
the differences between the average entropy value H, (P)
of the genetic codes calculated for the three scenarios. The
high value of the entropy means that a code is character-
ized by a high level of coding ambiguity, i.e. a individual
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codon can be translated into various amino acids, while
the low values indicate that the coding is more unam-
biguous. The code with the perfect unambiguity should
be characterized by H,,(P) = 0. The changes in the
coding ambiguity during the simulation time are pre-
sented in the Fig. 2 for all types of scenarios. It is evident
that H,,(P) decreases substantially from the beginning
of the simulations under all scenarios and then stabi-
lizes around 10,000 to 30,000 simulation steps. This result
indicates that the assumptions used in the optimization
procedure are generally responsible for decreasing the
uncertainty level of genetic codes. In addition, the level
of H,,(P) differs between the scenarios. The less exten-
sive the neighbourhood, i.e. the number of similar codons
in the group, the smaller the entropy. Under the M; sce-
nario, where the neighbourhood size |N(c,)| = 4, the
entropy is the smallest, i.e. 548 and the equilibrium is
reached much faster than in the other models. The value
of H,,(P) decreased about 33 times in comparison to the
initially ambiguous codes with H,,(P) ~ 182. On the
other hand, the simulation run under the M3 scenario,
where the neighbourhood is the largest, i.e. [N(c,)| =
10, reaches its minimum of the H,,(P) much later. The
entropy of the M3 scenario is the largest of all scenar-
ios and is almost six times greater than the entropy of
M, (Fig. 2).

M1
M2
150+ M3
>
a
(]
=
c
o
[0}
3
8 100
(]
)]
®©
—
[
>
®
[0}
<
= 50-
O 4
0 10000 20000 30000 40000 50000
Generations
Fig. 2 Changes in the average genetic code entropy value Hg, (P)
during the simulation time calculated for three scenarios My, My, Ms.
The average genetic code entropy is the arithmetic mean of the
genetic code entropy H(7P) evaluated for all candidate solution
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In contrast to the entropy measure, which includes in
the calculation the probabilities of all possible assign-
ments of amino acids to codons, the average coding
strength W takes into account only the maximum proba-
bility of these assignments. Large values of W indicate that
the assignments are highly unambiguous in a given code,
while small values mean that many amino acids can be
encoded by many codons with a comparable probability.
The code with no ambiguous assignment of amino acids
to codons ought to have the value ¥ = 1. Similarly to
the entropy, the highest unambiguity and the largest val-
ues of W are observed in the case of M; but the values of
W do not show the relationship with the size of N(c,) as
the H,, (P) (Fig. 3). We could expect that a decrease in the
neighbourhood would result in an increase of the coding
signal. However, it is not fully fulfilled because W for M is
slightly smaller than for M3 (Fig. 3). This observation sug-
gests that the MGLP graph representations of the genetic
codes computed under the M, scenario are composed of
codon blocks characterized by a weaker coding signal in
comparison to the other simulation scenarios.

The robustness level of simulated genetic codes
To describe the robustness of the structure of the genetic
code to mutations and mistranslations, we applied the

0.9+

0.84

Coding strength

0.74

M1 M2 M3
Model

Fig. 3 Box-plots of the average coding signal strength calculated at
the end of the simulations under three scenarios My, M, and M3 for
50 independent simulation runs per scenario. The thick horizontal line
indicates the median (/QR, the inter-quartile range), the box shows
the range between the first and the third quartiles and the whiskers
determine the range without outliers for the assumption 1.5 x QR
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average code conductance ®. Its large value indicates that
the code is not robust against point mutations. The & val-
ues were calculated following the MLGP representation of
the codes obtained at the end of each simulation run. It is
interesting that the ® values for each simulation run under
the M; assumption, are smaller than the average code
conductance computed for the standard genetic code, i.e.
P (SGC) = 0.8112 (Fig. 4). Moreover, the M; -type optimal
genetic codes are closer to the best (minimum) possible
value of ¥ = 0.7724 for any code assigning 21 labels to
64 codons. The results strongly suggest that the M; sce-
nario of code evolution is able to create the genetic codes
quite robust to mutation and mistranslations. In contrast
to that, the genetic codes obtained under the M, and M3
assumptions are characterized by much larger values of
the average code conductance than SGC (Fig. 4). Thereby
their structures are less robust against point mutation.
The genetic codes obtained in the M type of simulations
show generally the worst & in comparison to the other
simulation types.

The types of codon groups in simulated genetic codes

The genetic codes obtained under M;, My and M3 scenar-
ios differ in the codon group distribution (Fig. 5). In the
the genetic codes produced at the end of 50 independent

0.88-

0.84-

SGC

The average code conductance

MIN

M1 M2 M3
Model

Fig. 4 Box-plots of the average code conductance calculated at the
end of the simulations under three scenarios My, M> and M3 for 50
independent simulation runs per scenario. The thick black horizontal
line (inside each box) indicates the median (IQR, the inter-quartile
range), the box shows the range between the first and the third
quartiles and the whiskers determine the range without outliers for
the assumption 1.5 x /QR. The results were compared with the
average code conductance @ calculated for the standard genetic
code (the orange horizontal line) and the minimum value of the
average code conductance (the red horizontal line)
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simulations in the M; scenario, there are two most fre-
quent types of groups, consisting of two and four codons
(Fig. 5b), similarly to the SGC (Fig. 5a). They constitute in
total over 87% of all codon groups in the M; codes and
71% in the case of the SGC. The groups of one, three, five
and six codons are in the minority, constituting in total
less than 13% of the codon groups in the M; codes. How-
ever, there are also some differences in comparison to the
SGC. In the SGC the contribution of two-codon groups is
greater than the four-codon groups, while in the M; codes
the opposite is true. Moreover, there are no groups of five
codons in the SGC, which occur in the M; codes.

The codes produced by the My model show definitely
different distribution of the codon groups and are charac-
terized by a greater variability in codon group sizes, being
in the range from 1 to 16 (Fig. 5¢). However, the codon
groups of the size from 1 to 6 have the joint frequency
over 95%. The most frequent are two-codon groups as
in the SGC. They constitute 38% and 43%, respectively.

What is more, an intriguing kind of symmetry is present
in the distribution of codon groups in the genetic codes
simulated under the M3 scenario (Fig. 5d). The most fre-
quently observed codon group consists of three codons
and constitutes about 60% of all groups. The frequencies
of other codon groups are nearly symmetrically arranged
around the most frequent group. The next most common
groups (about 20%) include two and four codons. This
type of codes are the most different form the SGC in the
distribution of the codon groups because in the SGC the
three-codon groups are poorly represented.

The presence of codon groups with the number of
codons different than in the SGC would seem intrigu-
ing and artificial for the simulated codes. However, such
groups have actually evolved in some alternative variants
of the SGC. In total in these codes, there are five penta-
codonic amino acids, four heptacodonic amino acids and
five octacodonic amino acids (https://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi). For example, in the
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alternative yeast nuclear code, serine is encoded addition-
ally by the seventh codon CUG, which was taken from
leucine, encoded in consequence by five codons.

The properties of the best genetic codes
In this section, we discussed the properties of the best
genetic codes that were selected according to their max-
imum fitness values from all simulation runs for all
types of scenarios. In the Fig. 6, we presented four
heatmaps depicting the selected matrix representations
of the genetic codes at the beginning as well as at
the end of the simulations under the M, M, and M3
scenarios.

As expected, the random code at the start of simula-
tion is highly ambiguous (Fig. 6a), while the code emerged
under the M; scenario is characterized by a very high
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unambiguity and is filled mainly with the codon blocks
consisting of two and four codons (Fig. 6b). The codons
in each of such groups differ in pairwise comparison in
only one nucleotide (Fig. 7). The graph representation
of this code following the definition 5 is also optimal in
terms of the k-size conductance ¢;(G), k = 2,4. All the
codon groups show the minimum possible conductance
for their size. Therefore, these groups are the most robust
against single non-synonymous nucleotide mutations. In
consequence, this genetic code reaches the minimum of
the average code conductance ®(C) = 0.7725, which is
the minimum value of all possible genetic codes and is
smaller than the conductance of the standard genetic code
®(SGC) = 0.8113. Moreover, many codon groups in the
M -type code are characterized by a relatively large unam-
biguity. Fifteen groups have the maximal coding strength
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Fig. 6 The matrix representation of a genetic code at the beginning of the simulations (a) as well as obtained at the end of the simulations under
the My (b), M; (c) and M3 (d) scenarios. Each row contains values of the probability function represented by a respective rectangle. The colour of
the rectangles indicates high (light blue) or low (dark blue) probability that a given codon (row) encodes a given label (column). It is evident that
codon blocks of the size 2 and 4 show high probabilities (light blue colour) and dominate in the code under the M; scenario. In the case of other
scenarios the codes show much greater ambiguity




Btazej et al. BMC Bioinformatics (2019) 20:114

Vs X
&
c;\T/
we
TCEG/‘
A cAG ,7/
‘:/CGGV] N
A
#(G)
cT6) NG

Fig. 7 The examples of graph representations of codon groups with
the minimal 2, 4 and 6-size conductance: ¢, (G), ¢4(G) and ¢ (G),
respectively. The first two cases dominate in the best genetic code
produced under the M; scenario and the latter is observed in the best
genetic code produced under the M, scenario

¥ (S) = 1 and the average coding strength calculated over
all 21 groups is equal to 0.9375 (Table 1).

The best codes produced under the Ms scenario
(Fig. 6d) show completely different composition of codon
groups in comparison to the best code of the M; sce-
nario. The M3-type code is composed of codon groups of
the size k = 2,3,4 with the domination of three-codon
groups (Table 2). This code is also less robust against point
mutation because its average code conductance is equal
to 0.8457, which is slightly greater than the conductance
of the standard genetic code ®(SGC) = 0.8113. This is
caused by the presence of as many as twelve non-optimal
codon groups in terms of the k-size conductance (Table 2).
The code shows a higher ambiguity than that of the M;
scenario because its average coding strength v is 0.8023.
Only four codon groups consisting of two codons are
perfectly unambiguous and robust to non-synonymous
mutations.

The best genetic code evaluated under the My model
(Fig. 6¢) is characterized by the most diversified size of
codon groups in comparison to the M; and M3 cases
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Table 1 The codon groups of the best genetic code in terms of
the fitness function F extracted from 50 independent simulations
under the M, scenario

Codon group (S) k ¥ (S) ¢ (5) & (G)
{AAA, AAT, AAG, AAC) 4 1.0000000 z 2
{CGA, CGT, CGG, CGC) 4 1.0000000 2 2
{ACA, ACT, ACG, ACC} 4 1.0000000 2 2
{GTA, GTT, GTG, GTC} 4 10000000 2 2
{CAA, CAT, CAG, CAC} 4 1.0000000 2 2
{AGA, AGT, AGG, AGC}) 4 1.0000000 2 2
{CCA, CCT, CCG, CCC) 4 10000000 z 2
{ATA,ATT,ATG, ATC} 4 1.0000000 z 2
{CTA,CTT,CTG, CTC} 4 1.0000000 z 2
{TAA, TAT, TAG, TAC} 4 1.0000000 2 2
{GCA, GCT, GCG, GCC) 4 1.0000000 2 2
{T7CG, TCCY 2 1.0000000 § g
{TCA, TCT} 2 10000000 g g
{TTATTG} 2 1.0000000 g g
{TTT, TTC} 2 1.0000000 g 8
{7GT, 7GC} 2 0.8648035 g g
{TGA, TGG} 2 0.8648030 g g
{GAT, GAC} 2 0.8344635 g g
{GAA, GAG} 2 0.8344630 § g
{GGG, GGCY 2 0.6446255 § g
{GGA, GGT} 2 0.6446250 g g

The groups S are characterized by: the size k, the coding strength v/ (S), the
conductance ¢ (S) and the minimal conductance of the codon group with the size k
[21(©)

because it is composed of codon groups of the size k =
1,2,3,4,6 (Table 3). These groups are also characterized
by generally smaller coding strength values of yr. There-
fore, the average coding strength calculated in this case is
equal to 0.7996. Moreover, thirteen codon blocks are not
optimal in terms of the set conductance ¢(S). In conse-
quence, the average code conductance is relatively high
and equals 0.8580. Therefore, it is the least robust genetic
code structure against point mutation in comparison to
the M;- and M3-type codes. The My code contains no
codon groups including at least two codons that simulta-
neously encode unambiguously one label and are the most
robust to single point mutations. On the other hand, the
two largest groups of six codons in this code are optimal
in terms of the k-size conductance ¢x(G) (Fig. 7) and are
characterized by quite big values of coding strength, over
0.98.

Discussion
We carried out a simulation study to find out how
the structure of the genetic code could have evolved
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Table 2 The codon groups of the best genetic code in terms of
the fitness function F extracted from 50 independent simulations
under the M3 scenario
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Table 3 The codon groups of the best genetic code in terms of
the fitness function F extracted from 50 independent simulations
under the M, scenario

Codon group (5) k ¥ (S O] #(G)  Codon group (5) k ¥ O] ok (G)
{AAG, TAG, TTC, CAG} 4 0.7453878 2 Z {CAT,CAG,CAC,CTG,CGG,CCGY 6 09867038 £ &
{ATC, TTA, GAA, GTA} 4 0.7347630 g 2 {CAA, CTA, CTT, CTC, CGA, CCA} 6 09866648 2 e
{ACG, CCA, CCT, CCG} 4 0.5928058 z 2 {GAG, GAC, GGC, GCC} 4 1.0000000 : 2
{AGC, CAC, CGC, CCC} 4 0.6837612 z 2 {GAA, GGA, GGG, GCA} 4 1.0000000 z 2
{GAG, GTG, GCA, GCG) 4 05734470 z 2 {GAT, GTT,GTG, GCT} 4 08262542 & 2
{ACT, TCT,GCT} 3 09164170 z z {GTA, GTC, GGT, GCG} 4 07837840 % 2
{AGG, TGG, CGG} 3 0.8623860 g " {ATC,AGC,ACC, CCT} 4 06426162 2 z
(TGC, GTC, GGC}) 3 0.8267687 L Z {ATT,AGT,ACT} 3 08457703 & "
{AGT, TGT, CGT} 3 0.8261313 Z Z {ATA, AGA, ACA} 3 08136870 & Z
{ACC, TCC, GAC) 3 08157710 z Z {AAT, AAG, AGG} 3 07359857 2 Z
{ATG, TTG, CTG} 3 0.7968670 z Z {AAA, AAC, CGC} 3 07170777 2 Z
{GAT, GGA, GGT} 3 0.7812357 z Z {TAA, TAC, TTC} 3 05927813 2 z
{ATT,GTT, CAT} 3 07741430 z z {TCT,TCG, CCCY 305598730 & z
{TTT,CTT,CTC} 3 07475287 e z {TTA, TCA, CGT} 304932700 £ z
{AGA, TGA, CGA} 3 0.7347630 g " {ATG,ACG} 2 08650405 & 8
{ATA, CAA, CTA} 3 0.7112670 L " {TAT, TAG} 2 08027995 8 8
{TCG, GGG, GCC} 3 0.7241587 1 Z {TTT,TGT} 2 07850055 8 §
{AAC, TAC} 2 1.0000000 g g {TGC, TCC) 2 07838025 g g
{AAT, TAT} 2 1.0000000 g g {TGA} 1 1.0000000 1 1
{ACA, TCA} 2 1.0000000 g g {TTG) 1 0.9967190 1 1
{AAA, TAA} 2 1.0000000 g g {TGG) 1 05734410 1 1

The groups S are characterized by: the size k, the coding strength v (), the
conductance ¢ (S) and the minimal conductance of the codon group with the size k
$(G)

under various types of inaccurate translation of codons
to amino acids. The simulations started from the set
of ambiguous assignments of amino acids to codons,
which evolved into patterns with lower levels of uncer-
tainty. The reduction of ambiguity was driven by a fitness
function, which preferred the codes that are character-
ized by the robustness to incorrect amino acid trans-
lation due to point mutations in codons. We devel-
oped three theoretical models of the genetic code evo-
lution, My, My, and M3, which corresponded to various
types and levels of inaccuracy of a primordial translation
apparatus.

All the models are in agreement with the ambiguous
intermediate mechanism acting in the evolution of the
alternative genetic codes [71, 72]. In this case, the codon is
translated ambiguously to two different amino acids dur-
ing the period of reassignment. Such cases of ambiguous
translation were reported in different organisms [73-78].
What is more, such ambiguous state can also promote
phenotypic diversity and adaptability, e.g. it helps yeasts
to cope with more stressful environments [82, 83].

The groups S are characterized by: the size k, the coding strength ¥ (S), the
conductance ¢ (S) and the minimal conductance of the codon group with the size k
#(G)

Moreover, the models M; and M, match the stages of
the genetic code evolution postulated by the 2-1-3 model
[44, 84] and the four-column theory [28]. They assume
that in the beginning of the genetic code evolution the
second codon position decided about the encoded amino
acids, whereas other positions were not important. Next,
the coding specificity occurred in the first codon position
and then, to some extent, in the third position.

The initial ambiguity in the assignments of amino acids
to codons disappeared the fastest under the M; model.
The codes generated under this scenario are characterized
by the biggest unambiguity of coding and the most effec-
tive minimization of mutations changing encoded amino
acids or stop translation signal. On the other hand, the
genetic codes simulated under the M3 assumptions main-
tained the highest level of ambiguity and the Mj-type
codes produced the biggest number of amino acid changes
due to point mutations in codons.

It is interesting to consider, which of the simulated
codes is the most similar to the SGC based on unambi-
guity, minimization of point mutations and the structure.



Btazej et al. BMC Bioinformatics (2019) 20:114

According to the unambiguity measured by entropy or
coding strength, the most similar are the codes obtained
under the M; scenario. They show almost unambiguous
assignments of amino acids to codons. However, they are
not perfect. Similarly, the SGC is usually presented as a
table with the unambiguous assignments but the transla-
tion process is not ideal and some errors can occur. It was
estimated that one mistranslation occurs with the rate of
1073 to 107° per codon [85] or 1073 to 10~° per amino
acid [86]. Moreover, errors associated with replication
and transcription processes can also change the encoded
amino acid. If the initial genetic codes had been character-
ized by much bigger ambiguity of assignments of amino
acids to codons, they would have been quickly elimi-
nated by selection, which resembles the rapid decrease
in entropy during the simulation of the M; codes. The
entropy in other models was also reduced but stabilized
at the much larger level. It indicates that the assumption
on a imprecise recognition of only one fixed codon posi-
tion is necessary to reduce the initial ambiguity, which
corresponds to the wobble rule characterizing the current
process of translation.

In terms of minimization of amino acid replacements
resulting from point mutations in codons, measured here
by the average conductance, the SGC is placed between
the M; codes, characterized by the lowest conductance,
and the codes from the M, and M3 models. In agreement
with our simulation study, other analyses also showed that
the SGC is not perfectly optimized in this respect and bet-
ter codes can be found [11, 44, 50, 57, 58, 87—89]. There-
fore, it is possible that the assignments of amino acids to
codons occurred in accordance with other mechanisms,
while the minimization of mutation errors was adjusted by
the direct optimization of the mutational pressure around
the established genetic code [90-94]. Moreover, some
minimization properties of the SGC could have evolved
as a by-product of the duplication of genes for tRNAs
and aminoacyl-tRNA synthetases charging similar amino
acids [6, 8, 41-47]. It is also possible that new amino acids
were added into the code in an order that ensured the min-
imal disturbance of already synthesized proteins but the
code itself was not directly optimized [28].

When we compare the structure of the SGC with the
structure of the codes produced by the three models, the
standard code is the most similar to the M; codes because
they are also characterized by the domination of amino
acids encoded by the groups of two and four codons.
All these codon groups are also optimal in terms of the
conductance in both the simulated and the SGC. How-
ever, four-codon groups are the most numerous in the M;
codes, while in the SGC the most frequent are two-codon
groups, which dominate also in the M3 codes. The degen-
eracy of the SGC is usually associated with the presence
of codons encoding the same amino acid and differing in
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the third codon position. It corresponds to the M; model,
in which the codons for a given amino acid have two
fixed positions identical and one different. However, the
SGC contains also two codon groups encoding arginine
and leucine, which resemble the codon groups in the M,
model, where all the codons in the groups have one fixed
codon position identical and differ in one nucleotide in
one of the other two codon positions. Three codons recog-
nized as the stop translation signal also show this property
in the SGC. Therefore, the SGC is a mixture of the M; and
M, models in this respect.

The models M3 and M can represent the initial stages
of evolution when the translational apparatus did not
read codons perfectly. Therefore, there was a selection
to improve the translation process and to develop a sta-
ble form of the genetic code. The fixing of two codon
positions, represented by the M; model, was crucial and
enough to unambiguously encode 20 amino acids and the
stop translation signal by 64 codons. The wobble base
pairing could be a relic of the initial ambiguity.

Since the SGC turned out to be most similar to the
codes evolved under the M; and M; models, we may
assume that at certain stage it could have evolved accord-
ing to the theories proposed by [44, 84] and [28], which
means that in the beginning the translation machin-
ery could have recognised only the second codon posi-
tion, then the first and the third positions. It would
be interesting to combine our models with others or
enrich it with other biological assumptions to obtain a
more accurate model of the evolution of the standard
genetic code.

Conclusions

The initial evolution of the standard genetic code could
have started from imperfect reading of the genetic infor-
mation associated with ambiguous assignments of amino
acids to codons. Then the selection favoured codes that
improved the fidelity of the translation process. An impor-
tant step was the fixation of two codon positions, which
generated the typical codon block structure of the genetic
code. According to this hypothesis, the wobble base pair-
ing in the third codon position could be a relic of an early
ambiguity. However, the selection for the minimization of
translational errors could not have been the only factor
influencing the genetic code evolution because its current
level of optimization is not perfect. The simulated codes
outperformed the standard genetic code in the robustness
against mistranslations.
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