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Abstract

Background: The accurate determination of parent-progeny relationships within both in situ natural populations
and ex situ genetic resource collections can greatly enhance plant breeding/domestication efforts and support
plant genetic resource conservation strategies. Although a range of parentage analysis tools are available, none are
designed to infer such relationships using genome-wide single nucleotide polymorphism (SNP) data in the
complete absence of guiding information, such as generational groups, partial pedigrees, or genders. The R
package (‘apparent’) developed and presented here addresses this gap.

Results: ‘apparent’ adopts a novel strategy of parentage analysis based on a test of genetic identity between a
theoretically expected progeny (EPy), whose genotypic state can be inferred at all homozygous loci for a pair of
putative parents (i and j), and all potential offspring (PO,), represented by the k individuals of a given germplasm
collection. Using the Gower Dissimilarity metric (GD), genetic identity between EP; and PO is taken as evidence
that individuals i and j are the true parents of offspring k. Significance of a given triad (parental pair; + offspring) is
evaluated relative to the distribution of all GDyj, values for the population. With no guiding information provided,
‘apparent’ correctly identified the parental pairs of 15 lines of known pedigree within a test population of 77
accessions of Actinidia arguta, a performance unmatched by five other commonly used parentage analysis tools. In the
case of an inconclusive triad analysis due to the absence of one parent from the test population, ‘apparent’ can
perform a subsequent dyad analysis to identify a likely single parent for a given offspring. Average dyad analysis
accuracy was 73.3% in the complete absence of pedigree information but increased to 100% when minimal
generational information (adults vs. progeny) was provided.

Conclusions: The ‘apparent’ R package is a fast and accurate parentage analysis tool that uses genome-wide SNP data
to identify parent-progeny relationships within populations for which no a priori knowledge of family structure exists.
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Background

Parent-progeny relationships, whether among individuals
within in situ natural populations or ex situ genetic
resource collections, are of fundamental interest to plant
and animal breeders, molecular ecologists, and popula-
tion geneticists. As empirical records of gene flow,
pedigrees provide insight into a species’ mating system
[1], including patterns of compatibility within and
among gene pools [2]. In plant improvement programs,
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pedigrees can directly inform breeding strategies [3, 4] by
facilitating the estimation of breeding values [5, 6],
heritabilities [7], and relative combining abilities [8, 9].
Knowledge of family structure can also help rationalize
germplasm collections [10-12] and guide the management
of natural resources [13—15], including strategies for re-
introducing captive stock to their natural habitats [16, 17].
The basic theoretical principle underlying parentage
analysis is that parent(s) can be assigned to their respect-
ive progeny with a certain level of confidence based on
the signature of genetic compatibility between genera-
tions. In other words, Mendelian laws of inheritance per-
mit the inference of genealogical relationships, provided
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one has a sufficiently informative set of genetic markers
that stably transmits from parents to offspring [18]. Over
the years, parentage analyses have used various classes
of molecular markers for this purpose, including simple
sequence repeats (SSRs), variable number tandem
repeats (VNTRs), amplified fragment length polymor-
phisms (AFLPs), and restriction fragment length
polymorphisms (RFLPs). Of these, SSRs have long been
held as the most appropriate markers for such analyses
due to their co-dominant nature, their high polymorphic
content per locus, and their relative ease of scoring [19].
Recently, however, SSR genotyping has become less
common, particularly in heretofore unstudied species,
due to the comparative advantages of high-throughput,
sequence-based genotyping methods.

High marker number and density, genome-wide cover-
age, ever falling cost per datapoint, and ongoing
innovation in bioinformatic pipelines [20—25] have made
sequence-based markers, particularly single nucleotide
polymorphisms (SNPs), the current standard platform
for genotyping in both model and non-model species
[26]. The majority of available parentage analysis tools
were originally developed for SSR data [13, 18], with an
assumption of relatively small datasets (dozens to
hundreds of data points). Although both SSRs and SNPs
are co-dominant markers, such tools are unable to make
efficient use of genome-wide SNP data (thousands to
hundreds of thousands of data points). While some
more recent parentage analysis algorithms have been
developed to deal with such large datasets [27-30], all
require some a priori knowledge of family structure for
their implementation. That is, one must specify, at least,
the basic generational structure (i.e. which lines are off-
spring and which are potential parents) up front in order
to perform a robust parentage test. For species whose in-
dividuals are particularly long-lived (e.g. trees), difficult
to age (e.g. woody lianas), or inbred long ago (e.g. many
landraces of cereals), even such minimal information
may be unavailable.

There is a rich history of developing relationship infer-
ence methods outside of the plant sciences, particularly
in the context of both human and natural animal popu-
lations [13, 31-34]. Accurate knowledge of family struc-
ture among human subjects is critical to the unbiased
assessment of linkage between genetic markers and dis-
eases. Indeed, common relationship misclassifications
due to false paternity assignments, unrecorded adop-
tions, or sample switches can lead to a loss of power in
association studies [33, 35]. Several methods have been
developed to address this issue; but it is worth noting
that all are based on maximum likelihood and/or
Bayesian approaches that require a priori knowledge of
generational classifications, parental genders, putative
pedigrees, family groups, and/or marker linkage [35, 36].
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There remains, therefore, a need for a simple and
robust parentage analysis tool that makes efficient use of
large genomic datasets and requires no prior informa-
tion about family structure. The ‘apparent’ package was
developed with this need in mind; and below we
describe its underlying strategy, compare its functionality
and performance to existing tools, and report its
availability.

Implementation

Description of strategy, use, and package availability

The ‘apparent’ analysis begins with a tab-delimited input
table of SNP-based genotypes across some set of loci
(columns) for all individuals (rows) in the target popula-
tion (see Additional file 1). In column 2 of the input file,
each individual in the population is assigned to one of
five classes for the analysis: Mo (exclusively considered
as a potential mother, or female parent), Fa (exclusively
considered as a potential father, or male parent), Off
(exclusively considered as an offspring), Pa (exclusively
considered as a parent, both female and male), or All
(considered as a potential female parent, male parent,
and offspring within the population).

For each of the possible pairs of i female parents (Mo,
Pa, and All) and j male parents (Fa, Pa, and All), the
genotype of the Expected Progeny (EPjy) is constructed
based only on markers that are homozygous in both par-
ents. A rapid, pairwise calculation of genetic distance,
namely Gower’s Dissimilarity coefficient (GD) [37], is
then carried out between each EP; and all k potential
offspring (POy) in the population (Off and All). Ranging
from O (perfect identity) to 1 (perfect dissimilarity), GD
captures the degree of genetic relatedness between two
individuals by quantifying the identity-by-state of all n
SNPs, according to:

n
E 1=181WI
GDij\k(EPij|POk) =1-| =< (1)
Zz:1wl

where, for each SNP;, s =1 if the genotypic states are
the same; s;=0.5 if the genotypic states differ by one
allele (i.e. heterozygote vs. homozygote); s;=0 if the
genotypic states differ by both alleles (i.e. primary
homozygote vs. secondary homozygote); w;=1 if both
individuals are genotyped; and w; =0 if either individual
lacks an assigned genotype (e.g. missing data due to low
coverage).

Theoretically, if Mo; and Fa; are the true parents of
POy, EP; and POy will be genetically identical across all
homozygous parental loci, resulting in a pairwise GD
equal to zero. Due to both sequencing and genotyping
errors, however, in practice the calculated GD value for
a true triad (Mo, Faj, POy) will be greater than zero; but
it will be significantly lower than the population of GD’s
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calculated between EP; and all false offspring. Indeed, Once the gap has been identified, the significance of
for a given population of individuals, a scatterplot of all  its magnitude vis-a-vis the distribution of gap lengths
possible GDjjc values exhibits a significant gap that throughout the plot is assessed via a Dixon test [39, 40].
separates true triads from spurious associations (Fig. 1a).  If the size of the gap is declared significant, the indi-
This gap is located by scanning the ordered set of GDyc ~ vidual significance of each triad below the gap (i.e.
values and detecting the place of maximum difference  those triads declared as potential real parent-offspring
between two adjacent values; and the midpoint of this  associations) is then tested against a sample of the
gap is taken as a simple threshold (Fig. 1a). A similar most closely-related GDj) values above the gap (i.e.
approach has been described as a reliable means of those triads declared as spurious). If this second
separating true and false parent-offspring assignments Dixon test is also found to be statistically significant,
when applying discriminant analysis to thousands of the implicated triad is declared as true and its p-value
homozygous loci [30, 38]. reported.

Triad analysis plot
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Fig. 1 The ‘apparent’ analysis plots. For a given population, a simple gap analysis separates true triads from spurious relationships. (@) Gower
Dissimilarities (GDyj,) are plotted for all possible parent-offspring combinations in the population, enabling an inspection of gap size and all
subsequent hypothesis testing. (b) For each significant parent-offspring association from the dyad analysis, distribution plots of mean GDj_j
values (GDM) and their standard deviation in units of GDy (GDCV) help visualize the analysis. In this particular example, A. arguta cv. #74-32" was
correctly identified as a parent of offspring 10 despite the absence of the other parent (cv. ‘Chang Bai Mountain 5') from the population and the
confounding presence of two full-sibs (offspring 11 and 12)
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In the above triad analysis, a given offspring can be
assigned to a pair of parents if and only if all three
individuals (both parents and the offspring) are present
in the genotyped population. In an attempt to identify
one parent despite the absence of the other in the popu-
lation, a subsequent dyad analysis can be performed.
The primary challenge of such an analysis lies in
discriminating an individual’s true parent from other
close relatives (e.g. full siblings). To address this chal-
lenge, ‘apparent’ conducts a two-stage statistical test.

The first test makes use of the fact that, on average, an
individual is more closely related to a population of its
siblings than it is to a population of random individuals.
For each potential offspring k and potential parent i, the
package calculates the mean GD (GDM) between that
POy and all expected progeny arising from the j possible
triads involving potential parent i:

1
GDM = ;ZjGDlﬂk (2)

For each POy, the resulting set of GDM values, one
for each parent i, is treated as a normal distribution and
the normal score of each value is obtained. If any normal
score falls below the lower bound of the user-defined
confidence interval, the pair (parent i and POy) is
flagged as a potential parent-progeny set.

The second test makes use of the fact that, on average,
variation in GD is higher between an individual and a
population of its siblings than between an individual and
a population of the progeny of its siblings. To further
test the potential parent-progeny sets flagged above, the
‘apparent’ dyad analysis thus considers the variation
within the sets of GDj(;. j i values. Specifically, for each
POy and potential parent i, the package calculates the
standard deviation among the pairwise GD’s between
POy and each expected progeny arising from the j triads
involving potential parent i:

1 1 >
OGDjyk — \/]_1 Z/‘ (GDtjk_ijGDtil() (3)

For the purpose of testing against the background of
the entire population, this standard deviation is
re-expressed in units of GDj, the Gower Dissimilarity
between POy and potential parent i itself:

OGD.
GDCV = i(1...j])k
GDj

(4)

Similar to the first test above, for each PO, the result-
ing set of GDCV values, one for each parent i, is treated
as a normal distribution and the normal score of each
value is obtained. If any normal score exceeds the upper
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bound of the user-defined confidence interval, the pair
(parent i and PO,) is reported as a likely potential
parent-progeny set, along with its cumulative p-value.
As shown in Fig. 1b, this two-step dyad analysis is
effective not only in identifying likely parents (significant
outliers in both tests) but also in distinguishing such
parents from other close relatives (significant outliers in
the first test only).

It is important to note that the ‘apparent’ algorithm
makes no assumptions about the ploidy of the species
under investigation; and the strategy performs well for
any level of available pedigree information, from none
(completely unknown adults and offspring) to the max-
imum possible information available (known adults, in-
cluding their genders, as well as the set of offspring).
The simple approach accommodates unlimited markers
across unlimited individuals, the only requirement being
that the population under investigation is genotyped
with bi-allelic SNP markers. The ‘apparent’ package is
freely available at https://github.com/halelab/appar-
ent and through the Comprehensive R Archive Network
(CRAN) at https://cran.r-project.org.

Method validation

To test the validity of the approach described above, we
turned to the North American kiwiberry (Actinidia
arguta) collection, comprised of 62 tetraploid (2n =4x =
116), dioecious genotypes [41]. From these 62 genotypes,
four males and five females were used in controlled
crosses to produce a total of 15 offspring of known
parentage (five groups of three full-siblings each; see
Additional files 2 and 3). For each of the 77 samples
(62 + 15 offspring), genomic DNA was isolated from ~ 1
g of fresh young leaves using a modified CTAB protocol,
cleaned with a spin column (Zymo Research, Genomic
DNA Clean & Concentrator™-10), and multiplexed into
genotyping-by-sequencing (GBS) libraries using a two
enzyme (Pstl-Mspl) protocol [42]. The libraries were
sequenced using 150 bp paired-end (PE) reads on an Illu-
mina 2500 HiSeq platform, and the CASAVA-processed
sequence data were submitted to the GBS-SNP-CROP
pipeline [25] for genotyping. Stringent quality filtering was
carried out, as explained in detail in the pipeline docu-
mentation; and all recommended ploidy-specific parame-
ters were used for SNP calling and genotyping.

The resulting set of genotypic data was submitted to
‘apparent’” with no accompanying generational, gender,
or pedigree information. In other words, all 77
genotypes were coded as ‘All’ in the input file, meaning
each individual was to be considered by ‘apparent’ as a
possible mother, father, and offspring, for a total of
225,302 potential triads. Package performance was
assessed using the following four metrics: 1) Number of
Type I errors (false triads declared true); 2) Number of
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Type II errors (undeclared true triads); 3) Overall accur-
acy [100 * Number of declared true triads/(Number of
true triads + Number of false triads declared true)];
and 4) Computation time.

Using the same set of data, we investigated the impact
of total marker number on performance. Finally, we com-
pared the simple gap-based method of triad GD threshold
determination with a more intensive approach involving
computation of genetic dissimilarities among technical
replicates (i.e. duplicated DNA samples isolated from
three different genotypes, split between different library
preparations, and sequenced on different Illumina lanes).

Comparison to other parentage analysis tools

After choosing an appropriate number of loci to include
in the analysis, we compared the performance of ‘appar-
ent’ with five other parentage analysis tools, including
four R packages (‘MasterBayes’ MCMCped function [27],
‘ParentOffspring’ [28], ‘Solomon’ [29], and ‘hsphase’ pogc
function [30]) and the Windows-based program Cervus
[43, 44], one of the most widely used software tools for
parentage analysis. As described above for ‘apparent; we
evaluated the performances of these tools using the test
population of 77 A. arguta accessions. To fairly compare
performance among tools, we applied the same criteria
to all analyses, namely: 1) The same set of 1000 SNPs
was used; 2) All 225,302 potential triads were tested (i.e.
no information was provided in terms of classifying
individuals as mothers, fathers, or offspring); and 3)
Confidence level, when supported by a given tool, was
set at 99% (a = 1%).

In addition, a more qualitative comparison of the tools
was done based on their main features, ease of use, and
available functions. The main features considered were
marker type, parentage analysis method, number of
genotype classes that must be declared, and operating
system compatibility. Ease of use considers the relative
level of difficulty in parameterizing the various tools,
creating the needed input files, and interpreting the out-
put. Lastly, the comparison of available functions follows
the typology proposed by Jones et al. 2010 [18] to classify
the various tools based on their abilities to perform pater-
nity/maternity, parent pair allocation, parental reconstruc-
tion, sib-ship reconstruction, and full probability analyses.
Also considered are the tools’ abilities to calculate exclu-
sion probabilities, assign statistical confidence to individ-
ual parent-offspring pairs, and assess experiment-wide
statistical confidence of parent-offspring assignments.

Results and discussion

GBS-SNP-CROP retained, on average, 5.14 million
high-quality PE reads per genotype (Additional file 2)
and called a total of 27,852 SNPs, with an average
depth D =36.0. Overall levels of heterozygosity,
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homozygosity, and missing data were 36.6, 51.5, and
11.8%, respectively.

Optimizing SNP number for parentage analysis

From the 27,852 SNPs called, random subsets of various
sizes, ranging from 50 to 10,000 SNPs, were sampled
and evaluated. Because only pairwise homozygous loci
are used by ‘apparent’ for analysis, the genotype of any
given EP; is based on fewer SNPs than the total
available. For example, when 50 SNPs were provided to
‘apparent, only 19 were usable in the analysis of this
population; and the result was both a very high Type I
error rate (99.4%) and a very low overall accuracy
(0.64%). Supplying 500 SNPs to the package increased
the number of usable loci to 186, which decreased the
Type I error rate substantially (25.0%) and greatly im-
proved overall accuracy (75.0%). With 1000 loci (371
SNPs used), the model became stable with no errors
(100% accuracy) (Fig. 2).

Although 1000 was found to be the lowest acceptable
number of loci for reliable parentage analysis within this
A. arguta collection, the optimum number can be
expected to vary according to the species under investi-
gation, the diversity within and among lines, and the
population structure. For example, parentage analysis
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Fig. 2 Influence of the number of SNP loci on error rates, accuracy,
and computation time. For each set of loci sampled, the
performance of the ‘apparent’ package was evaluated in terms of
error rates (Types | and Il) and accuracy. The times required to
successfully complete the analyses were also recorded and reveal a
surprising insensitivity to the number of markers used. Note that the
percentage of markers usable by ‘apparent’ for the analysis
(i.e. parental homozygous SNPs) is quite stable
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within a highly heterozygous, outcrossing species may
require a relatively larger pool of loci due to the fact that
a small proportion will be homozygous for any given
pair of possible parents. In comparison, a greater pro-
portion of loci generally will be usable in a more homo-
zygous, inbred species, thereby requiring a relatively
smaller pool of loci. In practice, as long as all of the indi-
viduals in the analysis can be clearly discriminated from
one another based on the available pairwise homozygous
loci, there will be sufficient resolution for the ‘apparent’
analysis. And as discussed in more detail below, increas-
ing the number of loci has very little effect on total com-
putation time; so there is no real advantage to using a
reduced marker set.

Accuracy and computation time
Using 1000 total SNPs, ‘apparent’ identified the parental
pairs of all 15 offspring from the controlled crosses with
100% accuracy (no Type I or II errors), despite the
complicating presence of full-sibs in the population. In
addition, we found an average accuracy of 73.3% (range
33.3-100%) for dyad analysis, over the nine analyses
where one male or one female parent of the known off-
spring was removed from the population. Dyad analysis
reached a consistent 100% accuracy, however, when min-
imal generational information (adults vs. juveniles) was
provided to the algorithm. Both the triad and dyad ana-
lyses produce easily parsable and tab-delimited output
(Additional file 4), along with summary plots (Fig. 1).
While the pairwise GD between redundant genotypes
(i.e. technical replicates) should in theory be zero, the
existence of both sequencing and genotyping errors
means that, in practice, perfect similarity is rarely
observed. Using the summary plot of GDj;c values, ‘ap-
parent’ adopts a simple gap-based method of GD thresh-
old determination to separate putative true triads from
spurious parent-progeny associations. For the test popu-
lation of 77 A. arguta accessions, the true triads identi-
fied via the gap-based method had a mean GDjy of
0.0016. In a previous study with this population [35],
99% confidence intervals for declaring redundancy were
empirically determined based on distributions of GD’s
obtained between pairs of both biological replicates (two
independent DNA isolations from the same accession,
prepared as part of the same GBS library and sequenced
in the same lane) and technical replicates (a single DNA
isolation, used in two separate GBS library preparations
and sequenced on different lanes). The mean GDj for
triads declared via the gap-based method is lower than
both the biological (0.0024) and technical (0.0046) repli-
cate thresholds, meaning the simple gap-based ‘apparent’
assignments are supported by empirical measures of
genetic redundancy.
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Recognizing that true triads exhibit a very small
pairwise GDyi, despite the presence of sequencing and
genotyping errors, one can greatly accelerate the ‘appar-
ent’ analysis by limiting the time-intensive gap analysis
to only those GDjj values below some user-specified
threshold via the package’s MaxIldent parameter. The
MaxIdent default of 10% greatly reduces the analysis
time because all GDjy values above 0.1 are ignored
during significance testing (i.e. they cannot, by defin-
ition, be declared as true triads). In a test population of
n =77 individuals, each coded as ‘All’ (potential mothers,
fathers, and offspring), pairwise GDjyi values for a total
of 225,302 possible triads must be explored [n* * (n-1)/
2]. With MaxIdent set to 0.1, however, the computation
time required by ‘apparent’ for the A. arguta test popula-
tion is modest (~20 min on a Unix workstation with a
2.6 GHz Dual Intel processor and 16 GB RAM) and
fairly insensitive to the number of loci used (Fig. 2).

As a final note on computation time, although increas-
ing the number of loci for a given population has very
little effect on total computation time, increasing the
number of individuals in that population does. In the
absence of guiding information (i.e. all individuals coded
as ‘All'), the exploratory triad space grows as the cube of
the population size, an inflation that directly influences
required computation time (see Additional file 5). Users
are therefore advised to minimize the size of the
exploratory triad space on the basis of available gender
and/or generational information. Indeed, excluding
irrelevant triads from the analysis should be considered
a best practice, along with including a known triad in
the population (i.e. a control) and culling individuals
with unusually low mean GDjj values or mean usable
number of loci (see https://github.com/halelab/apparent
for details).

Comparing features and performance with other tools

As summarized in Table 1, the ‘apparent’ package offers
a novel combination of features compared to those
possessed by the following commonly used parentage
analysis tools: ‘MasterBayes’” MCMCped function [27],
‘ParentOffspring’ [28], ‘Solomon’ [29], ‘hsphase’ pogc
function [30], and Cervus [43, 44]. Only ‘apparent’ and
‘hsphase’ permit fully exploratory parentage analysis in
the absence of a priori classifications of individuals (e.g.
parents vs. offspring). Despite this point of commonality,
‘apparent’ greatly exceeds the functionality of ‘hsphase’
in its performance of both paternity/maternity analysis
and parent pair allocation, not to mention its ability to
assign statistical confidence to declared triads. The
‘apparent’ package was also designed with relative ease
of use in mind, a result accomplished via simple
parameterization, input file requirements, and output
interpretation.
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Table 1 Comparison of the ‘apparent’ R package to five currently available tools for parentage analysis, based on main features,

ease of use, and available functions

Package/Tool Main features Ease of use Available functions®
Marker Method of Required 0S¢ Parameter- Input  Output PM PP PR SR FP EP IC EC
Type® Analysis® classes* ization
Apparent Co GR/GS none R Easy Easy Easy X X X X
hsphase (pogc) Co GR/GS none R Easy Easy Complex X X
MasterBayes Co/Do BA/ML Pa/Off R Complex Easy Easy X X X X X X
(MCMCped)
ParentOffspring Co GR/GS Moy/Fa/Off R Easy Easy Easy X
Solomon Co BA Pa/Off R Moderate Easy Moderate X X
Cervus Co/Do ML Pa/Off W Moderate Easy Moderate X X

2Co = Co-dominant, Do = Dominant

bBA = Bayesian approach; GR = Genetic relatedness, GS = Genetic similarity, ML = Maximum likelihood
“none = no a priori information required for individuals, Pa/Off = each individual must be classified as either a Parent or an Offspring [2 classes], Fa/Mo/Off = each
individual must be uniquely classified as a potential Mother, Father, or Offspring [3 classes]

dOperational System. R =R package (OS independent), W= Windows

Following the typology developed by Jones et al. (2010): PM = Paternity/maternity analysis, PP = Parent pair allocation, PR = Parental reconstruction analysis,
SR = Sib-ship Reconstruction, FP = Full probability analysis, EP = Ability to calculate exclusion probabilities, /C = Ability to assign statistical confidence to individual
parent-offspring pairs, EC = Ability to assess experiment-wide statistical confidence of parent-offspring assignments

In addition to occupying a unique niche among
available parental analysis tools in terms of features,
‘apparent’ consistently outperformed those tools in the
correct identification of parent-offspring triads in the
test population of 77 A. arguta individuals. Applying the
same criteria to all analyses, the overall accuracy of the
five tools ranged from 2.3-55.6%, compared to 100% for
‘apparent’ (Table 2). Cervus, one of the most popular
parentage analysis tools available, completed the analysis
in just under 12min with no Type II errors; but it
committed 44 Type I errors out of a total of 59 declared
significant triads. Despite these errors, Cervus proved to
be one of the better overall tools of the five, with an ac-
curacy of 50.8%. These results indicate that identifying
correct parent-offspring assignments within a population
lacking pedigree information is a challenge even for one
of the most robust parentage analysis tools available.

Notably, Cervus’ triad accuracy increased to 100% when
generational information (ie. which individuals are
parents and which are offspring) was supplied to the
algorithm (Table 2).

In the absence of a priori classifying information,
‘MasterBayes’ and ‘ParentOffspring’ exhibited similar
overall accuracies (48.1 and 55.5%, respectively; Table 2).
The categorical allocation analysis of ‘MasterBayes’ relies
on a Markov Chain Monte Carlo approach and runs
extremely fast (Table 2); and the package is arguably one
of the most sophisticated and comprehensive parentage
analysis tools available, owing to its ability to handle
both co-dominant and dominant markers and to per-
form Full Probability analysis (Table 1). The low accur-
acy of ‘MasterBayes’ in this scenario is understandable,
however, in light of the fact that its modeling framework
lies firmly within the tradition of analyses developed for

Table 2 Summary of results comparing the performance of ‘apparent’ to five other parentage analysis tools in identifying the pairs
of parents of 15 A. arguta offspring in a population of 77 individuals

Package/Tool Analysis with no guiding information provided  Analysis guided with 2 genotypic classes: adults ~ Citation
vs. offspring

Error | Error I Accuracy Time Error | Error Il Accuracy Time

(%) (%) (%) (min) (%) (%) (%) (min)
apparent 00 0.0 100.0 184 0.0 00 100.0 3.1 -
hsphase (pogc) 310 57 174 0.1 31.0 57 174 0.1 Ferdosi et al. (2014) [30]
MasterBayes 156 22.1 482 23 0.0 0.0 100.0 03 Hadfield et al. (2006)
(MCMCped) 27
ParentOffspring® 444 00 556 2604 6.3 0.0 93.8 289 Abdel-Haleem

et al. (2013) [28]

Solomon 97.7 09 23 4014 975 1.0 26 431 Christie et al. (2013) [29]
Cervus 74.6 0.0 509 1.9 0.0 0.0 100.0 53 Kalinowski et al.

(2007) [44]

“The results from ParentOffspring are approximate because the package requires an a priori declaration of parental pairs for a given set of offspring (see main text)
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general, guided relationship inference in human popula-
tions [35, 36], as opposed to the single, well-defined task
of unguided parent identification under consideration
here. As with Cervus, the accuracy improves greatly
(100%) when generational classifications (parents vs.
offspring) are provided. Unlike Cervus, however,
‘MasterBayes’ is noteworthy in its difficulty of use, a
result of its complex input file requirements and
non-trivial parameterization.

To run the ‘“ParentOffspring’ package, generational
classifications (parents vs. offspring) are required; there-
fore, carrying out a full, unbiased exploration of the full
triad space (225,302 triads) is extremely cumbersome.
Even when the required generational classifications (i.e.
designating the 15 known offspring as juveniles) were
provided, however, the algorithm committed one Type I
error (Table 2). Reducing the guiding information even a
little, by classifying some full-sib offspring as adults and
adults of the same gender as potential parental pairs,
increased the number of Type I error significantly and
decreased the model accuracy to 55.5%. Given the
impracticality of manually running all combinations of
the 77 genotypes, the computation time to complete the
whole analysis was estimated to be ~ 261 min, not in-
cluding the time required for the manual permutation of
the input files.

The ‘hsphase’ parentage assignment function pogc was
only 26.1% accurate in this scenario of no available
pedigree information. This was a somewhat surprising
result, given the fact that both ‘hsphase’ and ‘apparent’
exclusively use homozygous parental loci for discrimin-
ating true and false parent-offspring assignments. Unlike
‘hsphase; however, the ‘apparent’ GDj gap value is
extensively tested based on outlier prediction (Dixon
test), allowing the inference of statistical confidence for
declared triads.

Of all the packages tested, ‘Solomon’ showed the
worst overall performance, with an accuracy of only
2.3% in this scenario of no available pedigree informa-
tion. In addition, the computational time required by
‘Solomon’ to complete the analysis was significantly
longer than all other packages (401 min) due to the
fundamental dependencies inherent in Bayesian
approaches. Surprisingly, the package’s accuracy rose
to a mere 2.6% when the adults and the offspring
were duly classified; and in both scenarios the Type I
error rate was around 97% (Table 2).

Compared to other available tools, the simplicity,
speed, and accuracy of the ‘apparent’ package recom-
mend it as a useful tool for inferring parent-offspring re-
lationships within populations for which a priori
relational information is lacking. The key column of the
simple input file (Additional file 1, second column) lies
at the heart of the package’s flexibility, allowing
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individuals in the population to be tested as both parents
and offspring in the same analysis and eliminating the
requirement for pedigree information. This same col-
umn also allows the user to provide additional informa-
tion if it is available; thus one can easily control the type
of parentage analysis performed. For example, if gen-
erational information (adults vs. offspring) and adult
genders are known, either paternity or maternity ana-
lyses can be performed. If the genders are unknown,
a generation-guided categorical allocation analysis is
performed. Finally, when no family information is
available and all individuals are to be tested as poten-
tial mothers, fathers, and offspring, ‘apparent’s novel
approach to unguided categorical allocation is carried
out, filling a current gap among existing parentage
analysis tools.

Conclusions

By offering quick and accurate inference of parent-off-
spring triads within populations for which no gener-
ational, gender, or pedigree information is available, the
‘apparent’ R package occupies a unique niche among
currently available parentage analysis tools. With simple
parameterization and easily interpretable output, the
package should be considered by molecular ecologists,
population geneticists, and breeders interested in evalu-
ating family relationships within populations of either
model and non-model species for which genome-wide
SNP data are available.

In terms of its range of applicability, it is worth em-
phasizing the fact that ‘apparent’ only attempts to iden-
tify direct parent-offspring associations (i.e. the approach
only looks back a single generation to identify immediate
parents). In practice, then, unless every line from all
stages of a breeding program is genotyped (highly un-
likely for annual crops), the required genomic data will
not be available to establish the chain of generations
underlying certain pedigrees of interest (e.g. the original
parents of an inbred line). For this reason, the approach
is more practically suited to questions of direct parent-
age within long-lived species, for which multiple genera-
tions co-exist and can therefore be included together in
the analysis (e.g. trees, woody lianas, other perennials,
clonally-propagated crops, etc.). In other words, ‘appar-
ent’ is arguably best suited to plant species which cohere
to the animal model, in the sense of having co-existing
parents and offspring.

Availability and requirements
Project name: apparent.
Project home page: https://github.com/halelab/apparent.
Operating system(s): Platform independent.
Programming language: R.


https://github.com/halelab/apparent
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Other requirements: R (> =3.0.2).
License: GPL (> =2).
Any restrictions to use by non-academics: none.

Additional files

Additional file 1: An example input file for the ‘apparent’ package,
featuring a population of 20 individuals, genotyped at ten SNP loci.
Column one of the input file contains the ID's of the individuals in the
population. Column two contains a classification key which assigns each
individual to one of five possible classes for analysis: Mo = potential
mother; Fa = potential father; Pa = potential parent (either Fa or Ma); Off
= potential offspring; and All = all possible classes (i.e. there is no previous
information, and the individual will be tested as a potential Fa, Ma, and
Off). The third and all subsequent columns contain genotype calls, with
one SNP per column and the alleles separated by “/". A missing genotype
is represented as “—/—". The tab-delimited input file has no column
headers. (TXT 1 kb)

Additional file 2: Details of the population of 77 Actinidia arguta
individuals used in this study. For each accession, the following
information is provided: Genotype name; Genotypic class, if part of a
controlled cross for this study (Fa = Father; Ma = Mother; Off = Offspring);
USDA Plant Introduction (PI) number(s), if assigned; USDA Corvallis
Actinidia (CACT) accession number, if assigned; USDA Davis Actinidia
(DACT) accession number(s), if assigned; University of New Hampshire
(UNH) ID, if assigned; Gender, if known; GBS library membership (1 to 4);
GBS barcode assignment; Number of high-quality paired-end (PE) reads
used for SNP calling; and The NCBI Short Read Archive (SRA) number.
(XLSX 19 kb)

Additional file 3: Pedigrees of the 15 Actinidia arguta offspring used to
assess the performance of parentage analysis tools in this study. (XLSX 10 kb)

Additional file 4: Examples of the three different output files produced
by the ‘apparent’ package. Worksheet 1: apparent-Triad-All, a complete
sorted table of all 225,302 triads considered in the A. arguta example
(only the first and last 10 rows are shown, to reduce file size). Worksheet
2: apparent-Triad-Sig, a reduced list reporting only those triads deemed
true, based on the user-defined significance level (e.g. 99%). Worksheet 3:
apparent-Dyad-Sig, the statistically significant results of the dyad analysis
when the female parent of Family 1 (cv. ‘Dumbarton Oaks’) was removed
from the population. (XLSX 51 kb)

Additional file 5: Effect of population size on computation time,

for a set of 1000 SNPs. In the absence of guiding information (i.e. all
individuals coded as ‘All'), the exploratory triad space grows as the cube
of the population size, an inflation reflected in the required computation
time. (TIF 205 kb)

Abbreviations

AFLP: Amplified fragment length polymorphism; bp: Base pair; D: Average
read depth; EPy: Theoretically expected progeny of parents j and j;

GBS: Genotyping-by-sequencing; GD: Gower Dissimilarity metric; GDCV: The
standard deviation among the pairwise GD's between PO, and each
expected progeny arising from the j triads involving potential parent j,
expressed in units of GDy; GDy: GD between EP; and POy, based on the
homozygous loci in parents i and j; GDM: The mean GD between a given
POy and all expected progeny arising from the j possible triads involving
potential parent j; PE: Paired-end; PO,: Potential offspring k in the study
population; RFLP: Restriction fragment length polymorphism; SNP: Single
nucleotide polymorphism; SSR: Simple sequence repeat; VNTR: Variable
number tandem repeat
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