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Abstract

represented the data as a tensor of 21,437 x 2211 x 17,

Background: Determining which target to pursue is a challenging and error-prone first step in developing a
therapeutic treatment for a disease, where missteps are potentially very costly given the long-time frames and high
expenses of drug development. With current informatics technology and machine learning algorithms, it is now
possible to computationally discover therapeutic hypotheses by predicting clinically promising drug targets based
on the evidence associating drug targets with disease indications. We have collected this evidence from Open
Targets and additional databases that covers 17 sources of evidence for target-indication association and

Results: As a proof-of-concept, we identified examples of successes and failures of target-indication pairs in clinical
trials across 875 targets and 574 disease indications to build a gold-standard data set of 6140 known clinical
outcomes. We designed and executed three benchmarking strategies to examine the performance of multiple
machine learning models: Logistic Regression, LASSO, Random Forest, Tensor Factorization and Gradient
Boosting Machine. With 10-fold cross-validation, tensor factorization achieved AUROC =0.82 +0.02 and AUPRC
=0.71£0.03. Across multiple validation schemes, this was comparable or better than other methods.

Conclusion: In this work, we benchmarked a machine learning technique called tensor factorization for the
problem of predicting clinical outcomes of therapeutic hypotheses. Results have shown that this method can
achieve equal or better prediction performance compared with a variety of baseline models. We demonstrate
one application of the method to predict outcomes of trials on novel indications of approved drug targets.
This work can be expanded to targets and indications that have never been clinically tested and proposing
novel target-indication hypotheses. Our proposed biologically-motivated cross-validation schemes provide
insight into the robustness of the prediction performance. This has significant implications for all future
methods that try to address this seminal problem in drug discovery.
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Background

Drug discovery and development often begin with a drug
target, through which the drug exerts its therapeutic
effect in patients with a certain disease or clinical condi-
tion (termed as an indication). A target is a broad term
which includes many biological entities such as proteins,
genes, and RNA, whose modulation (increase or de-
crease in activity) can provide a therapeutic benefit to a
patient. Although selecting an efficacious drug target is
the first and most important step in drug development,
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more than half of clinical trials still fail due to lack of ef-
ficacy, i.e., modulating the target’s activity did not pro-
vide a statistically significant benefit to patients [1, 2].
Target selection is critical in drug discovery given the
long-time frame and high expense of drug development.

Often drug targets come from research publication
where evidence is generated to support a hypothesis that
inhibition or activation of a target may result in a thera-
peutic effect for a specific disease indication. For
example, amyloid precursor protein is a target suggested
for Alzheimer’s Disease (AD). A piece of important evi-
dence to support this hypothesis is that familial AD
patients commonly have genetic mutations in the corre-
sponding gene which lead to the production and
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deposition in the brain of increased amounts of amyloid
beta peptide, a major characteristic of AD [3]. With
current informatics technology, it is now possible to
construct online repositories that aggregate existing
knowledge about the association evidence linking poten-
tial targets with disease indications. Open Targets [4] is
such a platform that provides drug discovery researchers
with multiple evidence types including genetic associ-
ation, pathways, animal models and drugs, that connect
targets with indications for validating potential thera-
peutic hypotheses. At the same time, these online know-
ledge repositories are also amenable to computational
analysis to discover drug target hypotheses using ma-
chine learning.

One major challenge in framing this problem from a
machine learning perspective is that there are very few
positive examples (0.005% of target-indication hypoth-
eses included in Open Targets have approved drugs).
However, any insights gleaned from the limited number
of pursued targets may be useful in delivering new medi-
cines with lower attrition rates. In this paper, we collated
historical outcomes of clinical trials and determined if
these clinical outcomes can be predicted retrospectively
using multiple machine learning models built on existing
evidence of the targets’ biological association with indi-
cations. A successful prediction model provides an un-
derstanding of how informative the evidence is for
clinical success, and is also capable of generating new
target-indication hypotheses with a higher potential of
being developed into successful medicines.

Another difficulty in building such a model is that not
all biological evidence is available for every pair of target
and indication due to reasons such as technological limi-
tation and limited disease coverage. For example, as of
June 2017, Open Targets contained 26,122 targets, 9150
diseases with 2,857,732 positive associations from 15
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evidence sources. Though Open Targets contains over
2.8 million associations, that is still only 0.08% of the
possible combinations covered by this data, suggesting
that a great deal of association evidence (99.92%) is still
to be determined by biomedical researchers and clini-
cians. Traditional paradigms of machine learning algo-
rithms, learning a mapping from input features
(biological evidence) to output prediction (clinical out-
comes), may be inadequate in this context. We explored
if tensor factorization is useful in the analysis of this
sparse biological dataset.

Tensor extends the concept of a matrix to a multidi-
mensional array where each dimension corresponds to
one “axis”, called mode, of a tensor [5]. Data in many
applications can be naturally organized into a tensor for-
mat. Figure la shows a three-mode tensor representing
different types of evidence associating targets with dis-
ease indications and one extra “slice” represents clinical
outcomes. Tensor factorization decomposes a tensor
into factor matrices that compactly store information
encoded in a tensor and integrate interaction across dif-
ferent modes even when a large portion of entries of a
tensor is missing [5]. This technique has a wide range of
applications such as in recommendation systems [6],
knowledge graph systems [7] and multiple biomedical
domains [8].

There are several lines of previous work that are re-
lated to this paper. One line of work is focused on an-
swering the question of what makes a good drug target
by investigating features of targets that are correlated
with clinical successes in the context of genetics [9], tis-
sue mRNA expression [10], human protein interactome
[11] and publication trends [12]. Another line of work is
focused on disease gene prediction, where the goal is to
predict genes mechanistically involved in a given disease
[13-17]. Our work is different from these efforts in that
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Fig. 1 Data representation and model benchmark schematic. a Tensor representation of the dataset. The last “slice” matrix represents the clinical
outcomes of target-indication pairs. b lllustration of three schemes of benchmarking models on predicting clinical outcomes. Each matrix represents the
clinical outcomes of targets (rows) and indications (columns). Grey and green cells are target-indications pairs used for training and testing, respectively.
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we leverage a novel computational method to integrate
multiple evidence types and directly assess the models’
performance of predicting clinical outcomes of drug tar-
get hypotheses.

In the following sections, we first describe the dataset
we have collected and then introduce the basic formula-
tion of matrix factorization, a special form of tensor
factorization. Then we explain our selection of a specific
algorithm of tensor factorization based on characteristics
of our data. We then discuss how we design experiments
to benchmark the method against a series of baseline
models under three scenarios of drug discovery. We dem-
onstrate that the model can capture known biological
mechanisms of human diseases and can identify oppor-
tunities of approved drug targets to novel indications.

Methods

Data collection and processing

We created a dataset which combined clinical out-
comes from the commercial database Pharmaprojects
[18] with evidence from Open Targets [4] and other
sources (Tables 1, 2). In total, we collected 17 associ-
ation evidence sources that connect potential targets
with disease indications. These 17 association evi-
dence sources can be further grouped into seven evi-
dence types: Genetics (is germline mutation in the
target associated with the disease?), somatic mutations
(is somatic mutation in the target associated with the
disease, typically cancer?), pathways (is the target part
of a pathway involved in the disease?), mRNA disease
expression (does the target’s expression significantly
change in the disease?), mRNA tissue overexpression
(is the targets expression overexpressed in
disease-related tissues?), literature (is there association
between the target and the indication identified
through text mining of scientific literature?) and ani-
mal models (does the knockout of the target in

Table 1 17 sources of target-indication evidence

Evidence Type Sources

Animal models Phenodigm

Genetics European Variant Archive, Uniprot, Uniprot

literature, GWAS catalog, STOPGAP [9]

Somatic mutation Cancer Gene Census, European Variant Archive

somatic

Literature Europe PMC, TERMITE

mMRNA disease Expression Atlas, Internal expression data
expression

mMRNA tissue Genelogic, GTEx [49], Human Protein Atlas [50]

overexpression

Pathways Reactome, Metabase

Evidence data were obtained from Open Targets [1] except for TERMITE:
www.scibite.com/products/termite; GenelLogic: Genelogic Division, Ocimum
Biosolutions, Inc., Internal expression data, and those explicitly referenced
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Table 2 Six sources of target-only categorical attributes

Attribute Type Sources (# of categories)

ExAc_LoF(3), ExAc_Missense (3), RVIS (3), Mouse
Protein identity (2)

Mutation Tolerance

Other Target
Characteristics

Target Location (7), Target Topology (5)

Genes were broken into non-overlapping categories based on available data.
Genes were classified as tolerant, intolerant and unclassified based on data
from the Exome Aggregation Consortium [51] and the percentile rank of
Residual Variation Intolerance Score [52]. Genes were based on the
identification of > =75% protein homology between human and mouse, data
downloaded from BioMart [53]. Target Location and Topology were derived
from a review of information from Gene Ontology, InterPro, PFAM,

and UniProt

animal models manifest phenotypes that are concord-
ant with the human disease?). Besides these 17 associ-
ation evidence sources, we also collected information
about properties of targets from six sources (Table 2)
as previous studies have found that successful
FDA-approved drugs are enriched with targets with
properties that are independent of disease indications
[19, 20]. The collected evidence covers the data space
of 21,437 targets, 2211 indications, and 17 evidence
sources.

For clinical outcome data, if at least one drug asset for
a given target-indication pair was identified as success-
ful, then the target-indication pair was classified as Suc-
ceeded. Of the remaining target-indication pairs, if at
least one asset had a clinical failure then it was classified
as a Clinical Failure. Open Targets presents evidence
from each individual source as a numerical value for a
target-indication pair, with a positive value representing
the strength of evidence. To simplify the further colla-
tion of target-indication evidence with target-only attri-
butes (Table 2), we converted numerical evidence value
into binary values: 1 indicates a positive association, 0
means that there is no association and unknown evi-
dence is represented as null. We encoded categorical
data, typically present in target-only attributes, as mul-
tiple binary values with each category converted into a
binary value, i.e., having the property or not having the
property. Here, we analyzed data mapped to the 574
non-cancer indications (a subset of 2211 indications)
with at least one clinical outcome and the corresponding
875 targets (a subset of 21,437 targets). Oncology indica-
tions were excluded, as studies have observed that fea-
tures of successful targets for cancer differ from features
of successful targets for other indications [21, 22], more-
over, cancer trials fail more frequently than trials for
other indications. [23]

Matrix factorization

The clinical outcomes of existing target-indication pairs
can be represented in a matrix format as Re RM*N,
where the M rows represent targets and the N columns
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represent indications. R; =1 if there is at least one drug
that modulates target i and is marketed for indication j.
R;; =0 if all the drugs modulating target i are reported
failed for indication j in the clinic (from Phase I to Phase
III). For target-indication pairs that have no outcomes in
the clinic, the corresponding R;; is empty. The goal is to
predict clinical outcomes for all possible pairs of targets
and indications i.e. fill out the empty R[,»'s. Thus, we can
treat the problem as completing the target-indication
matrix of clinical outcomes. Matrix completion problem
has been widely studied in the machine learning com-
munity in the context of recommendation systems [6,
24]. A famous application is Netflix’s movie recommen-
dation system, where each user has ratings on a small
number of movies and the task is to recommend movies
for each user based on existing ratings of other users
with similar patterns of movie ratings. Matrix
factorization is recognized as one of the more successful
methods for this task [6, 25, 26]. The method assumes
that the true completed matrix is of low rank and can be
approximated by a product of two low-dimensional la-
tent factor matrices that represent rows and columns of
a matrix in a joint D-dimensional latent space, i.e. R~
U'v, where U = {u;})! eRPM, v = {V,}?[ZIE]RDXN and
u; € R°, v;e R® are column vectors of U and V, respect-
ively. The predicted entries in R; is achieved by the
inner product of u; and v;. Learning of U and V can be
formulated as an optimization problem by minimizing
the mean squared error between observed and predicted
entries. To avoid overfitting, regularization on the latent
factor matrices is added to the minimization problem
that can be solved by methods such as stochastic gradi-
ent descent and alternating least square [6].

Bayesian tensor factorization

Many matrix-factorization based methods have been
proposed for recommendation systems. To choose an
appropriate method to predict clinical outcomes, we
considered three aspects of our problem. First, some of
the evidence is target-indication specific such as human
genetic evidence for each disease, and this has been sug-
gested as related to clinical outcome [9]. Second, in our
data, there are several target-only attributes independent
of indications, such as target protein location, tolerance
of mutation. Thus, the chosen method should also take
target-only information into consideration. Third, in
drug discovery, it is not uncommon that targets or indi-
cations that have never been tested in clinical trials. In
the case of movie recommendation systems, this corre-
sponds to recommending movies to users who have not
rated any movies in the system or recommending new
movies that do not have any ratings in the system. The
chosen method should be able to handle this situation.
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Given these three aspects, we investigated a method
based on tensor factorization, called Macau, that is cap-
able of naturally handling all the three aspects in a uni-
fied Bayesian framework and was originally used to
predict drug-protein interaction [27]. Tensor extends
the matrix concept to a multidimensional array, where
each dimension corresponds to one mode of a tensor.
Our data can be organized into a three-mode tensor: tar-
get x indication x evidence 7eRM*N*K where one entry
t; indicates the association score in k" evidence be-
tween target i and indication j and one “slice” of the ten-
sor corresponding to one evidence source organized as a
matrix. M, N, K are the number of targets, indications
and evidence sources, respectively. To predict clinical
outcomes, we appended the clinical outcome matrix R
as one extra “slice” to the evidence tensor (Fig. la) and
factorized the resulting tensor XeRM*N*(K+1) - gimjlar
to matrix factorization, tensor factorization decomposes
a tensor into a series of low-dimensional latent factor
matrices where each matrix represents one mode of the
tensor. One direct way to decompose a three-mode ten-
sor is to assume that each entry x;; can be expressed as
the sum of the elementwise product of three
low-dimensional vectors: u; v.and e, representing i
target, j* indication and k" evidence (including the clin-
ical outcomes), respectively in a joint latent factor space,
ie X = Zgzludivd,-edk, where D is the dimensionality of
the latent factors. The latent factors can be further orga-

nized in three factor matrices: U = {u;}" eRPM v

veR ,eke R are column vectors of U, V and E, re-
spectively. Here the eX+1 column of E corresponds with
the latent factor of the clinical outcome. The prediction
of any entry xik of the tensor can be achieved by the
sum of the elementwise product of the low-dimensional
vectors of target ui, indication viand evidence ek. Since
the factorized tensor included the clinical outcome
matrix, we can use the low-dimensional vector corre-
sponding to the clinical outcome to perform prediction,
i.e. the predicted outcome of modulating target i for the
treatment of indication j is 1 (ui- v - eK+1), where 1 is
an all one vector and - is the elementwise product.

The specified tensor factorization method we chose is
based on Bayesian probabilistic modeling, which as-
sumes each observed cell of the tensor X is a random
variable following a normal distribution, x;; ~ N (lT (u;
-v;°ex),a "), where a is the precison of the normal dis-
tribution. In this model, the mean of the normal distri-
bution is determined by the three low-dimensional
latent factors: u, vi.and ek. Each latent factor is assumed

)
and uie R ,

to have a Gaussian prior with a Gaussian-Wishart hyper
prior placed on its hyperparameters: u; ~ N (ptm,get +BT
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-1 -1
gi7Atarget)’ Vi~ N(”indicatiog’ /;target) and € ~ N(”evidence

’ A;alrget) 4 BeR ;

target-only attributes gie R into the latent space, pro-
viding prediction ability to targets that do not have any
observed clinical outcomes. The inference of model pa-
rameters is carried out by sampling from the posterior
of the model parameters by Markov Chain Monte Carlo
(MCMC) technique, except for @, which is set to 1 by
default and the number of latent factors D, which is de-
termined by a heuristic approach (see Additional file 1).
Specifically, we used the Julia implementation of the
method [28] and followed a common practice of MCMC
inference where we “burn-in” samples generated in the
beginning and collect samples after that to approximate
posterior distribution over model parameters [29]. In
our case, the first 500 samples were discarded and the
posterior distribution over parameters were estimated
using 300 samples after the “burn-in” process. The pre-
dictive distribution is approximated from the 300 sam-
ples of the model parameters and the average over
samples is used to make predictions. Generally, we did
not observe further improvement on prediction per-
formance if we let the chain run longer.

where linearly projects the

Model benchmark experiments

We performed a nested cross-validation experiment
to evaluate the method in three different scenarios
(Fig. 1b). In each experiment, we divided the
target-indication pairs with clinical outcomes (6140)
into K folds and tested the prediction results on a
held-out (one of the K) fold using a model trained
with the rest (K-1) of folds. This is the outer loop for
the cross-validation. In the inner loop, we determine
the model parameters using five-fold cross-validation.
In the first experiment, we did a standard ten-fold
cross-validation in the outer loop, where each fold is
randomly determined but retains the same fraction of
successes. In drug discovery, we know that certain
sub-classes of targets and indications have different
properties. In order to, assess if the model can be
generalized to sub-classes of targets and indications
different from those used in the training stage, we de-
vised two other cross-validation experiments where
each time the clinical outcomes of one pre-defined
group of targets (indications) are left out as the test
set. Specifically, for the second experiment, i.e.
leave-one-target-group-out, we used the grouping de-
fined by the Target Class (See Table S1 in Additional
file 1). A given target is assigned to one of ten target
classes (thus K=10) based on the target’s protein
family retrieved from ChEMBL hierarchical target
classification system [30]. For the third experiment,
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i.e. leave-one-indication-group-out, we defined eight
indication groups (thus K=8) by de novo clustering
indications based on the similarity of the indications
in terms of their relative positions in MeSH (Medical
Subject Heading) hierarchical tree and co-occurrence
frequency in the literature (see Table S2 in Additional
file 1).

Baseline models

For comparison purposes, we also ran the cross-validation
experiments using four additional machine learning
models. For these models, each target-indication pair is
treated as a data point and the corresponding 17 associ-
ation evidence and six target-only attributes are treated as
its features. As the target-only attributes are not directly
linked with specific indications, for each target, we dupli-
cated its feature values across all indications. The task is
being cast as a binary classification problem. To allow
these four models to handle missing values, we treated the
association scores as categorical variables with three cat-
egories: no association (0), positive association (1) and un-
known (missing) association. Each categorical variable is
then encoded as two binary variables (also called one-hot
encoding). The four models that we tested are:

1. Logistic Regression (LR), a simple linear model.
LASSO [31], which is a generalized linear model
with L1 regularization implemented in the glmnet R
package where the regularization parameters were
determined using cross-validation.

3. Random Forest (RF), an ensemble model of decision
trees where the parameters are determined by the
Out-of-Bag error estimate using the tuneRF func-
tion in randomForest R package.

4. Gradient Boosting Machine (GBM) [32], a boosting
method which is implemented in xgboost [33]
where we tuned the following parameters using
cross-validation: the feature shrinkage rate, max-
imum depth of a tree, subsample ratio of features
and number of iterations.

5. Matrix Factorization (MF): We also included
another baseline model where we only used the
clinical outcome matrix and applied matrix
factorization to complete the matrix for prediction.
Specifically, we used a nuclear norm regularized
matrix factorization method that is implemented in
the softimpute [34] R package and the regularization
parameter is determined through cross-validation.

Performance metrics

We used two metrics to measure the prediction perform-
ance of the evaluated methods: area under receiver oper-
ator curve (AUROC) and area under precision-recall
curve. (AUPRC). The AUROC measures the probability of
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a model ranking a randomly chosen positive example
higher than a randomly chosen negative example and is
commonly used in assessing the performance of models
for binary classification tasks. AUROC treats positive and
negative examples equally, this metric is of limited value
when the number of positive examples is relatively low.
Given the low success rate in drug development, we chose
AUPRC as the primary evaluation metric as it focuses on
the performance of positive examples. Here the precision
is the proportion of correctly predicted positives out of all
predicted positives and recall is the proportion of correctly
predicted positives out of all positives.

Results

Model benchmark results

We performed a standard cross-validation experiment
to benchmark various types of machine learning
models (Fig. 1b, panel 1). The best model is the
matrix factorization (MF) model (AUROC =0.83 +0.02,
AUPRC =0.77 £ 0.02) (Fig. 2), which only factorizes the
clinical outcomes matrix without considering any other
evidence in the dataset. Due to the highly-correlated
structure within the clinical outcomes of target-indication
pairs, the standard way of randomly splitting them into
training and test sets may overestimate the predictability
of clinical outcomes. This may explain the high perform-
ance of MF; knowing which targets have succeeded
against which indications in the training data may provide
enough information to predict the outcome status of new
indications for these targets. Many drug targets are from
the same gene family, and in a random training-test
split, it is likely that targets within the same gene
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family are split across training and test set, though
the same drug may bind to multiple members in each
set. This leads to an overestimate of prediction accur-
acy for truly independent and novel targets. A similar
effect may relate indications with different subtypes,
as drug targets are often tried against many closely
related diseases.

To mitigate this problem and obtain an unbiased esti-
mation of predictive capacity, we designed two bench-
mark experiments, where a group of similar targets
(Fig. 1b, panels 2 and 3) or indications is held out as a
test set and models trained on the other target or indi-
cation groups, respectively, are evaluated against the
held-out set. We categorized targets into ten target
classes largely derived from the ChEMBL hierarchical
target classification system [30], and grouped indica-
tions into eight clusters that are based on MeSH hier-
archy and co-occurrence frequency in the literature
(see Additional file 1). In the leave-one-target-class-out
cross-validation experiment (Fig. 2), the performance of
MEF decreases dramatically as there is no information in
the training set to predict the clinical outcomes of the
held-out target class. All the other methods perform
similarly and the overall performance is not as good as
in the standard cross-validation setting. This implies
that it is difficult to predict candidate indications for
targets that have not been assessed in clinical trials. In
the leave one disease cluster out validation experiment,
the performance of MF again dropped below that of the
other methods as there is no information about clinical
outcomes of the held-out disease clusters in the train-
ing step.

09 Standard

Leave one target class out Leave one disease cluster out
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Fig. 2 Benchmark performance of models. Prediction performance comparison in three benchmark schemes in terms of Area Under Receiving
Operation Curve (AUROC, Top) and Area Under Precision Recall Curve (AUPRC, Bottom). Error bars are calculated from cross-validation (LR:
Logistic Regression; GBM: Gradient Boosting Machine; RF: Random Forest; MF: Matrix Factorization; BTF: Bayesian Tensor Factorization)
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However, the Bayesian tensor factorization (BTF)
model scored as the best model in the disease group
benchmark (AUROC = 0.73 + 0.05, AUPRC = 0.58 + 0.09)
and the second to best model in standard
cross-validation (AUROC =0.82 +0.02, AUPRC =0.71 +
0.03). It is counter-intuitive that BTF does not
out-perform the MF method in the standard
cross-validation case, as it incorporated more data. MF
approach may be taking maximum advantage of the
highly-related nature of the outcomes, given the poor
performance of MF in the target class and disease group
benchmarks. MF also only needs to learn latent factors
to explain the clinical outcomes, while BTF needs to
learn latent factors to explain the clinical outcomes and
all the evidence as well, which is inherently a more diffi-
cult task.

In general, the performance of models that explicitly
use evidence as predictors did not vary too much across
three validation settings. Among these models,
ensemble-based methods (RF and GBM) worked slightly
better than linear model-based methods (LR and
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LASSO). Although MF performed relatively well in the
standard validation case, its performance was inconsist-
ent among validation settings. BTF combined both evi-
dence and inter-relationship among targets and
indications and performed consistently well in all three
validation scenarios. In addition to AUROC and AUPRC,
we also evaluated performance using F-score, preci-
sion@30, and recall@30 (see Additional file 4), but the
comparison across methods was not affected.

Leave one out experiments

One advantage of this leave one target/disease group out
validation scheme is that we can assess how trained
models can be generalized to groups of targets/diseases
that the models have never trained on before. Figure 3
shows the prediction performance of the six models on
the held-out target classes (Fig. 3a) and disease clusters
(Fig. 3b). In the leave-one-target-class-out case, the pre-
diction performance averaged over the six models varies
between target classes (AUPRC ranges from 0.24 to 0.58;
AUROC ranges from 0.53 to 0.68). Specifically, we

A Leave one target class out

b Leave one disease cluster out
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Fig. 3 Benchmark performance of leave one out experiments. Model performance on predicting clinical outcomes of target classes (a) and
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notice that the models perform consistently poorly for
transcriptional factor targets and miscellaneous en-
zymes, which implies that these target classes are quite
different from the other target classes. On the other
hand, most models perform relatively well in protease
targets. We note the performance is consistent among
models within each target class, but this low variability
is not repeated in the leave-one-disease-cluster-out case,
where the prediction performance shows higher variabil-
ity among disease clusters. For example, the BTF model
performs better than the other models in the metabolic,
GI and urologic and oral disease clusters, and performs
as well as any other model in the other disease clusters.

Latent factors capture disease relationship within three
disease areas

After benchmarking the performance of the BTF
model in the cross-validation experiments, we fitted
the model to the whole dataset. We chose 11 latent
factors (see Additional file 1). Before using the fitted
BTF model to make any predictions, we explored
whether the latent factors learned from the model are
biologically meaningful so that we can increase our
trust in the prediction made by the model. To do so,
we reduced the 11 latent factors to two dimensions
using t-SNE [35] to visualize how indications are dis-
tributed and examined whether the learned latent
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factors can capture inter-relationship among indica-
tions. t-SNE is a dimension reduction technique used
to visualize high-dimensional dataset where similar
points in high dimensional space are transformed to
neighboring points in a low dimensional space and
dissimilar points are transformed to distant points in
the low dimensional embedding. Figure 4a shows the
two-dimensional t-SNE embedding of the 574 indica-
tions with at least one clinical outcome, where three
distinct clusters are present on the map. We further
checked the MeSH annotations of the diseases in
each cluster and found that the three clusters are
enriched with three distinct disease categories includ-
ing Central nervous system diseases, Digestive system
diseases, and Hemic & lymphatic diseases, respect-
ively. Interestingly, auto-immune diseases, such as
rheumatoid arthritis, asthma, psoriasis and Crohn’s
disease that manifest in different organs are localized
in the same neighboring area on the map. This im-
plies that latent factors are able to capture the intrin-
sic relationships of diseases within these disease areas.
For the rest of the diseases, we did not observe dis-
tinct clustering patterns using t-SNE. This could
either be because the latent factors are not rich
enough to capture the relationship among these dis-
eases or these diseases are inherently interconnected
by sharing similar pathological mechanisms [36].
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Prediction scores of target-indication pairs under clinical
trials

To validate the prediction made by the BTF model, we
chose 1246 novel target-indication pairs that were in
clinical trials (Phase I-III) at the time when we collected
the data (May 2016), and thus did not have clinical out-
come readouts. We compared the prediction scores gen-
erated by the BTF model on these target-indication pairs
and noticed that the prediction scores of later phase
pairs are significantly higher than those of earlier phase
pairs (Fig. 4b), which recapitulates the observation that
drugs in later phases on average have a higher likelihood
of approval [37]. Since we did not include phase infor-
mation of these target-indication pairs when training the
model, these pairs serve as an independent test set and
the results increase our confidence in the predictions of
the model.

Next, we conducted a literature search on the top 63
hypotheses of the 1246 pairs based on a prediction score
threshold, which corresponds with 0.8 precision and
0.27 recall in the standard cross-validation experiment.
We list 15 of these 63 hypotheses along with a relevant
literature reference in Table 3; the complete list of 63
can be found in Additional file 1.

As an example, interleukin 6 (IL6) is an approved drug
target for giant lymph node hyperplasia (Table 3). Our
results suggest that the current trials for psoriatic arth-
ritis, which includes a Phase IIb trial of a monoclonal
antibody against this protein [38], have a greater than
random chance of success. Psoriatic arthritis is chronic
inflammatory arthritis that is associated with psoriasis
and thus somewhat related to the successful indication

Table 3 High Scoring Pairs of Interest from TF Model
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for IL6, a cytokine with a wide variety of biological func-
tions. It induces the acute phase response and is in-
volved in the final differentiation of B-cells into
Ig-secreting cells in lymphocyte and monocyte differen-
tiation. It acts on B-cells, T-cells, hepatocytes,
hematopoietic progenitor cells and is required for the
generation of T(H)17 cells. It also acts as a myokine and
is discharged into the bloodstream after muscle contrac-
tion and acts to increase the breakdown of fats and to
improve insulin resistance [39]. Genetic polymorphism
of IL6 has been shown to be significantly associated with
a form of psoriatic arthritis [40], and serum IL6 is con-
sidered as a biomarker for assessing disease activity in
patients with psoriasis, as well as for predicting respon-
siveness of joint symptoms to biologic treatment [41].

Another target of interest is angiotensin II receptor type
1 (AGTR1), an important effector controlling blood pres-
sure and volume in the cardiovascular system. It has been
approved for many cardiovascular indications such as
heart failure, myocardial infarction, and hypertension. The
predicted indication for AGTR1 is hypercholesterolemia,
also known as high cholesterol. AGTR1 antagonism im-
proves hypercholesterolemia-associated endothelial dys-
function [42] and attenuates the inflammatory and
thrombogenic responses to hypercholesterolemia in ve-
nules [43]. Significant association of AGTR1 polymorph-
ism with hypercholesterolemia was also observed in
hypertension patients [44].

Discussion
In this paper, we focused on the problem of predicting
clinically promising therapeutic hypotheses using

Target High Scoring Indication in Clinical Pipeline (Phase*) PubmedID Related Approved Indication (Total Approved Indications)
ABCC8 Glucose Intolerance (Il 23903354 Diabetes Mellitus (1)

ADRB1 Cachexia (Il) 20426789 Ischemia (13)

ADRB2 Hypoglycemia (1) 22013013 Glaucoma (15)

ADRB2 Myocardial Infarction (lll) 26692153 Heart Failure (15)

AGTR1 Hypercholesterolemia (Ill) 12117739 Hyperlipidemias (7)

CYP3A4 Hepatitis C (1) 20938912 HIV Infections (1)

L2 Behcet Syndrome (Il) 26654556 Graft Rejection (1)

L6 Waldenstrom Macroglobulinemia (1) 26238488 Giant Lymph Node Hyperplasia (1)
IL6 Arthritis, Psoriatic (Il) 27789987 Giant Lymph Node Hyperplasia (1)
OPRM1 Schizophrenia (Ill) 27397309 Migraine Disorders (22)

RYR1 Muscular Dystrophy, Duchenne (1) 26793121 Malignant Hyperthermia (1)
SERPINC1 Hemophilia (1) 27099538 Blood Coagulation Disorders (16)
TNFSF11 Hypercalcemia () 27904108 Osteoporosis (1)

VDR Alopecia (1) 27932380 Keratosis (9)

VDR Cachexia (I) 22497530 Chronic Kidney Failure (9)

New indications of approved targets in clinical trials (Phase* as of May 27, 2016) that have the highest probability of eventual clinical success as measured by the
tensor factorization model. The full list is available in the supplement. For illustrative purposes, we list a related indication approved for assets for each target
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associative knowledge of targets and indications. We
compared tensor factorization with other traditional ma-
chine learning methods in a variety of benchmarking ex-
periments and identified two interesting findings from
the evaluation of this method: 1) the latent factors
learned from the model align with known biological re-
lationships among three human disease areas, and 2) the
method can be applied to different scenarios of drug dis-
covery and achieves competitive prediction performance.

However, there are some limitations worth discussing
before deploying tensor factorization to propose novel
target-indication hypotheses. First, the model relies on
the available compilation of evidence sources. Open Tar-
gets provided us with a good foundation, but clearly,
more sources could be gathered. Second, we treated
every clinical failure equally. Our preliminary analysis
has shown that some target-indications pairs have been
tried multiple times and are still being pursued clinically,
while some failed only once and were never tested again.
Although the probabilistic framework of the model can
potentially mitigate this problem, the model does not ex-
plicitly differentiate definitive failures from those that
have not been thoroughly explored and may become
successful drugs in the future. Lastly, we only applied
the technique to a dataset of targets and indications with
at least one clinical outcome; thus, the application as
benchmarked here is constrained to applying approved
drug targets to new indications. The methodology, how-
ever, can be expanded to any target and any indication
so long as their evidence is encoded in the data. Such an
application may result in the identification of novel
target-indication hypotheses with a high predicted prob-
ability of being successfully translated into medicines.

Computational prediction of drug targets has been widely
studied in the context of predicting disease-associated
genes [14-16, 45-47]. These disease-associated genes can
facilitate the discovery of drug targets by narrowing down
the search space of potential targets. The prediction per-
formance (precision) of the models varies from 0.5 to 0.9
depending on the methods and data used in the studies.
Many related studies design models to infer novel associa-
tions by leveraging similarity information between bio-
logical entities and biomolecular network information
encoded in a protein-protein interaction database [47, 48].
One example is FASCINATE [17], which is able to infer
cross-layer dependencies on multi-layered biological net-
works. This method can be used for this problem by col-
lapsing all evidence and augmenting the data with disease
similarity information.

Conclusion

In this work, we evaluated a machine learning technique
called tensor factorization on the problem of predicting
clinical outcomes of therapeutic hypotheses using
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existing association evidence between drug targets and
disease indications. We illustrate that the method can
achieve equal or better prediction performance com-
pared with a variety of baseline models across three sce-
narios of drug discovery, and the learned model can
capture the known biological mechanism of human dis-
eases. Furthermore, we demonstrated an application of
the method to predict outcomes of trials on novel indi-
cations of approved drug targets. Future work includes
expanding this method to targets and indications that
previously have never been clinically tested and propos-
ing novel target-indication hypotheses that can be devel-
oped into medicines with predicted high probabilities of
success.
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