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Abstract

Background: microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and they play an
important role in various biological processes in the human body. Therefore, identifying their requlation mechanisms
is essential for the diagnostics and therapeutics for a wide range of diseases. There have been a large number of
researches which use gene expression profiles to resolve this problem. However, the current methods have their own
limitations. Some of them only identify the correlation of miRNA and mRNA expression levels instead of the causal or
regulatory relationships while others infer the causality but with a high computational complexity. To overcome these
issues, in this study, we propose a method to identify miRNA-MRNA regulatory relationships in breast cancer using the
invariant causal prediction. The key idea of invariant causal prediction is that the cause miRNAs of their target mMRNAs
are the ones which have persistent causal relationships with the target mMRNAs across different environments.

Results: In this research, we aim to find miRNA targets which are consistent across different breast cancer subtypes.
Thus, first of all, we apply the Pam50 method to categorize BRCA samples into different "environment" groups based
on different cancer subtypes. Then we use the invariant causal prediction method to find miRNA-mRNA regulatory
relationships across subtypes. We validate the results with the miRNA-transfected experimental data and the results
show that our method outperforms the state-of-the-art methods. In addition, we also integrate this new method with
the Pearson correlation analysis method and Lasso in an ensemble method to take the advantages of these methods.
We then validate the results of the ensemble method with the experimentally confirmed data and the ensemble
method shows the best performance, even comparing to the proposed causal method.

Conclusions: This research found miRNA targets which are consistent across different breast cancer subtypes.

Further functional enrichment analysis shows that miRNAs involved in the regulatory relationships predicated by the
proposed methods tend to synergistically regulate target genes, indicating the usefulness of these methods, and the
identified miRNA targets could be used in the design of wet-lab experiments to discover the causes of breast cancer.
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Background

The human transcriptome is composed of 98% of non-
coding RNAs (ncRNAs) and only 2% of protein-coding
RNAs [1]. However, research into the roles of ncRNAs
is still in the early stage. The emergence of ncRNAs as
new key players in cancer development and progression
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has shifted our understanding of gene regulation [1, 2],
especially since the discovery of microRNAs (miRNAs).
miRNAs are short ncRNAs that regulate gene expres-
sion at the post-transcriptional level and identified as
the drivers in diverse disease conditions including can-
cers, where they function either as oncogenes or as
tumor suppressors [3, 4]. Recent years have also seen
the discovery of several other types of ncRNAs, includ-
ing long non-coding RNAs (InRNAs), pseudogenes and
circular RNAs (cirRNAs), along with their regulatory
functions in disease conditions [4]. There also has been
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evidence that mRNAs, miRNAs, and other ncRNAs
work in concert to regulate cancer development and
progression [5, 6].

There have been several methods developed to explore
miRNA functions, including those for predicting miRNA
targets and regulatory modules (see [7] for a review),
inferring miRNA sponge networks and modules [6, 8—10],
and identifying cancer subtypes [11-13]. However, our
understanding of miRNAs’ roles in regulating cancer
across different subtypes thereby permitting prognosis,
diagnosis, and prediction of therapy response is still
very far from complete, and reliable methods for iden-
tifying miRNA-mRNA regulatory relationships in cancer
are in demand.

Existing computational methods for inferring miRNA-
mRNA regulatory relationships are of two major cate-
gories: sequence-based approach and expression-based
approach. The former is based on complementary base
pairing, site accessibility, and evolutionary conserva-
tion; and the latter relies on the negative correlation
between miRNA and mRNA expression levels. The
expression-based approach can be further divided into i)
correlation-based approach [14—-16], and ii) causal infer-
ence approach [17-19].

Each of the approaches has its own advantages and
limitations. The correlation-based and regression-based
approaches [14—16] are efficient for large gene expres-
sion datasets. However, correlations or associations are
not causality, but miRNA-mRNA regulatory relationships
are causal relationships. A strong correlation between
the expression values of a miRNA and a mRNA in a
dataset may be a spurious relationship, as it could be con-
founded by a transcription factor. On the other hand,
the causal inference approach [17-19] aims to estimate
the intervention effects as in gene knockdown exper-
iments. Therefore, this approach discovers the causal
relationship between miRNAs and mRNAs, i.e. the reg-
ulation of miRNAs on mRNAs directly or indirectly
through other factors. As gene knockdown experiments
are expensive to conduct given the large number of miR-
NAs and mRNAs, the causal methods can be used as
an alternative to identify the regulation of miRNAs on
mRNAs.

While these causal inference methods help remove spu-
rious relationships, they have high computational com-
plexity and therefore are not scalable to large datasets.
With the fact that using proper computational facil-
ity would alleviate the problem to certain extend, we
have exploited the parallel processing-technique for the
causal method jointIDA by using its parallel implemen-
tation in the ParallelPC package [20] but it still con-
sumes much time when running with large datasets.
Moreover, these methods do causal inference based
on the causal graphs learnt from data, which involves
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false discoveries when the sample size is not large
enough.

We propose to infer the miRNA-mRNA regulatory rela-
tionships in breast cancer by adapting a recently devel-
oped causal inference method, invariant causal prediction
(ICP) [21]. Applying the key idea of causal invariance used
by ICP, the causes (miRNAs) of a mRNA are the ones
that show consistent causal relationships with the mRNA
across different environments. The “different environ-
ments” can be understood as different datasets obtained
from different sources/labs for studying the same disease,
or different types of datasets such as observational data
and data obtained from intervention experiments.

In this paper, we identify miRNA-mRNA causal regu-
latory relationships in breast cancer with an assumption
that miRNAs are causal for mRNAs when they have con-
sistent causal relationships across cancer subtypes. We
firstly apply the Pam50 method [22, 23] to the breast
adenocarcinoma (BRCA) dataset of The Cancer Genome
Atlas (TCGA) [24] to classify the samples into 5 differ-
ent breast cancer subtypes, Basal, Her2, LumA, LumB,
and Normal-like. We then use the ICP method to search
for miRNA-mRNA pairs that show persistent causal rela-
tionships across different subtypes. It is shown that if
the simultaneous noise interventions assumption is satis-
fied, i.e. if the input datasets are generated by the linear
structural equation models under the simultaneous noise
interventions, then the causal predictors are identifiable
using the ICP method (Section 4.3 of Reference [21]). The
simultaneous noise interventions are interventions which
change the noise or error distributions at many variables
simultaneously. A noise intervention is a type of soft inter-
vention which “disturbs” a variable by changing its error
distribution. In our application with the BRCA dataset,
we have divided the dataset into multiple datasets corre-
sponding to different environments (cancer subtypes) by
the Pam50 method based on the expression of 50 mRNAs.
This means that in the different cancer subtype datasets,
the expressions of these 50 mRNAs are significantly dif-
ferent, which could be considered as the result of noise
interventions in cancer subtypes at these 50 mRNAs. This
indicates that the input datasets used in our study satis-
fies the assumption of ICP, so the findings are potentially
causal. After that, we validate the predictions with miRNA
transfection data, and the results show that our proposed
method performs better than the existing methods that
are based on correlation, regression or other causal dis-
covery methods such as idaFast [17] or jointIDA [25].
The method is also much faster than the other existing
casual discovery-based methods as the ICP method does
not need to learn a complete causal graph from data
(which is time consuming) whereas the existing methods
do. Furthermore, the ICP does not fit a model in each
environment and then do pair-wise comparison between
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the models. Instead, it fits a global model to all samples
and calculate the residuals of each sample when fitting the
global model, then compares the residual distribution in
each environment.

We also develop an ensemble method that combines the
proposed method with a correlation-based method (Pear-
son) and a regression-based method (Lasso) to take the
merits of different approaches. Using experimentally con-
firmed databases, miRTarbase 6.1, TarBase 7.0 and miR-
Walk 2.0, we show that the ensemble method is the best
method compared to its individual component methods,
including the proposed causal invariance method.

In addition, functional enrichment analysis shows that
the identified miRNA-mRNA relationships are highly
enriched in functions and processes related to breast can-
cer, suggesting the usefulness of the method. Novel inter-
actions identified by the proposed methods could be good
candidates for follow-up wet-lab experiments to explore
their roles in breast cancer.

Results

Predicted miRNA-mRNA regulatory relationships are
checked with the transfection data by using the R package
miRLAB [26] and the experimentally confirmed databases
as these databases are about the confirmed miRNA-
mRNA interactions. For the checking with the transfec-
tion data, if for a predicted miRNA-mRNA relationship,
its absolute value of the log, fold-change in the transfec-
tion data is larger than a predefined threshold (ie. 0.3
in our experiments), then the predicted miRNA-mRNA
relationship is considered as confirmed, i.e. supported.

The transfection data is obtained from the TargetScore-
Data package [27] and it can be found in the Additional
file 1. In the miRNA transfection experiment, the transfec-
tion data was created from 84 Gene Expression Omnibus
(GEO) series [28]. The raw data is downloaded and the
logy fold-change of the expression of a mRNA in treat-
ment (miRNA transfected) is calculated by comparing
the expression levels of the mRNA between transfected
and controlled samples. The higher the absolute value of
the log, fold-change is, the more significant the differen-
tial expression level of the mRNA is. For the validation
with the experimentally confirmed databases, we build the
ground truth by combining the information from miR-
Tarbase version 6.1 [29], TarBase version 7.0 [30], and
miRWalk version 2.0 [31]. These three databases provide
experimentally validated miRNA-target interactions and
they are available in the Additional file 2.

The performance of a method will be measured using
the number of discovered miRNA-mRNA interactions
that have been validated by using the experimentally con-
firmed databases or the transfection data. The higher
the number of validated miRNA-mRNA interactions a
method has, the better the method is.
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Comparison of results

To evaluate the performance of hiddenICP, we have used
the other 4 methods in our experiments for compari-
son, including idaFast [17] in pcalg package [32], join-
tIDA_direct [25], Pearson [33] and Lasso [34]. idaFast is
a function which is used to estimate total causal effect
of one variable on various target variables. jointIDA esti-
mates total joint effect of a set of variables on another
variable. Pearson and Lasso estimate the correlation coef-
ficient and the regression coefficient of two variables
respectively. These methods are chosen because idaFast
and jointIDA are causal methods with similar goal as
ours while Pearson and Lasso are popular correlation and
regression methods.

With hidden ICP, we run it in two separate scenar-
ios. In the first scenario, we randomly divide the samples
into three datasets with similar sizes, each correspond-
ing to an environment. In the second scenario, Pam50
[22, 23] is used to categorize the samples based on dif-
ferent cancer subtypes, including Basal, Her2, LumaA,
LumB, and Normal-like, to create datasets for the different
environments.

The top miRNA-mRNA interactions predicated by each
of the 6 methods are selected to be checked with the trans-
fection data and experimentally confirmed interactions.
The miRNA-mRNA interactions estimated by the meth-
ods are ordered by their correlation/causal effects/scores,
the larger a correlation/causal effect/score is, the higher
the relationship is in the list. To have a comprehensive
analysis, we select the top 500, 1000, 1500, and 2000
miRNA-mRNA interactions for the validation, and we
also do the validation with respect to each miRNA by
selecting the top 50, 100, 150 and 200 interactions in
which the miRNA is involved.

First of all, we check the results of the 6 methods by
using the transfection data as the ground truth. As the
miRNAs in the transfection data are not complete, for
this case, it is not fair to compare the top miRNA-mRNA
interactions for all miRNAs. Thus, for the checking using
the transfection data, we only compare the results based
on the top of miRNA-mRNA interactions with respect to
each of the miRNAs. The comparison result is shown in
Fig. 1. In Fig. 1, besides the 6 methods, we also include
the null experiment to show the superiority of these meth-
ods. In the null experiment, we pick randomly 30 miRNAs
and tops k targets for each miRNA (for k=50, 100, 150,
and 200) from the BRCA dataset. We run the experi-
ment 100 times then calculate the average values and
consider them as the final values. It can be seen that in
all four cases with the top 50, 100, 150 and 200 “interac-
tions predicted” for each miRNA, hiddenICP using Pam50
(hiddenICP-Pam50 in the figure) outperforms the other
methods in discovering miRNA-mRNA regulation rela-
tionships. When combining with Pam50, hiddenICP (i.e.
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Fig. 1 Checking using the transfection data. For each miRNA, the top 50, 100, 150 and 200 predicted miRNA-mRNA interactions are selected and
checked against the transfection data. Each bar in the diagram shows the total number of supported interactions accumulated over all the
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hiddenICP-Pam50) shows the best performance, indicat-
ing that the method may serve as a good tool in predicting
miRNA targets. The top predicted miRNA-mRNA inter-
actions for each miRNA by hiddenICP-Pam50 can be
found in Additional file 3.

When we validate the top predicted miRNA-mRNA
interactions using the experimentally confirmed
databases, there is no method which finds a number of
experimentally confirmed miRNA-mRNA interactions
larger than other methods in all experiments with dif-
ferent selected top ranked interactions. For instance,
with the top 500 predicted miRNA-mRNA interactions,
Lasso is the best method which finds the most confirmed
miRNA-mRNA interactions while Pearson and Lasso are
the best in the experiment with the top 1000 predicted
miRNA-mRNA interactions. When we validate the top 50
predicted miRNA-mRNA interactions for each miRNA,
Pearson is the best while the performance of Lasso is even
worse than the performance of idaFast. However, in most
cases, Pearson and Lasso outperforms others.

In addition, the findings of different methods are com-
plementary, as indicated in Fig. 2a and b. Figure 2a
shows the intersection of predicted results of meth-
ods with top 2000 interactions for all miRNAs (The
result of hiddenICP-Pam50 can be found in Additional
file 4) while Fig. 2b shows the intersection of predicted
results of methods with top 200 interactions for each
miRNA. It can be seen that in some cases such as top
2000 interactions for all miRNAs and top 200 inter-
actions for each miRNA in this figure, although Pear-
son and Lasso detect more confirmed miRNA-mRNA
interactions, others could discover some interactions
which cannot be identified by Pearson and Lasso. Thus, to

take the advantages of Pearson, Lasso, and other methods,
we introduce an ensemble method which combines Pear-
son, Lasso, and other methods to predict miRNA-mRNA
regulatory relationships in the next section.

Hidden ICP forms a good performance in identifying
miRNA-mRNA regulatory relationships of ensem-
ble method Based on the observations that differ-
ent methods may provide complementary findings of
miRNA-mRNA interactions, and Pearson and Lasso indi-
vidually may perform better than the other methods,
we use the Borda function in the package miRLAB [26]
to integrate Pearson [33], Lasso [34] with others (hid-
denICP, hiddenICP-Pam50, idaFast, jointIDA) to gener-
ate ensembles for predicting miRNA-mRNA interactions.
This ensemble method Borda will get the average of the
rankings from individual methods. The validation results
of the ensembles are shown in Fig. 3a and b, for the vali-
dation of the collection of top interactions of all miRNAs
and the validation of the top interactions around individ-
ual miRNAs, respectively. In both cases, the Borda with
Pearson, Lasso and hiddenICP using Pam50 outperforms
others.

Discussion

miRNAs tend to synergistically regulate target genes

In this section, we focus on studying miRNA synergism
based on the top 50, 100, 150 and 200 target genes for
each miRNA identified by hiddenICP-Pam50. For each
possible miRNA synergistic pair miRNA; and miRNA;,
i # J, the hypergeometric test is used to evaluate the
significance of the shared mRNAs by these two miRNAs.
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Fig. 2 Overlap between different methods. The top miRNA-mRNA interactions validated by using the experimentally confirmed database
information. a For each method, the figure shows that among the top 2000 predicted miRNA-mRNA interactions, how many interactions have been
validated to be true by the databases (on the bottom left), and between the different methods how the validated interactions overlap with each
other (the dotted lines and the diagram on top). b For each method, the figure shows that among the top 200 predicted miRNA-mRNA interactions
for each miRNA, how many interactions have been validated to be true by the databases (on the bottom left), and between the different methods
how the validated interactions overlap with each other (the dotted lines and the diagram on top)

The significance p-value is calculated as follows:

n—1 (K ) (N :1(
p=1- % e, M)
x=0 M
where N denotes the number of all mRNAs of interest, K
is the number of mRNAs interacting with miRNA;, M is
the number of mRNAs interacting with miRNA, # is the
number of the shared mRNAs by miRNA; and miRNA;

The miRNA-miRNA pairs with significant sharing of
mRNAs (e.g. p-value <0.05) are regarded as miRNA-
miRNA synergistic pair. We set the p-value cutoff as 0.05
(adjusted by Benjamini & Hochberg method). As shown
in Fig. 4, each miRNA tends to synergistically regulate tar-
get genes with at least one other miRNA. In terms of its
top 50, 100, 150 and 200 target genes, each miRNA syn-
ergistically regulates target genes with at least 9, 11, 10
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Fig. 3 Validation using the experimentally confirmed databases. The compared methods are the Borda function which integrate Pearson and Lasso
with hiddenlICP, hiddenlCP-Pam50, idaFast, or jointIDA. a The top 500, 1000, 1500 and 2000 predicted miRNA-mRNA interactions for all miRNAs are
selected and validated against the experimentally confirmed databases. Each bar in the diagram shows the total number of validated interactions of
all miRNAs. b For each miRNA, the top 50, 100, 150 and 200 predicted miRNA-mRNA interactions are selected and validated against the experimentally
confirmed databases. Each bar in the diagram shows the total number of validated interactions accumulated over all the miRNAs validated
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or 11 other miRNAs, respectively. This result indicates
that miRNAs may involve in many biological processes by
synergistically regulating target genes.

Several miRNAs are significantly enriched in functions or
diseases related to BRCA

In this section, we conduct GO [35], KEGG [36], Reactome
[37] and DisGeNET [38] enrichment analysis of top target
genes for each miRNA identified by hiddenICP-Pam50.
The functional enrichment analysis of the top target genes
for each miRNA identified by hiddenICP-Pam50 is not
for the purpose of comparing different methods. The
analysis is to provide an evidence to suggest the usefulness

of the method in breast cancer research. Thus, among
the four cases (top 50, 100, 150 and 200 interactions for
each miRNA) in the “Comparison of results” section, we
only used the top 50 interactions for each miRNA for
enrichment analysis. In Table 1, out of the 30 miRNAs,
12, 10, 13 and 18 miRNAs are significantly associated
with at least one GO, KEGG, Reactome and DisGeNET
terms, respectively. As shown in Table 2, several miRNAs
are significantly enriched in functions or diseases related
to BRCA. The results show that the findings using our
methods are biologically meaningful in the BRCA dataset.
The detailed enrichment analysis results can be seen in
Additional file 5.
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Fig. 4 Heatmap of miRNA-miRNA synergistic relationships. Relationships in the top 50 (a), 100 (b), 150 (¢) and 200 (d) target genes for each miRNA
identified by hiddenICP-Pam50. A red dot indicates that there is a synergistic relationship between two miRNAs

Besides hiddenICP-Pam50, other methods may also
identify some miRNAs that are enriched for breast
cancer related pathways or functional terms. However,
this analysis is not for the comparison between meth-
ods. The purpose of the functional enrichment anal-
ysis of hiddenICP-Pam50 is to provide an evidence
to suggest the usefulness of the method in breast
cancer research.

Identifying miRNA-mRNA regulatory relationships in
cancer subtypes

As each cancer includes several subtypes and each sub-
type has different characteristics, a miRNA-mRNA regu-
latory relationship in a cancer subtype might not necessar-
ily exist in other cancer subtypes. The ICP method aims to
find the miRNA-mRNA relationships which persistently

exist across different environments or cancer subtypes,
thus the miRNA-mRNA regulatory relationships which
are specific to a cancer subtype may not be discovered by
the method.

Conclusions

From the fact that miRNAs regulate gene expression by
binding the 3’-UTR of mRNAs at the post-transcriptional
level [6, 39-41], they are important in various biological
processes in the human body and identifying their regu-
lation mechanisms plays a salient role in diagnostics and
therapeutics for a wide range of diseases. At the present,
although numerous studies have developed methods to
identify the relationships of miRNAs and mRNAs, most of
them detect the correlations between the expression lev-
els of miRNAs and mRNAs while the methods discovering
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Table 1 Functional enrichment analysis of the top 50 target
genes for each miRNA identified by hiddenICP-Pam50 (at least
one term more than 0)

miRNAs #GO #KEGG #Reactome #DisGeNET
terms terms terms terms
hsa-miR-187-5p 3 0 0 0
hsa-miR-1269a 7 0 0 0
hsa-miR-184 0 1 0 0
hsa-miR-205-5p 23 0 2 147
hsa-miR-196a-5p 7 8 0 58
hsa-miR-203b-5p 2 1 2 0
hsa-miR-375 0 2 5 23
hsa-miR-5683 33 0 0 54
hsa-miR-6510-5p 0 1 11 0
hsa-miR-20b-5p 2 0 0 1
hsa-miR-363-5p 51 1 4 56
hsa-miR-577 0 0 2 38
hsa-miR-135b-5p 27 0 0 26
hsa-miR-150-5p 17 0 3 32
hsa-miR-412-5p 0 0 0 25
hsa-miR-1247-5p 40 0 15 8
hsa-miR-4724-5p 0 0 5 0
hsa-miR-3065-5p 0 0 0 4
hsa-miR-31-5p 1 2 0 1
hsa-miR-135a-5p 0 0 2 2
hsa-miR-9-5p 0 2 5 32
hsa-miR-3200-5p 0 1 0 21
hsa-miR-33b-5p 0 0 4 0
hsa-miR-202-5p 0 5 0 39
hsa-miR-301a-5p 0 0 3 6

the cause-effect relationship have a high computational
complexity. To deal with this problem, we introduce the
methods to identify causal effects of miRNAs on mRNAs
based on ICP [21].

ICP is a method which is used to infer causality of
variables across different environments such as different
datasets obtained from different sources/labs for studying
the same disease or different types of datasets (observa-
tional data and data obtained from intervention exper-
iments), and it is based on the invariance assumption
of the causal relationships across different settings. The
method has been designed with high dimensional data in
mind and has an extension for hidden variables. These
features have made the ICP method a great candidate
for dealing with biological problems, where the datasets
(such as gene expression data) may contain measure-
ments of thousand of variables while some variables are
hidden/unobservable.
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Table 2 Several miRNAs are significantly enriched in functions or
diseases related to BRCA

miRNAs Functions or diseases Enriched terms
associated with BRCA

hsa-miR-187-5p regulation of GO:0071675
mononuclear cell
migration

hsa-miR-205-5p negative regulation of cell GO:0010454
fate commitment
regulation of cell fate GO:0042659
specification
mesodermal cell fate GO:0007501
specification
endodermal cell fate GO:0001711
commitment
mesodermal cell fate GO:0001710

commitment

Sporadic Breast Carcinoma

umls:C1336076

hsa-miR-196a-5p Rap1 signalling pathway hsa04015
hsa-miR-5683 negative regulation of G0O:2001054
mesenchymal cell
apoptotic
regulation of G0O:2001053
mesenchymal cell
apoptotic process
mesenchymal cell G0:0097152
apoptotic process
endodermal cell fate GO:0001711
commitment
regulation of neural GO:2000177
precursor cell proliferation
hsa-miR-363-5p mononuclear cell GO:0071674
migration
positive regulation of G0:0071677
mononuclear cell
migration
epidermal cell GO:0009913
differentiation
IL-17 signalling pathway hsa04657

hsa-miR-577 Sporadic Breast Carcinoma umls:C1336076

hsa-miR-135b-5p Inflammatory Breast umls:C0278601
Carcinoma

hsa-miR-1247-5p epidermal cell GO:0009913
differentiation

hsa-miR-202-5p IL-17 signalling pathway hsa04657

For our method, first of all, we select top miRNAs and

mRNAs with the most different median absolute devia-
tion from BRCA dataset. We then apply Pam50 method
to categorize BRCA samples into different environment
settings based on different cancer subtypes. After that,
we use the invariant causal prediction to find miRNA-
mRNA regulatory relationships across subtypes. We vali-
date the results with the miRNA-transfected experimental
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data and the results show that our method outperforms
others. Moreover, to take the advantages of hiddenICP
as well as Pearson and Lasso, we combine them into
the ensemble method using Borda election to discover
miRNA-mRNA regulatory relationships. We validate the
results with the experimentally confirmed data and it
shows that the ensemble method with hiddenICP-Pam50
outperforms other methods in finding the interactions
and can complement to other methods in finding miRNA-
mRNA interactions. Further enrichment analysis indi-
cates that miRNAs involved in the predicted regulatory
relationships tend to synergistically regulate target genes,
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indicating the usefulness of our methods in uncovering
miRNA regulation mechanisms.

Methods

Overview

The overview of our method is in Fig. 5. It has
three main steps, including selecting miRNAs and
mRNAs with most expression variability, categoriz-
ing samples into different experiment settings and
predicting causal effects of miRNAs on mRNAs.
The detail of the method is described in the
following sections.

miRNAs

L

BRCA

mRNAs

S, 4.3 13 2.1
S5 -0.1 06 | -38
Sh 0.2 = 5.2

Gene feature
selection

A Pam50

2.7 Sy Basal 1
-1 S, Her2 2

-1.3 Sh LumA k

hiddenICP
Env. 1: mRNAp, = a;miRNA; + BymiRNA; + g¢(H1, 1)
Env. 2: mRNAp, = a;miRNA; + BomiRNA, + go(H2, £2)

Env. k: mRNA}, = a,miRNA; + BmiRNA; + gy (HK, €X)

|

miRNA;

miRNA;

mRNA,

Fig. 5 The overview of our method. The method includes three main steps, i) Select miRNAs and mRNAs with most expression variability (the gene
expression is shown in the above table), i) Categorize samples into different experiment settings and iii) Predict causal effects of miRNAs on mRNAs
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Procedure of identifying miRNA-mRNA regulatory
relationships in cancer using hidden invariant causal
prediction

The algorithm for detecting miRNA-mRNA relationships
includes three steps as the followings.

Step 1: Select miRNAs and mRNAs with most expres-
sion variability. The matched miRNA and mRNA expres-
sion samples are extracted from the BRCA dataset of
TCGA [24]. In total 503 samples with matched miRNA
and mRNA expression are obtained and stored in Addi-
tional file 6. Then we use the FSbyMAD function of
the CancerSubtypes package [11] to select miRNAs and
mRNAs with the most different Median Absolute Devia-
tion (MAD). We select the top 30 miRNAs and top 1500
mRNAs for our experiments so that other causal infer-
ence methods including jointIDA [25] and IDA [17] could
produce the results within a week for the purpose of
comparison.

Step 2: Categorize samples into different experiment
settings based on cancer subtypes by using Pam50 [22, 23]
to discover miRNA targets across cancer subtypes. After
the categorization, we have 107 samples in Basal subtype,
75 samples in Her2 subtype, 147 samples in LumA sub-
type, 116 samples in LumB subtype, and 58 samples in
Normal-like subtype.

Step 3: Estimate the causal relationships of miRNAs on
mRNAs by estimating the causal relationships of miRNAs
on each mRNA through the hiddenICP function of the
InvariantCausalPrediction package [21]. The detail of this
step is as the following.

Invariant causal prediction The ICP method considers
that the causal relationship between the target and each of
its direct causes maintains invariant across different envi-
ronments. Based on this causal invariance idea, ICP aims
to find the complete set of parents (direct causes) of the
target variable by searching for the subset of predictors
such that in different environments, given this subset of
predictors, the conditional probabilities of the target are
the same. Below are the details of the method.

We use the similar notation as that in [21]. Let £ be the
set of environments. For an environment e € &, (X¢, Y®) is
an independent and identically distributed (i.i.d.) sample
in e where X° is the set of predictor variables and Y* is
the target variable. X¢ has p elements and X¢ € R?, and
Y¢ € R. Let Xg, C X° be the subset of causal predictor
variables or direct causes of Y, where §* C {1,...,p} is
the indices of the predictor variables, then ICP assumes
the following condition holds Ve € & :

X¢ has an arbitrary distribution, (2)
Ye=pu+Xy*+e e°~F and 1l Xg, (3)

where u is a constant intercept term, y* # 0, i.e. the non-
zero coefficients indicating the support of the predictor
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variables, and &€ is the error with the same distribution F;
acrossalle € £

In our problem, X stands for miRNAs and Y stands for
a mRNA. We apply ICP [21] to estimate causes miRNAs
of a mRNA with the input data being the expression of
the miRNAs and mRNA in different environments. Firstly,
the Pam50 method is used to categorize the dataset into
different subgroups with different cancer subtypes. Each
cancer subtype is considered as an environment e. To
increase the processing speed, instead of fitting a model
for each environment, one global model is fitted for all
data of all environments and the method compares the
distribution of the residuals (errors) in each environment.
In general, ICP loops with all subsets of predictors (miR-
NAs) and compares the distribution of the residuals of one
environment with the other environments as a whole. If
the mean and variances of residuals are the same in these
environments, these subsets of predictors are potential
predictors of the target. The final predictors of the target
will be the intersection of these potential predictors. The
detail of the ICP is described in the following steps:

1. ForeachS C {1,..,p}ande € & :

e Use the set S of indices of variables and fit a
linear regression model for all data to have an
estimated optimal coefficients Bp’ ed(S). Let
R=Y — XpPred(s).

e Let I, be the set of samples of e (n, = |I|) and
I_, be the set of samples which are not in e
(n—e = |I—¢|). Test the null hypothesis that the
mean of R is the same by using the two-sample
t-test for residuals in I, and I_,. In addition, use
the F-test to test if the variances of R are the
same in I, and I_,.

2. Construct the estimator: S(€) := (s, o rejected -
3. Estimate the confidence set for the estimator based
on the confidence of 774 (S).

Hidden invariant causal prediction ICP has an exten-
sion for hidden variables. The hidden ICP assumes that
Vee&:

X¢ has an arbitrary distribution, (4)
Ye :Xe)/* +g(He¢ 86)1 (5)

where H are hidden variables, y* € R? are causal coeffi-
cients and g : R? x R — R is a function

In this work, we propose to apply hidden ICP to
discover miRNA-mRNA regulatory relationships. This
choice (instead of normal ICP) is based on the fact that
in the data preparation step, we only select miRNAs and
mRNAs with most expression variability as the input of
ICP. Therefore in the corresponding dataset, there might
be hidden miRNAs which are regulators of mRNAs. In
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our application of hidden ICP, the set of miRNAs with
most expression variability are considered as the predic-
tor variables. Then for each mRNA (the target or response
variable), hidden ICP is used to find the direct causes, i.e.
the miRNAs which regulate of the mRNA. In addition, we
use Pam50 [22, 23] to categorize the samples into different

subtypes, and consider the subtypes as the environments
used in hidden ICP.

Implementation

The above algorithm has been implemented and inte-
grated into the R package miRLAB [26]. In addition, the R
scripts for reproducing the results of experiments in this
paper are also available upon request.

Functional annotation of miRNAs

We do enrichment analysis for miRNA targets to anno-
tate biological functions of miRNAs. We apply GO [35],
KEGG [36], Reactome [37] and DisGeNET [38] for the
top target genes based on the point estimator for the
causal effects of each miRNA identified by hiddenICP
using Pam50 (hiddenICP-Pam50). Since the enrichment
analysis results of hundreds of target genes are too general
to gain biological insight, we only focus on the enrichment
analysis of the top 50 target genes for each miRNA.

Additional files

Additional file 1: The transfection data for checking the predicted results
of miRNA-mRNA regulation relationships. This file should be viewed by R.
(RDA 29,853 kb)

Additional file 2: The confirmed miRNA-mMRNA interactions retrieved
from miRTarbase 6.1, TarBase 7.0, miRWalk 2.0. (CSV 10,149 kb)
Additional file 3: Top 50, 100, 150 and 200 predicted miRNA-mRNA
interactions for each miRNA by hiddenICP-Pam50. (XLSX 414 kb)
Additional file 4: Top 2000 predicted miRNA-MRNA interactions for all
miRNAs by hiddenlICP-Pam50. (CSV 77 kb)

Additional file 5: The detailed enrichment analysis results of functional
annotation of MiRNAs. (XLSX 100 kb)

Additional file 6: The expression of matched miRNAs and mRNAs of the
breast adenocarcinoma (BRCA) data set is downloaded from The Cancer
Genome Atlas (TCGA). This file should be viewed by R. (RDATA 92,179 kb)
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