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Abstract

Background: Ligand-binding proteins play key roles in many biological processes. Identification of protein-ligand
binding residues is important in understanding the biological functions of proteins. Existing computational methods
can be roughly categorized as sequence-based or 3D-structure-based methods. All these methods are based on
traditional machine learning. In a series of binding residue prediction tasks, 3D-structure-based methods are widely
superior to sequence-based methods. However, due to the great number of proteins with known amino acid
sequences, sequence-based methods have considerable room for improvement with the development of deep
learning. Therefore, prediction of protein-ligand binding residues with deep learning requires study.

Results: In this study, we propose a new sequence-based approach called DeepCSeqsSite for ab initio protein-ligand
binding residue prediction. DeepCSeqSite includes a standard edition and an enhanced edition. The classifier of
DeepCSeqSite is based on a deep convolutional neural network. Several convolutional layers are stacked on top of
each other to extract hierarchical features. The size of the effective context scope is expanded as the number of
convolutional layers increases. The long-distance dependencies between residues can be captured by the large
effective context scope, and stacking several layers enables the maximum length of dependencies to be precisely
controlled. The extracted features are ultimately combined through one-by-one convolution kernels and softmax to
predict whether the residues are binding residues. The state-of-the-art ligand-binding method COACH and some of
its submethods are selected as baselines. The methods are tested on a set of 151 nonredundant proteins and three
extended test sets. Experiments show that the improvement of the Matthews correlation coefficient (MCC) is no less
than 0.05. In addition, a training data augmentation method that slightly improves the performance is discussed in
this study.

Conclusions: Without using any templates that include 3D-structure data, DeepCSeqSite significantlyoutperforms
existing sequence-based and 3D-structure-based methods, including COACH. Augmentation of the training sets
slightly improves the performance. The model, code and datasets are available at https://github.com/yfCuiFaith/
DeepCSeqSite.
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Background

Benefiting from the development of massive signature
sequencing, protein sequencing is becoming faster and
less expensive. By contrast, owing to the technical dif-
ficulties and high cost of experimental determination,
the structural details of only small parts of proteins are
known in terms of protein-ligand interaction. Both bio-
logical and therapeutic studies require accurate compu-
tational methods for predicting protein-ligand binding
residues [1].

The primary structure of a protein directly determines
the tertiary structure, and the binding residues of pro-
teins are closely bound with the tertiary structure. These
properties of proteins ensure the feasibility of predict-
ing binding residues from amino acid sequences (primary
structures) or 3D structures. However, the complex rela-
tionship between binding residues and structures is not
completely clear. Thus, we have motivation for using
machine learning in binding residue prediction, which is
based on the unknown complex mappings from structures
to binding residues.

The existing methods for computational prediction
of protein-ligand binding residues can be roughly cate-
gorized as sequence-based [2-5] or 3D-structure-based
methods [1, 6-11]. The fundamental difference between
the two types of methods is whether 3D-structure data
are used. Some consensus approaches comprehensively
consider the results of several methods. These methods
can be seen as 3D-structure-based methods if any sub-
method uses 3D-structure data. Up to now, 3D-structure-
based methods have been shown to be widely superior
to sequence-based methods in a series of binding residue
prediction tasks [1, 11]. However, 3D-structure-based
methods depend on a large number of 3D-structure tem-
plates for matching. The time cost of template matching
for a protein can reach several hours in a distributed
environment. Furthermore, the number of proteins with
known amino acid sequence is three orders of magnitude
higher than that of proteins with known 3D structures.
The enormous disparity in these quantities leads to dif-
ficulties in effectively utilizing 3D-structure information
and massive sequence information together, which limits
further progress in binding residue prediction.

A series of traditional machine learning methods have
been used in binding residue prediction. Many com-
putational methods based on support vector machines
(SVM) have been proposed for specific types of bind-
ing residue prediction [12—15]. A traditional BP neural
network has been used in protein-metal binding residue
prediction, but the network has considerable room for
improvement [16]. Differing in interpretability from the
mentioned methods, a robust method based on a Bayesian
classifier has been developed for zinc-binding residue pre-
diction [17]. Many methods based on template matching
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achieve considerable success at the expense of massive
computational complexity [1, 10, 11]. A representative
consensus approach, COACH, combines the prediction
results of TM-SITE, S-SITE, COFACTOR, FINDSITE and
ConCavity, some of which are 3D-structure-based meth-
ods [1, 6,7,10, 11]. This robust approach to protein-ligand
binding residue recognition substantially improves the
Matthews correlation coefficient (MCC). These methods
have achieved successful results on small datasets. How-
ever, the methods would achieve even higher accuracy if
massive data could be further utilized. One crucial factor
for the available utilization of massive data is the repre-
sentation capability of classifiers, which has a dominant
impact on generalization.

Deep neural networks have achieved a series of break-
throughs in image classification, natural language pro-
cessing and many other fields [18—21]. In bioinformatics,
deep neural networks have been applied in many tasks,
including RNA-protein binding residue prediction, pro-
tein secondary structure prediction, compound-protein
interaction prediction and protein contact map predic-
tion [22-25]. Various recurrent networks are commonly
used in sequence modeling [26, 27]. Context dependen-
cies universally existing in sequences can be captured
effectively by recurrent networks, and these networks are
naturally suitable for variable-length sequences. Never-
theless, recurrent networks depend on the computations
of the previous time step, which blocks parallel com-
puting within a sequence. To solve this problem, con-
volutional neural networks are introduced into neural
machine translation (NMT) [28, 29]. These architectures
are called temporal convolution networks (TCN). In con-
trast to recurrent networks, the computation within a
convolutional layer does not depend on the computa-
tion of the previous time step, so the calculation of each
part is independent and can be parallelized. Convolu-
tional sequence-to-sequence models outperform mature
recurrent models on very large benchmark datasets by an
order of magnitude in terms of speed and have achieved
the state-of-the-art results on several public benchmark
datasets [29]. Many similarities exist between NMT and
binding residue prediction. The performance of bind-
ing residue prediction can be improved with progress in
NMT.

In this study, we propose a new approach, DeepCSe-
qSite (DCS-SI), for protein-ligand binding residue predic-
tion. The architecture of DCS-SI is inspired by a series
of sequence-to-sequence models including ConvS2SNet
[29]. DCS-SI includes two editions: stdDCS-SI and
enDCS-SI. The encoders of the two editions are the
same. The decoder of enDCS-SI evolves from the decoder
of stdDCS-SI. The former executes forward propagation
twice and takes the previous output into consideration
to produce more accurate predictions. In DCS-SI, the
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fully convolutional architecture contributes to improving
parallelism and processing variable-length inputs. Several
convolutional layers are stacked on top of each other to
extract hierarchical features. The low-level features reflect
local information over residues near the target while the
high-level features reflect global information over a long
range of an amino acid sequence. Correspondingly, the
size of the effective context scope is expanded as the
number of layers increases. The long-distance dependen-
cies between the residues can be captured by an effective
context scope that is sufficiently large. A simple gating
mechanism is adopted to select relevant residues. Tem-
plates are not used in DCS-SI. The network in DCS-SI
is trained only on sequence information. The state-of-
the-art ligand-binding method COACH and some of its
submethods are selected as baselines. Experiments show
that stdDCS-SI and enDCS-SI significantly outperform
the baselines.

Methods

Datasets

The datasets used in this study are collected from the
BioLip database and the previous benchmarks [1, 11]. Our
training sets contain binding residues of fourteen ligands
(ADP, ATP, Ca", Fe?*, EMN, GDP, HEM, Mg?*, Mn?*,
Nat, NAD, PO}, SO3~, Zn?*)L. A total of 151 proteins
are selected from the previous benchmarks with the four-
teen ligands as the benchmark testing set, called SITA.
Every protein in the training sets has a sequence iden-
tity to the proteins in the validation sets and testing sets
of less than 40% [13]. To obtain as much data as possible
for training, the pairwise sequence identity is allowed to
be 100% in the training sets. We speculate that the aug-
mented training sets (Aug-Train) can drive networks to
achieve better generalization performance.

Considerable data skew generally exists in protein-
ligand binding residue prediction. ADP, ATP, FMN, GDP,
HEM and NAD have more binding residues than do metal
ions and acid radical ions, which means that the substan-
tial data skew is attributed more to metal ions and acid
radical ions. The computational binding residue predic-
tion of metal ions and acid radical ions is still difficult
because of the small size and high versatility. To demon-
strate the ability of the models to predict the binding
residues of metal ions and acid radical ions, we extend
SITA with metal ions and acid radical ions. Every protein
in the testing sets has a sequence identity to the pro-
teins in the training sets and the other testing sets of less
than 40%. Furthermore, the extended testing sets (SITA-
EX1, SITA-EX2 and SITA-EX3) reduce the variance in
the tests.

A summary of the datasets used in this study is shown
in Table 1. Severe data skew exists in the datasets,
which restricts the optimization and performance of many
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Table 1 Summary of the datasets
Neror! Neggz Ngrs Peresys
Train® 4237 34564 1245517 278
Aug-Train 37821 348180 11310574 3.08
SITA 151 1340 45126 297
SITA-EX1 187 1528 56122 272
SITA-EX2 226 1725 68729 251
SITA-EX3 253 1890 75161 2.51

"Npyor: number of proteins

2Ngg: number of binding residues
3Nngg: number of non-binding residues
“4Pgg: proportion of binding residues
*Train: original training set

machine learning algorithms. The data skew is considered
in the design of DCS-SI.

Method motivation

Each residue in an amino acid sequence plays a specific
role in the structure and function of a protein. For a target
residue, nearby residues in the tertiary structure plausi-
bly affect whether the target residue is a binding residue
for some ligand. Thus, residues near the target residue in
the tertiary structure but far from the target residue in the
primary structure are critical to binding residue predic-
tion. Most of the existing methods use a sliding window
centered at the target residue to generate overlapping seg-
ments for every target protein sequence [13, 16, 30]. The
use of sliding windows is a key point in converting sev-
eral variable-length inputs into segments of equal length.
However, even if the distance in the sequence between
two residues is very long, their spatial distance can be lim-
ited because of protein folding. Thus, residues far from
the target residue in the sequence may also have an impor-
tant impact on the location of the binding residues. To
obtain more information, these methods have to increase
the window size in the data preprocessing stage. The
cost of computation and memory for segmentation is not
acceptable when the window size increases to a certain
width.

On the basis of the inspiration from NMT, protein-
ligand binding residue prediction can be seen as a par-
ticular form of translation. The main differences are the
following two aspects: 1. For NMT, the elements in the
destination sequences are peer entities to the elements in
the source sequences, but the binding site labels are not
peer entities to the residues. 2. While the destination and
source sequences typically differ in length for NMT, a one-
to-one match between each binding residue label and each
residue exists. Despite the differences, binding residue
prediction can learn from NMT. The foundation of feature
extraction in NMT includes local correlation and long-
distance dependency, which are common in amino acid
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sequences and natural language sentences. Thus, the main
idea of feature extraction in NMT is applicable to binding
residue prediction.

Method outline

In the training sets, the binding residues that belong to
any selected ligand type are labeled as positive samples,
and the rest are labeled as negative samples. A deep
convolutional neural network is trained as the classi-
fier of stdDCS-SI or enDCS-SI, whose inputs are entire
amino acid sequences. The input sequences are allowed
to differ in length. The sequences are divided into sev-
eral batches during training. In each batch, the sequences
are padded to the length of the longest sequence in
the batch with dummy residues. Batches are allowed to
differ in length after padding. Each protein residue is
embedded in a feature space consisting of several fea-
tures to construct the input feature map for the classi-
fier. For a given protein, every residue is predicted to be
a binding residue or non-binding residue in the range
of the selected ligand types simultaneously. The repre-
sentation of dummy residues is removed immediately
before the softmax layer. The method outline is shown
in Fig. 1. The details of the method are described in
“Architecture” section.

Features

Seven types of features are used for the protein-ligand
binding residue prediction: position-specific score matrix
(PSSM), relative solvent accessibility (RSA), secondary
structure (SS), dihedral angle (DA), conservation scores
(CS), residue type (RT) and position embeddings (PE).
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PSSM

PSSM is the probability of mutating to each type of amino
acid at each position. Therefore, PSSM can be interpreted
as representing conservation information. Normalized
PSSM scores can be calculated as follows:

1

T 142 @

y

where x is the dimension of the PSSM score and y is
the corresponding PSSM feature. For a protein with L
residues, the PSSM feature dimension is L * 20.

Relative solvent accessibility

The RSA is predicted by SOLVE. The real value of RSA is
generally converted to a Boolean value indicating whether
the residue is buried (RSA <25%) or exposed (RSA >25%).
However, the original value is retained so that the network
in DCS-SI can learn more abundant features [31].

Secondary structure

The secondary structure is predicted by PSSpred. The sec-
ondary structure type (alpha-helix, beta-strand and coil) is
represented by a real 3D value. Each dimension of the real
3D value is in the range of [0, 1] indicating the possibility
of existence of the corresponding type [32].

Dihedral angle

A real 2D value specifying the ¢/ dihedral angles is
predicted by ANGLOR [33]. The values of ¢ and v are
normalized by Norm(x) = x/360.0.

fe— d =30 —»|

PSSM

RSA

DA

RT
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l
l

\HJJ
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Fig. 1 Method Outline. Each residue in the amino acid sequence is embedded in a feature space that consists of seven types of features, namely,
position-specific score matrix (PSSM), relative solvent accessibility (RSA), secondary structures (SS), dihedral angle (DA), conservation scores (CS),
residue type (RT) and position embeddings (PE). The dimension number d of the feature space is 30. The amino acid sequence is transformed into a
feature map as the input for the deep convolutional neural network, which outputs the result of the protein-ligand binding residue prediction. Each

cell represents a dimension of the feature map
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Conservation scores

Conservation analysis is a widely used method for
detecting ligand-binding residues [34, 35]. Ligand-binding
residues tend to be conserved in evolution because of their
functional importance [2]. The relative entropy (RE) and
Jensen-Shannon divergence (JSD) scores of conservation
are taken as features in this study.

Residue type

Some amino acids have a much higher binding frequency
for the corresponding ligands than do other amino acids.
Twenty amino acid residues and an additional dummy
residue are numbered from 0 to 20. Then, the numbers
representing residue type are restricted to the range of [0,
1] by dividing by the total number of the types.

Position embeddings

Position embeddings can carry information about the rel-
ative or absolute position of the tokens in a sequence [36].
Several methods have been proposed for position embed-
dings. Experiments with ConvS2SNet and Transformer
show that position embeddings can slightly improve per-
formance, but the difference among several position
embedding methods is not clear [29, 36]. Therefore, a sim-
ple method for position embeddings is adopted in DCS-SI.
The absolute positions of the residues are represented
as PE; = i/L, where PE; of the i-th residue is limited
to range [0, 1], and L is the length of the amino acid
sequence.
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Architecture

The effective context scope for the prediction result or
hidden layer representation of a target residue is called the
input field. The size of the input field is determined by
the stacked convolutional layers instead of being explic-
itly specified. Stacking # convolutional layers with ker-
nel width k& and stride = 1 results in an input field
of 1 + n(k — 1) elements (including padded elements).
The input field can easily be enlarged by stacking more
layers, which enables the maximum length of the depen-
dencies to be precisely controlled. The stacked convolu-
tional layers have the ability to process variable-length
input without segmentation, which significantly reduces
the additional cost. Moreover, deeper networks can be
constructed with the slow growth of parameters. How-
ever, many proteins have hundreds or even thousands of
residues; thus, deep stacked convolutional layers or a very
large kernel width is required for long-distance dependen-
cies. The latter is unadvisable because padded elements
in the input fields and the growth rate of parameters are
incremental over kernel width. By contrast, going deeper
enables the method to achieve the desired results.

stdDCS-SI

The architecture of the deep convolutional neural network
is shown in Fig. 2. The input to the network consists of m
residues embedded in d dimensions. Due to the local cor-
relation among the representations of adjacent residues,
1D convolution along the sequence is applied to the initial

B HH

gusg

l | I | 11 | 1 I
m X d representation of The first conv layer Stage 1: Stage 2: 1 x 1 conv with
amino acid sequence with k X d N X Block(k x 1,2¢) N x Block(k x 1,2¢) ¢ and 2 channels
with padding kernel size and + Plain(k X 1,2¢) + LN + GLU
2c channels

Fig. 2 Architecture of the deep convolutional neural network in std-DeepCSeqSite (stdDCS-SI). Each cell represents a dimension of a representation.
The m x d representation of an amino acid sequence is the input of the network, where m is the length of the amino acid sequence, and d is the
dimension number of the feature space. Block(k x 1,2¢) represents a BasicBlock with a k x 1 kernel size and 2¢ output channels, and the structure
of Plain(k x 1,2c¢) is the same as that of Block(k x 1,2¢) without residual connection. The situation of k = 3, stride = 1 and ¢ = 3 is described in this
figure. Each m x 1 cell grid represents the output of a convolution kernel. The right-most representation is the input for the softmax
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feature map and the hidden feature maps. The local corre-
lation is based on the interaction among nearby residues
and the covalent bond between adjacent residues.

For the encoder network, each residue always has a rep-
resentation during forward propagation. A group of k x d
convolution kernels transforms the initial m x d feature
map into m x 1 x 2¢, where 2c¢ is the output channel num-
ber of the convolution kernels. Zero elements are padded
at both sides of the initial feature map to maintain m.
The transformation and padding aim to satisfy the input
demands of the following layers and the feature extraction.
The main process of the network can be separated into
two stages. Each stage contains N BasicBlocks (described
in “BasicBlock” section) that consist of multiple frequently
used layers and are designed for cohesiveness and expand-
ability. In each stage, blocks are stacked on top of each
other to learn hierarchical features from the input of the
bottom block. At the tops of each stage, additional lay-
ers are added to stabilize the gradients and normalize the
outputs.

For the decoder network, the representation of each
residue is transformed into the distribution over possible
labels. Following the two stages, two fully connected layers
consisting of one-by-one (1 x 1) convolution kernels are
used for information interaction between channels. The
numbers of output channels of these 1 x 1 convolution
kernels are set to ¢ and 2. The number of elements repre-
sented by the output of each block or layer is the same as
the number of initial input elements. The first fully con-
nected layer is wrapped in dropout to prevent overfitting
[37]. The output of the last fully connected layer is fed to a
2-way softmax classifier, which produces the distribution
over the labels of positive and negative samples.

The cross entropy between the training data distribu-
tion and the model distribution is used in the following
cost function:

t
J6) = — Z’ﬁ(y(i) |x(i)) log P (y(i)lx(i);G) +y - 116113

14

2)
where 6 represents the weights in DCS-SI, {xV), ... ,x®}
is a set of £ samples, {yV), -+, ¥} is a set of correspond-

ing labels (y(i) € {0, 1}) and y is the coefficient of the L2
normalization ||9||%.

enDCS-SI

We proposed enDCS-SI on the basis of stdDCS-SI. Note
that the prediction of the other residues is called the con-
text prediction. Although stdDCS-SI outperforms existing
methods, the performance can be further improved if the
context prediction is taken into consideration explicitly.
To achieve this goal, we retained the encoder network and
modified the decoder network. In addition to the output
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of the encoder network, the new decoder network receives
the context prediction as input. A group of k x 2 con-
volution kernels transforms the context prediction into
m x 1 x 2¢, where 2c¢ is the number of output channels
of the convolution kernels. The following process consists
of two parallel stages with M blocks and additional lay-
ers (in this study, we use M = 2). To extract the features
from the left (right) context prediction, we remove 1 ele-
ment from the end (start) of the context prediction. Then,
the input of each convolutional layer is padded by k ele-
ments on the left (right) side. The extracted information
of the left and right adjacent predictions is directly added
to the output of the encoder, where the three tensors have
the same shape. ConvS2SNet directly uses the labels as
the context prediction during training. Therefore, the for-
ward propagation in training operates in parallel with the
sequence. However, no label exists for the input samples
during testing. Thus, the prediction for each element is
processed serially to generate the context prediction for
the next element.

To overcome the serialization in testing, we let enDCS-
SI execute forward propagation in the decoder network 2
times. The first forward propagation is similar to that of
stdDCS-SI, but the context prediction for enDCS-SI is fed
by a zero tensor. The output of the first forward propa-
gation is used as the context prediction for enDCS-SI in
the second forward propagation. While training enDCS-
SI, the context prediction is also replaced with the labels.
All the weights in stdDCS-SI are loaded for enDCS-SI.
The rest of the weights of enDCS-SI are initialized. The
weights of the encoder network are fixed because the
encoding processes of stdDCS-SI and enDCS-SI are the
same. The architecture of enDCS-SI is described in Fig. 3.

BasicBlock

The input of BasicBlock is processed in the order LN-
GLU-Conv. The output of the /-th block is designated as
st = (s',...8™) € R™1x2¢ where m is the length of the
input sequences? and c is the number of input channels
of convolutional layer in each block. The output of the
[—1-th block is input to the /-th block. The input of each
k x 1 convolution kernel is an m x 1 X ¢ feature map con-
sisting of m input elements mapped to ¢ channels. Before
convolution, both ends of each channel are zero-padded
with k/2 elements to maintain the height of the feature
map, where the height is m. A convolutional layer with
2¢ output channels transforms the input of convolution
X € R™*1X¢ into the output of convolution Y € R"*1x2¢
to satisfy the input requirement of the gated linear units
(GLU) of the next possible block and to make the input
size and output size of the block consistent [38]. Y corre-
sponds to [A B] € R™*1x2¢ \where A, B € R"™*1%¢ are the
inputs to the GLU. A simple gating mechanism over [ A B]
is implemented as follows:
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Fig. 3 Architecture of the deep convolutional neural network in en-DeepCSeqSite (enDCS-SI). The encoder of enDCS-SI is the same as that of
stdDCS-SI. The decoder of enDCS-Sl is designed to extract the information form the labels or the previous prediction. The decoder of stdDCS-Sl is
included in the decoder of enDCS-SI, where the weights of the former are fine-tuned during training enDCS-SI. ‘p’, 's” and ‘e’ represent padding, start
mark and end mark

g[AB))=A®0a(B) 3)

where o represents the sigmoid function. The output
of GLU g([A B]) € R™*1X¢ is one-half the size of Y
and is the same as the input size of the convolution in
BasicBlock.

GLU can select the relevant context for the target
residue by the means of activated gating unit o (B). The
gradient of GLU has a path that without downscaling con-
tributes to the flow of the gradient, which is an important
reason for the choice of the activation function. The van-
ishing gradient problem is considered before going deeper.
Hence, residual connections from the input of the block
to the output of the block are introduced to prevent the
vanishing gradient [20]. The input of a block must be nor-
malized before convolution because the input is the sum
of the outputs of the several previous blocks. Without

normalization, gradients are unexpected during training.
Therefore, a LayerNormalization (LN) layer is set at the
beginning of the block to provide a stable gradient, which
is also conductive to accelerating the learning speed [39].
The function of BasicBlock is summarized in Eq.(4):

) 1 -1 -1 -1
;=W (GLL[ [si—k/Z""’Si+k/2]lN> +5; (4)

where W' represents the weights of convolution in the I-
th block, sf is the features of the i-th element represented

in the /-th block, k is the width of the convolution kernels
-1

i+k/2
normalized by LN. The details are described in Fig. 4.

and subscript IN means that [sﬁ:}( Joper S

] has been

Evaluation
The main evaluation metrics for binding residue predic-
tion results include the Matthews correlation coefficient

A
Ll

mXx1X2c

GLU

mXx1XxX2c

sequence and 2c¢ is the number of output channels of the BasicBlock

mXx1Xxc

>

mXx1X2c

Fig. 4 Architecture of BasicBlock. The input of a BasicBlock is processed in the order LN-GLU-Conv. The output of a BasicBlock is the sum of the input
and the Conv output. The shapes of the input/output for each layer in a BasicBlock are shown in the figure, where m is the length of the amino acid
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(MCC), precision (%) and recall (%), which are defined as
follows:

TP x TN — FP x EN

MCC=
/(TP+FP)(TP+EN) (TN + FP) (TN +EN)
(5)
.. TP ©)
precision = TP+ P
recall = P (7)
TP+EN

where TP is the number of binding residues predicted cor-
rectly, FP is the number of non-binding residues predicted
as binding residues, TN is the number of non-binding
residues predicted correctly and EN is the number of
binding residues predicted as non-binding residues.

Results

Optimization

For the hyperparameter choice, we focus on the number of
BasicBlocks N and the kernel width & in the BasicBlocks.
N and k both have a decisive effect on the parameter space
and the maximum length of the dependencies. Thus, N
and k are closely related to the generalization and are
separately adjusted to obtain the local optimum. When
adjusting N, the kernel size of each BasicBlock is fixed to
3 x 1 (k = 3). When adjusting k, N is fixed to 10. The
output channel number of each BasicBlock is set to 512
(¢ = 256) in this study. Experiments show that the net-
work achieves the locally optimal generalization on the
validation sets when N = 10 and k = 53. The details are
shown in Tables 2 and 3.

Experiments indicate that DCS-SI can be optimized
effectively on the training sets and achieve good gener-
alization on the test sets without any sampling. Mini-
batches are prone to contain only negative samples if
the samples are grouped via inappropriate methods. This
problem is unlikely to occur in our mini-batches because
an amino acid sequence is treated as a unit during our
grouping. The severe data skew can be overcome as long
as the proportion of positive samples in every mini-batch
is close to the actual level. The cost function is minimized
through mini-batch gradient descent. With zero-padding,
the feature maps of the proteins in a batch are filled to the
same size to simplify the programming implementation.
The coefficient y of the L2-Norm is 0.2, and the dropout

Table 2 The effect of depth on the validation sets

N=2 N=4 N=6 N=8 N=10 N=12 N=14
MCC 0422 0441 0436 0458 0482 0475 0451
Precision 4507 5087 4824 5266 5787 5833 53.80
Recall 4237 4055 4207 4211 4201 40.60 39.92
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Table 3 The effect of kernel width on the validation sets

k=3 k=5 k=7 k=9
MCC 0482 0495 0485 0479
Precision 57.87 59.85 5891 58.20
Recall 42.11 42.85 4191 4131

ratio is set to 0.5. All DCS-SI models are implemented
with TensorFlow. The training process consists of three
learning strategies to suit different training stages. The
learning rate of each stage decreases exponentially after
the specified number of iterations. The gradient may be
very steep in the early stage because of the unpredictable
error surface and weight initialization. Hence, to preheat
the network, the initial learning rate of the first stage is
set to a value that can adapt to a steep gradient. Due to
the considerable data skew, the training algorithm tends to
fall into a local minimum where the network predicts all
inputs as negative examples. A conservative learning rate
is not sufficient to escape from this type of local minimum.
Therefore, the initial learning rate of the second stage can
be increased appropriately to search better minimums and
further reduce the time cost of training. A robust strat-
egy is required at the end of training to avoid the strong
sway phenomenon. The details of the learning strategies
are available in our software package.

The effect of the softmax threshold

DCS-SI tends to predict residues as non-binding residues
because the proportion of positive and negative samples
in each batch is maintained at approximately the natu-
ral proportion. For the binary classification model, the
threshold of positive and negative samples has a nonnegli-
gible impact on performance. As shown in Table 4, despite
losing some precision, MCC and recall increase with the
decreasing threshold, where the threshold is the mini-
mum probability required for a sample to be predicted as
positive. When the threshold = 0.4, the MCC achieves
local optimization.

Comparison with other methods

stdDCS-SI and the baselines are tested on SITA and three
extended testing sets. The existing 3D-structure-based
methods within the baselines (TM-SI, COF and COA)
outperform the sequence-based method S-SI on the test-
ing sets. stdDCS-SI is far superior to all the baselines. The
improvements of MCC and precision are no less than 0.05
and 15%, respectively. One possible reason for the mod-
erate recall of stdDCS-SI is that the low percentage of
binding residues in the training sets leads to prudent pre-
diction of stdDCS-SI. Improving the recall of stdDCS-SI
is a topic for future research. The details are described
in Table 5, where the hyperparameters are locally best
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Table 4 Prediction results on the validation sets with different
thresholds

Thr' Precision Recall MCC
09 66.59 37.67 0.491
0.8 65.21 38.68 0.492
0.7 64.33 39.50 0.494
0.6 63.55 4024 0495
05 62.66 40.69 0494
04 61.99 4143 0496
0.3 60.96 42.08 0.495
0.2 59.85 42.85 0.495
0.1 58.03 43.93 0493

"Thr: The threshold of the softmax

adjusted for stdDCS-SI (k = 5, N = 10 and thresh-
old = 0.4). All the baselines used in the experiments are
included in the I-TASSER Suite [31].

All the features used in this study are obtained from
sequence or evolution information through computa-
tional methods. However, noise is introduced by the pre-
dictions of some features, including secondary structures
and dihedral angles. The performance of stdDCS-SI will
improve if these features are more accurate.

Comparison of stdDCS-SI and enDCS-SI

The residues adjacent to binding residues have a higher
probability of binding than do the other residues. stdDCS-
SI does not explicitly consider the aggregation of binding
residues. The consideration of aggregation is implicitly

Table 5 Prediction results for the baselines and stdDCS-SI on the
testing sets

TestSet  Evaluation  TM-SI'  S-SI2 COF®  COA*  stdDCS-SP

SITA MCC 0337 0293 0411 0423 0476
Precision 32.16 2193 4206 3297 5864
Recall 4724 5571 4924 7520 4582

SIEX] MCC 0313 0280 0364 0391 0465
Precision 2993 2148 3690 3059 56.26
Recall 4374 5249 4453 6944 4501

SIEX2  MCC 0284 0267 0325 0358 0452
Precision 2664 2061 3270 2790 5378
Recall 4042 5004 4020 6444 4401

SIEX3 MCC 0278 0263 0315 0343 0449
Precision 2644 2060 3179 2707  53.07
Recall 3921 4841 3870 6154 4390

TTM-SI: TM-SITE

25-SI: S-SITE

3COF: COFACTOR

4COA: COACH

>DCS-SI: DeepCSeqSite
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included in the transformation of the hidden represen-
tation, which is one reason for the good performance of
stdDCS-SI. Furthermore, enDCS-SI predicts the binding
residues with aggregation explicitly. The decoder network
of enDCS-SI can extract useful information from the con-
text prediction. As shown in Table 6, the MCC for each
testing set is improved 0.01 ~0.02 by enDCS-SI. Although
enDCS-SI requires more time to execute the additional
forward propagation in its decoder network, the total time
cost of enDCS-SI is not significantly increased. During
testing, the predictions for every residue can be exe-
cuted in parallel. Only the two forward propagations are
processed serially. The advantage of enDCS-SI is more
prominent if the input amino acid sequences are long and
the machines have sufficient computational capacity.

The effect of data augmentation

Data augmentation typically contributes to the general-
ization of deep neural networks. To achieve better gen-
eralization, we use redundant proteins to obtain the aug-
mented training sets (Aug-Train). The pairwise sequence
identity is allowed to be 100% in Aug-Train, which con-
tains at least nine times as many proteins as the original
training sets.

As shown in Table 7, the model trained on Aug-Train
has slightly better generalization performance on the test-
ing sets. However, the computational cost has increased
several times. Relative to the cost, the improvement from
data augmentation is far less than expected. This coun-
terintuitive result indicates that proteins with a high
sequence identity contribute little to the generalization
of the network. Therefore, data augmentation based on
high redundancy is not suitable as the main optimization
method in this study.

Discussion

The effective utilization of data contributes to the
improvement. Traditional classifiers are used in many
existing methods, where the classifiers include SVM and
traditional artificial neural networks (ANN). The input
features for these classifiers are designed manually, and
transformations in these classifiers focus on how to sepa-
rate the input samples. Further feature extraction is inade-
quate, which limits the representation and generalization

Table 6 Prediction results for stdDCS-SI and enDCS-SI

stdDCS-SI enDCS-SI
TestSet  Precision  Recall ~ MCC Precision ~ Recall ~ MCC
SITA 58.64 45.82 0476 61.53 47.39 0.498
SIEXT 56.26 45.01 0.465 5861 4539 0478
SIEX2 53.78 44.01 0452 55.69 4444 0462
SIEX3 53.07 43.90 0.449 54.85 4414 0456
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Table 7 The effect of data augmentation

Train Aug-Train'
TestSet?>  Precision  Recall ~ MCC Precision ~ Recall ~ MCC
SITA 56.31 41.55 0.448 58.79 42.27 0470
SIEX1 53.66 40.20 0432 55.81 4145 0454
SIEX2 50.12 38.80 0411 5323 39.79 0434
SIEX3 49.38 39.07 0410 52.88 39.81 0433

'Due to the difficulties in training on Aug-Train, networks with k = 9and N = 10
are used in this experiment. The average-cross entropy loss per protein on Train and
Aug-Train are 0.80 and 7.77, respectively. The cross-entropy loss on Aug-Train does
not change substantially with further training. For fair comparison, we do not use
more complex networks

2SIEXT: SITA-EX1, SIEX2: SITA-EX2, SIEX3: SITA-EX3

of these classifiers. Deep convolutional neural networks
take advantage of massive sequence information. The
hierarchical structure has the ability to extract low-level
features and to organize low-level features as high-level
features. The representation ability of the hierarchical fea-
tures improves with the increase in layers, which requires
sufficient data to ensure generalization. Currently, mas-
sive sequence information satisfies this requirement. In
addition to the representation ability, the hierarchical
structure provides the ability to capture long-distance
dependencies. Without segmentation, the maximum dis-
tance of dependencies is not limited to the window size.
Long-distance dependencies can be reflected in high-level
features with a sufficiently large input field.

Most traditional machine learning methods are sensi-
tive to data skew, which fundamentally affects the gen-
eralization. The number of binding residues is far less
than that of non-binding residues in our datasets, espe-
cially for metal ions and acid radical ions. The pro-
portion of binding residues in the datasets is no more
than 4%. We have attempted to replace the network in
DCS-SI with SVMs. However, SVMs make the normal
convergence on the unsampled training sets difficult.
Even if the SVMs converge normally, their generaliza-
tion is challenging. By contrast, the representation of
DCS-SI is sufficiently strong to capture effective fea-
tures for fitting and generalization without sampling.
Training without sampling allows the network to learn
more valid samples, which also contributes to the
improvement.

DCS-SI is better than the baselines in terms of predict-
ing the binding residues of metal ions and acid radical
ions. As shown in Table 5, the performance of the base-
lines decreases when metal ions and acid radical ions are
added to SITA. The decrease in MCC is 0.03 ~ 0.04.
Regardless, the performance of DCS-SI remains close to
its original level, and the MCC of DCS-SI decreases by no
more than 0.02. The contrast indicates that the superiority
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in predicting the binding residues of metal ions and acid
radical ions is a direct source of the improvement.

Conclusion

We propose a sequence-based method called DeepC-
SeqSite (DCS-SI), which introduces deep convolutional
neural networks for protein-ligand binding residue
prediction. The convolutional architecture effectively
improves the predictive performance. The highlights from
DCS-SI are as follows:

1. The convolutional architecture in DCS-SI provides
the ability to process variable-length inputs.

2. The hierarchical structure of the architecture enables
DCS-SI to capture the long-distance dependencies
between the residues, and the maximum length of
the dependencies can be precisely controlled.

3. Augmentation of the training sets slightly improves
the performance, but the computational cost for
training increases several times.

4. Without using any template including 3D-structure
data, DCS-SI significantly outperforms existing
sequence-based and 3D-structure-based methods,
including COACH.

In future work, we plan to access the residues correla-
tion at long distance by various attention mechanisms.
Furthermore, the application of finite 3D-structure data
to deep convolutional neural networks may effectively
improve the protein-ligand binding residue prediction
performance. Generative adversarial nets is a method that
is worth applying to attempt to solve the severe deficiency
of 3D-structure data relative to sequence data [40].

Endnotes

'HEM contains HEM and HEC.

ZAs “Method outline”, the
sequences have been padded.

mentioned in input

3Due to the constraint of resources and cost, deeper
networks have not been tested.
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