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Abstract

may be good candidates for drug targets.

Background: The identification of prognostic genes that can distinguish the prognostic risks of cancer patients
remains a significant challenge. Previous works have proven that functional gene sets were more reliable for this
task than the gene signature. However, few works have considered the cross-talk among functional gene sets,
which may result in neglecting important prognostic gene sets for cancer.

Results: Here, we proposed a new method that considers both the interactions among modules and the
prognostic correlation of the modules to identify prognostic modules in cancers. First, dense sub-networks in the
gene co-expression network of cancer patients were detected. Second, cross-talk between every two modules was
identified by a permutation test, thus generating the module network. Third, the prognostic correlation of each
module was evaluated by the resampling method. Then, the GeneRank algorithm, which takes the module network
and the prognostic correlations of all the modules as input, was applied to prioritize the prognostic modules.
Finally, the selected modules were validated by survival analysis in various data sets. Our method was applied in
three kinds of cancers, and the results show that our method succeeded in identifying prognostic modules in all
the three cancers. In addition, our method outperformed state-of-the-art methods. Furthermore, the selected
modules were significantly enriched with known cancer-related genes and drug targets of cancer, which may
indicate that the genes involved in the modules may be drug targets for therapy.

Conclusions: We proposed a useful method to identify key modules in cancer prognosis and our prognostic genes

Keywords: Module network, Cancer prognosis, GeneRank, Drug targets

Background

The identification of prognostic genes that can distin-
guish the prognostic risks of cancer patients is essential
for the study of cancer. These genes could be used to
predict the prognosis of cancer patients [1, 2]. Addition-
ally, the prognostic genes may be essential in the bio-
logical process of cancer progression and metastasis and
thus may be potential drug targets [3, 4]. However, most
of the published signatures suffer poor generalization
[5]. That is, the prognostic genes selected from one data
set are not correlated with the prognostic risks in other
data sets [6]. This phenomenon may be due to the high
heterogeneity of cancer [7]. Therefore, the selected genes
whose expression levels are correlated with the
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prognostic risks in one data set may be passengers ra-
ther than drivers in others.

Based on the hypothesis that genes involved in a
certain functional gene set (i.e, GO term or Pathway)
may be more stable, a few works attempted to identify
prognostic gene sets based on GO term [8], Pathway [9]
and modules in the PPI (protein-protein interaction)
network [10-12] or a gene co-expression network [11].
In addition, the prognostic modules (gene sets) outper-
form the gene signatures [13]. Therefore, it seems that
gene modules rather than gene signatures are more
promising in cancer prognosis.

As we know, cross-talk among pathways is common
[14], and understanding the cross-talk between pathways
is essential for the study of more complex systems
[15, 16]. However, most previous works have ignored
the cross-talk among the modules, which may result
in neglecting the driver modules in cancer prognosis.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2674-z&domain=pdf
mailto:zhy630@mail.hzau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhou et al. BMC Bioinformatics (2019) 20:85

In this work, based on fact that the dense clusters in
co-expression networks may serve as a functional unit
to influence the prognosis of cancer patients, we first
constructed a gene co-expression network using the
gene expression data of cancer patients. Then, the
modules that were dense clusters in the network were
detected. Adopting a similar strategy as in a previous
work [16], we identified cross-talks between every two
modules by testing whether the number of edges be-
tween the two modules are significant compared with
the background distribution of the edges’ number of two
random gene sets. Then, all cross-talks among the mod-
ules could constitute a module network. To identify the
essential modules in cancer prognosis, we first calculated
the prognostic correlation of each module by a resam-
pling method. Then, the algorithm of GeneRank [17],
which takes the module network and the prognostic
correlations of all the modules as input, was applied to
prioritize the prognostic modules. The prognostic mod-
ules were validated by survival analysis in various data
sets. In addition, we also performed the enrichment ana-
lysis of these genes involved in modules with curated
cancer genes and drug targets to validate the prognostic
modules. The evolutionary information of cancer driver
genes is helpful for the construction of cancer prognosis
prediction models [18, 19]. Therefore, we also investi-
gated the evolutionary feature of our genes involved in
the prognostic modules. Furthermore, our method was
applied in three kinds of cancers (ovarian cancer, breast
cancer and lung adenocarcinoma) and was compared
with the state-of-the-art methods.

Methods

Data sets and pre-processing

We applied our method to data sets of ovarian cancer,
lung adenocarcinoma and breast cancer. All the data sets
contain gene expression data and prognostic information
(time of death and death status) of cancer patients. In
this work, the data set of lung cancer from TCGA (The
Cancer Genome Atlas) was measured by RNA-seq, and
the gene expression data of all the other data sets was
measured by genechip. For all gene expression data, the
probes were mapped to Entrez Gene ID, and the expres-
sion levels of the probes for each gene were averaged.

In ovarian cancer, 1432 samples from two data sets
were collected (the detailed information of the two data
sets was shown in Additional file 1: Table S1). Among
these data sets, 300 samples from TCGA were randomly
selected for the training data set and the other 267 sam-
ples from TCGA were assigned to the test data set. The
other data set was used as independent data set.

In lung adenocarcinoma, 535 samples from TCGA and
443 samples from GSE68465 were used in this work.
Among these samples, 300 samples from TCGA were
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randomly selected for the training data set, and the
other 235 samples from TCGA were assigned to the test
data set. All the samples in GSE68465 [20] were set as
the independent data set.

For breast cancer, a merged data set [21] containing
855 samples was used in this work. In this data set,
GSE2034 [22] was set as the independent data set. Of
the other 569 samples, 300 samples were randomly
chosen for the training data set, and the others were
assigned to the test data set.

We collected the cancer genes from COSMIC and
Sanger [23]. The adaptation diseases and the target
information of drugs were obtained from the TTD
(Therapeutic Target Database) [24], the DGIdb (Drug--
Gene Interaction Database) [25] and DrugBank [26, 27].

Construction of the gene co-expression network using a
rank-based method

The Pearson correlation coefficient was applied to calcu-
late the correlations of the expression levels between
every two genes. Based on the correlation coefficient, a
rank-based method was used to construct the gene
co-expression network [28]. As we know, genes in one
functional pathway may be strongly mutually
co-expressed, but genes in another functional pathway
may be weakly co-expressed [28]. Therefore, it may be
reasonable to construct the gene co-expression network
based on the rank-based method rather than the
value-based method. The former method selects the
co-expression genes of each gene by the rank of the
correlations, and the latter method identifies a gene’s
neighbors based on a threshold of the correlations. In
this work, adopting a similar strategy to the rank-based
method [28], for each gene, we selected the 10 most
correlated genes as its neighbors, and all the gene pairs
constitute the gene co-expression network.

Network visualization and module detection

We used Cytoscape 3.5.3 to visualize the co-expression
networks and the module networks, and the MCODE
[29] plug-in for Cytoscape was applied to detect the
dense clusters in the network. In this work, only the
modules containing no less than 5 nodes were retained.

Construction of the module network using the
permutation method

In the co-expression network, if the number of edges
across two modules is significantly high, then there may
be cross-talk between the two modules. The significance
of the cross-talk between every two modules is calcu-
lated by a permutation test, which is shown as follows:

(1) The number of the edges across the two modules in
the gene expression network is calculated.
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(2) Two random gene sets, which contain the same
number of genes as the two real modules, are
selected from the gene co-expression network.
Then, the number of edges across the random gene
sets is calculated.

(3) The procedure in step 2 is repeated 1000 times, and
the edge numbers across the random gene sets are
set as the null hypothesis distribution. Based on the
null hypothesis distribution, the p-value of the
cross-talk between the two modules is calculated.

Based on the permutation test, all significant module
pairs with p-values less than 0.05 could constitute a
module network.

Calculation of the prognostic capability of the modules
using a resampling method

The correlation between the gene expression levels of
the modules and the prognostic risks of cancer patients
could be calculated by cox regression. In order to obtain
a more stable result for cox regression, a resampling
method, which aims to generate more training data sets
for cox regression, was proposed. For each module, the
results for 400 cox regressions in the training data sets
by resampling, were used to evaluate its prognostic cap-
ability, which would be used as an input in the module
prioritization algorithm.

First, the expression levels of the genes in the modules
were averaged as the statistical values of the correspond-
ing modules. The statistical values for each module in
the corresponding patient could be calculated by the
follow equation.

n
P
i=1

n

s = (1)

Here, n is the number of genes in the module. ¢; is the
expression level of the ith gene of the module in the
corresponding patient. Therefore, the statistical value of
this module in the corresponding patient could be
calculated.

Then, 90% of the samples in the training data set were
randomly selected. In the chosen data set, the Cox
proportional hazards regression was applied to calculate
the relationship between each module’s statistical value
and the prognostic risks (time of death and death status)
of the selected patients.

Finally, we repeated the procedure 400 times, and the
significant frequency, that is, the number of times that
the module’s cox p-value was less than 0.05 in the 400
runs, was set as the prognostic capability of the module.
The significant frequency of each module could
characterize the prognostic stability of it. Furthermore,

Page 3 of 11

the average Cox coefficient of each module in the 400
runs is set as the final Cox coefficient of the module.

Prioritizing modules using the algorithm of GeneRank
The GeneRank algorithm [17] succeeded in identifying
key genes from the biological network. Here, we applied
it to prioritize the essential modules in prognosis from
the module network. The algorithm is described as
follows:

(2)

Here, r;.’

is the importance (prognostic capability) of
the module j after # iterations; p; is the initial import-
ance, which is calculated by the resampling method; w;is
equal to 0 or 1, with 1 indicating the existence of
cross-talk between module i and module j, and 0 indi-
cating no interaction between the two modules; degree;
is the number of neighbors of module i in the module
network; N is the module number in the network; and d
(0<d< 1) is a constant, where a larger d indicates that
the importance of the modules is dependent more on
the topological structure of the network, and a smaller d
indicates that the importance of the modules depends
more on the initial importance of the modules. Here, we
adopted the same strategy as a previous work [30] and
set d as 0.70.

As proved in this work [17], the above iteration
corresponds to Jacobi on the system

(I-dW'D™")r = (1-d)p (3)

Here, I is the identity matrix, W is the adjacency
matrix of our module network; D = diag(degree; ),
and p is a vector (N x I) that contains the initial im-
portance of the N modules in the network. By solving
this equation, the vector r (N x 1), which contains the
final importance of all the nodes in the network,
could be obtained.

Survival analysis using selected modules
Based on the prognostic modules, GGI [31] was applied
to calculate the prognostic risk of each patient:

Risk Score = Z si— Z s; (4)

Here, s; is the statistical value (the average value of all
the genes’ expression levels in the module) of the
module whose Cox coefficient is positive, and s; is the
statistical value of the module whose Cox coefficient is
negative. Then the patients in the data set were divided
into two groups with the same number of patients ac-
cording to their prognostic risks. Finally, the log rank
test was performed to test whether there is a significant
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difference in the real survival risks between the two
groups.

Furthermore, a discrimination score (Dscore) was
defined to evaluate the distinguishing capability of the
prognostic modules across various data sets, which is
described as follows:

n

Dscore = - Z log,, (p-value;) (5)

i=1

In this equation, p — value; is the log rank p-value in
the ith data set, and # is the number of cancer data sets.

Enrichment analysis

The hypergeometric test was applied to test whether the
intersection of the genes in the prognostic modules and
the known cancer genes (or the drug targets) is signifi-
cant, which was calculated as follows:

p-value = F(x/M,K,N)

ity .

M

N
Here, x is the number of genes in the intersection set,
M is the number of genes in the universal set, K is the

number of genes in the modules and N is the number of
cancer genes (drug targets).

1
i=0

Results

The module networks of the three cancers

The module network would reveal cross-talks among
the modules. Therefore, the module network could fa-
cilitate the identification of key modules in cancer prog-
nosis. In this work, we propose a new method to
construct the module network. First, based on the gene
expression data of cancer patients, a rank-based method
was used to construct a gene co-expression network.
Then, the dense clusters, which were communities in
the network, were detected as modules. Next, a permu-
tation test was proposed to identify cross-talks among
the modules. In this work, we applied it in ovarian
cancer, breast cancer and lung adenocarcinoma, respect-
ively. The module networks of the three cancers are
shown as follows.

The module network of ovarian cancer

Using the gene expression profiles of ovarian cancer pa-
tients in TCGA, a gene co-expression network was con-
structed. In this network, there are 15,406 nodes and
154,060 edges, and the average number of neighbors of
the genes in the network was 16.67. The power-law fit of
the nodes’ degrees with the number of nodes showed that
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the network was scale-free, with a correlation of 0.902 and
an R-square of 0.925 (Additional file 1: Figure S1).

Based on the co-expression network, 258 modules
were detected. The genes within each module were
densely connected with each other and rarely connected
with other genes outside the module. After the identifi-
cation of cross-talks among these modules, the module
network of ovarian cancer was constructed (Additional
file 1: Figure S2). As a result, 957 edges were identified
among the 258 modules, and the average number of
neighbors of the modules was 7.419, which may indicate
that cross-talk among the modules were common.

The module network of breast cancer

For breast cancer, the gene expression data of all the
samples in the merged data set [21] (except for the
samples in GSE2034 [22]) was used to construct a
co-expression network. As a result, 170,920
co-expression pairs among 17,092 genes were ob-
tained, and the average number of neighbors of the
genes in the network was 16.92. The power-law fit of
the nodes’ degrees with the number of nodes showed
that the network was also scale-free, with a correl-
ation of 0.937 and an R-square of 0.945 (Additional
file 1: Figure S3). The module network constructed
based on the co-expression network contained 150
modules, with 614 edges among the 150 modules
(Additional file 1: Figure S4).

The module network of lung adenocarcinoma
The gene expression profiles of lung adenocarcinoma
patients from TCGA were used to construct a gene
co-expression network. In the co-expression network,
there were 12,153 nodes and 121,530 pairs. For the
nodes in the network, the average number of
co-expressed genes was 16.76. Similar to the
co-expression networks of ovarian cancer and breast
cancer, the co-expression network of lung adenocarcin-
oma was also scale-free, with a correlation of 0.899 and
an R-square of 0.950 in power-law fit (Additional file 1:
Figure S5). Based on the co-expression network, the
module network of lung adenocarcinoma was also con-
structed. There were 181 modules and 593 edges in the
network (Additional file 1: Figure S6). Furthermore, the
average number of neighbors of each module was 6.701.
From these results, we can see that the module net-
works in all three cancers are dense, which may indicate
that cross-talks among the modules are common.

The prognostic modules of the three cancers

For the modules in each of the three cancers, the
modules’ prognostic capabilities were calculated by the
resampling method using the training data set of the
corresponding cancer. Then, based on the module
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network and the modules’ prognostic capabilities, the al-
gorithm GeneRank was applied to prioritize the modules
in cancer prognosis for the three cancers, respectively.
In each kind of cancer, top 5% of all the modules in the
corresponding module network were selected as key
modules. As a result, 13 modules in ovarian cancer
(Additional file 1: Table S2), 8 modules in breast cancer
(Additional file 1: Table S3) and 9 modules in lung
adenocarcinoma (Additional file 1: Table S4) were iden-
tified, respectively.

Survival analysis using the prognostic modules

To validate the prognostic modules, the survival analysis
of the cancer data sets was performed for the three
kinds of cancer. The results of the survival analyses of
the three cancers are shown as follows.

Survival analysis in ovarian cancer

As described above, 13 modules in ovarian cancer were
selected as key modules in the prognosis of ovarian
cancer. Based on the gene expression data of the 13
modules’ statistical values, the prognostic risks of cancer
patients could be calculated (Method). Then, a survival
analysis could be used to test whether the patients in the
low-risk group, calculated by our method, had longer
survival times than the high-risk group.

In the testint data set (267 patients in TCGA), the
HR (hazard ratio) of the two groups divided by our
method was 1.72, and the log rank p-value was
8.90e-04 (Fig. 1a). In a previous work [32], a merged
data set containing data for 1287 patients was col-
lected to validate the prognostic signature in ovarian
cancer. Here, after removing the redundant samples
which were from the TCGA, we used the other 865
samples as independent data set. After that, we used
our prognostic modules to predict the prognostic
risks of all the patients in the independent data set.
As a result, the HR of the two groups predicted by
our method was 1.64, and the p-value was 6.66e-08
(Fig. 1b). These results indicate that our prognostic
modules could discriminate the prognostic risks of
cancer patients in ovarian cancer.

Survival analysis in breast cancer
In breast cancer, a merged data set [21] containing
855 samples was used in this work. In this data set,
all 286 samples from GSE2034 were set as the inde-
pendent data set [22]. As to the other 569 samples,
300 patients were selected for the training data set,
and the others were assigned to the test data set. In
the training data set, 8 modules were selected as
prognostic modules.

Then, the selected modules were used to calculate the
prognostic risks of the cancer patients in the test data
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set and in the independent data set. In the test data set,
the low-risk group had a significantly longer survival
time, with an HR of 1.57 and a p-value of 0.0077 (Fig. 2a).
Furthermore, the survival analysis in the independent data
set also proved that our modules could distinguish the
prognostic risks of cancer patients, with an HR of 2.35
and a p-value of 3.37e-05 (Fig. 2b), respectively.

Therefore, a conclusion can be drawn that the prog-
nostic modules could distinguish the prognostic risks of
cancer patients in breast cancer.

Survival analysis in lung adenocarcinoma

In lung adenocarcinoma, 300 samples from TCGA were
selected for the training data set, and the other 235
patients were assigned to the test data set. In addition,
all 443 samples in GSE68465 [20] were set as the
independent data set. Using our method, 9 modules in
the training data set were identified.

Based on these modules, the prognostic risks of cancer
patients in the test data set and the independent data set
were calculated. The survival analysis in both data sets
showed that our modules could distinguish the prognos-
tic risks of cancer patients significantly, with HR values
of 2.10 (p-value =4.79e-04) in the test data set (Fig. 3a)
and 1.35 (p-value =0.011) in the independent data set
(Fig. 3b).

From these results, we can see that our method could
identify the prognostic modules in all three kinds of can-
cer. Additionally, these modules could distinguish the
prognostic risks of cancer patients in a large number of
patients from various data sets. As we know, the main
problem of the traditional methods is that they cannot
perform well in independent data sets. The good
performance of our method has validated the superiority
of our method.

Comparison with other methods

As described above, the main hypothesis of our method
is that the cross-talk among modules may influence the
outcomes of cancer patients. Therefore, the module net-
work may facilitate the identification of key modules in
prognosis. To validate our method, the same numbers of
modules as our prognostic modules, which were ranked
by the resampling method, were selected as control
modules. In a previous work [33], it has been proved
that the random gene set may be also prognosis in
multiple cancer types. Therefore, a permutation test was
applied to test whether the performance of our method
was better than the random gene sets, which contained
the same number of genes as our modules. At last, we
also compared the performance of our prognostic
modules with the published signatures.
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Comparing results in ovarian cancer

In ovarian cancer, 13 modules with the most correlated
gene expression levels with the prognostic risks of
cancer patients were identified by a resampling method.
Then, the control modules were used to calculate the
prognostic risks of cancer patients in the test data set
and in the independent data set. The survival analysis
showed that the control modules could distinguish the
prognostic risks of cancer patients in both of the data
sets (Additional file 1: Table S5). However, the control
modules performed worse in both of the data sets com-
pared with our prognostic modules. To evaluate the
discrimination capability of the modules in various data
sets, a Dscore was defined to characterize it (Method).
As a result, the Dscore of our prognostic modules was
10.23, and the control modules achieved a Dscore of
7.78 (Table 1).

Table 1 Dscores of our prognostic modules, the control
modules and the published signatures

Ovarian cancer Breast cancer Lung

adenocarcinoma
Prognostic modules  10.23 6.58 529
Control modules 7.78 5.05 4.76
Published signatures  3.55 4.50 087
42-gene signature 2.05 2.57 3.19

The Dscore is defined to characterize the distinguishing capability of the
prognostic modules across various data sets. A higher Dscore means a better
performance in prognosis

In addition, a permutation test was applied to validate
our method. First of all, we randomly selected the same
number of genes with that of our prognostic modules in
ovarian cancer. After that, the random gene set was
applied to calculate the prognosis risks of the patients in
the same data sets, and a Dscore was calculated. At last,
the process was repeated 1000 times, and a p-value was
obtained by comparing the Dscore of our modules with
the 1000 Dscores of the random gene sets. As a result,
the p-value of our method is 0.10, which may indicate
that our method is better than most of the random gene
sets. In the meanwhile, the random gene set may be
used to predict the prognosis of cancer patients with a
much higher probability than expected [19]. This result
may prove that the cross-talk among the modules could
facilitate the identification of prognostic genes.

Furthermore, a 37-gene signature, which was identified
in the literature [32], was also applied to predict the
prognostic risks of cancer patients in these data sets.
The signature could distinguish the prognostic risks in
these data sets, with the log-rank p-values of 0.0076 and
0.037 in test data set and independent data set respect-
ively (Additional file 1: Table S6). However, the Dscore
showed that the signature performed worse compared
with our prognostic modules and the control modules
(Table 1).

In a previous work [6], 42 genes, which could predict
the prognostic risks of cancer patients in multiple cancer
types, were selected as prognostic markers. Here, we also
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compared the performance of our method with the
42-gene signature. This method performed well in the
test data set (Additional file 1: Table S7). However, it
couldn’t discriminate the prognostic risks in the inde-
pendent data set. In addition, the Dsocre (2.05) of the
42-gene signature also showed our method performed
better (Table 1).

Comparing results in breast cancer

For breast cancer, based on the resampling method, 8
modules were selected as control modules. Using the
control modules, the patients in the test data set and the
independent data set were predicted as low-risk or
high-risk. The control modules could distinguish the
prognostic risks in both data sets (Additional file 1:
Table S8). However, our prognostic modules outper-
formed the control modules in both data sets. The
Dscores of our prognostic modules and the control
modules were 6.58 and 5.05, respectively.

We also compared the performance of our modules
with that of the random gene sets by permutation test.
As a result, the p-value was 0.0030. That is, out of 1000
random gene sets, only three were better than ours,
which may indcate our method was significantly better
than the random gene sets.

The 70-gene signature [34] is the most well-known
gene signature in breast cancer. Here, we calculated the
prognostic risks of cancer patients in the same data sets.
The 70-gene signature performed well in both data sets
(Additional file 1: Table S9), but the performance of our
method was the better (Table 1). In addition, the
42-gene signature [6] was also used to do survival ana-
lysis in the breast cancer data sets. As a result, it
couldn’t distinguish the risks of cancer patients in these
data sets (Additional file 1: Table S10), and its Dscore
was 2.57.

Comparing results in lung adenocarcinoma

In lung adenocarcinoma, 9 modules were identified by
the resampling method. Using the 9 modules as control
modules, patients in the test data set (TCGA) and the
independent data set (GSE68465) were predicted as
high-risk or low-risk. The control modules performed
well in the test data set but poorly in the independent
data set (Additional file 1: Table S11). In the independ-
ent data set, the log rank p-value of the prognostic risks
between the two groups was 0.11.

In lung adenocarcinoma, 1000 random gene sets were
also selected to perform survival analysis in the data sets
of lung adenocarcinoma. As a result, p-value of the
permutation test was 0.0080, which may validate our
method.

In a previous work [35], 16 genes were used as
markers to predict the prognostic risks of cancer
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patients in lung adenocarcinoma. In this work, we used
this signature to calculate the prognostic risks in the
same data sets of our modules. The gene signature could
not discriminate the prognostic risks in both data sets
(Additional file 1: Table S12). As to the performance of
the 42-gene signature [6], it performed well in the
testing data set. However, it couldn’t distinguish the
prognositc risks of cancer patients in the independent
data set (Additional file 1: Table S13) and its Dscore was
3.19 (Table 1). The Dscores of our prognostic modules,
the control modules and the signatures showed that the
performance of our modules was the best and that the
gene signature was the worst.

From these results, in all three types of cancer, our
prognostic modules, which were based on both the mod-
ule network and the resampling method, outperform the
control modules, random gene sets and the published
signatures. The performance of the control modules was
better than the gene signature. The strong performance
of our prognostic modules not only revealed the super-
iority of our method but also validated the hypothesis
that cross-talks among modules may influence the out-
comes of cancer patients.

Enrichment analysis with the curated genes

To validate the clinical value of the genes involved in
our modules, we investigated the overlaps between our
prognostic genes and the known cancer genes. Further-
more, the overlap between our prognostic genes and the
targets of drugs for the corresponding cancer was also
investigated. In addition, the genes involved in the
control modules were assessed using the same analysis
to evaluate our method.

The significance of the overlaps was calculated by the
hypergeometric test. From Fig. 4, we can see that the
genes involved in the prognostic modules are signifi-
cantly enriched by known cancer genes and the targets
of drugs for the corresponding cancer. In addition, our
prognostic genes outperformed the control genes in all
investigations.

The significance of the overlap between our prognostic
genes and the known cancer genes may explain the
distinguishing capability of our prognostic modules in
cancer prognosis. An enrichment analysis of our
prognostic genes with the targets of drugs for the
corresponding cancer could prove the therapeutic value
of our prognostic genes.

The evolutionary origins of the genes in the selected
modules

Cancer driver genes were observed to be enriched in
genes originating from ancestors of multicellular organ-
isms [36] and genes originating from Eukaryota [19].
Previous studies have shown that the cancer prognosis
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prediction models based on gene signatures, which are
consistent with the evolutionary feature, are more accur-
ate [18] and robust [19]. Therefore, it is of great interest
to investigate that whether the origin of our prognostic
genes is consistent with the evolutionary feature. The
human gene age information was obtained from a previ-
ous work [37], which divided the genes into eight classes
according to their origins. The origins of the genes in-
clude the first cellular organism, the common ancestor
of Eukaryota and Archaea (Euk_Archaea), Eukaryota,
Opisthokonta, Eumetazoa, Vertebrata, Mammals, and
horizontally transferring from Bacteria (Euk + Bac).

For each cancer, the overlaps of the genes involved in
the prognostic modules and the genes of different stages
were calculated. The significances of the overlaps were
calculated by a hypergeometric test (Fig. 5). From this
result, we can see that the genes originating from the
eukaryote were significantly enriched with the prognos-
tic genes of all the three kinds of cancers. Our previous
work also proved that the cancer driver genes were
enriched by genes originating from Eukaryota [19]. In
addition, in a latest work [38], the authors investigated
the difference of expression levels (tumors vs. normal
samples) of the genes originating from different stages
and found that the genes from the stage of eukaryota are
the most up-regulated ones, which is consistent with our
results.

Discussion

The identification of prognostic genes that can distin-
guish the prognostic risks of cancer patients remains a
big challenge. Based on the hypothesis that functional
gene sets may be more stable than the gene signature

and that the investigation of the cross-talks among the
functional gene sets may facilitate the prioritization of
key modules (functional gene sets) in the prognosis of
cancer patients, we propose a new method that involves
both the interactions among modules (gene sets) and
the prognostic capability of the modules to identify the
prognostic modules in cancers.

We applied our method in three types of cancer, and
the selected modules could distinguish the prognostic
risks of cancer patients in a large number of data sets,
including ovarian cancer, breast cancer and lung
adenocarcinoma. The results showed that our prognostic
modules performed better than the control modules,
which were selected without using the module network.
In addition, our prognostic modules also outperformed
the published gene signature. All these results validate
the hypothesis that the functional gene sets may be more
stable than the gene signature and that the investigation
of the cross-talks among the functional gene sets may
facilitate the prioritization of key modules.

Furthermore, the biological meaning and the thera-
peutic value of the prognostic modules were also investi-
gated. In all three cancers, the genes in the prognostic
modules were significantly enriched with known cancer
genes and the targets of drugs for the corresponding
cancers, indicating that our prognostic genes may be
good candidates as drug targets in cancer.

It is of great interest to investigate the evolutionary
feature of the cancer driver genes. In this work, we
also investigated the enrichment pattern of our prog-
nostic genes with the genes originating from different
stages of the evolutionary process. As a result, our
prognostic genes were significantly enriched by the
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genes originating from the eukaryote in all the three
types of cancer, which is consistent with the previous
work [19].

The good performance of our method may be due to
three reasons. First, our method is based on a reasonable
hypothesis. Second, our method is data driven. Unlike
the traditional method, the modules are always known
functional gene sets (i.e., GO term or Pathway) and the
modules in our method are dense clusters in the gene
co-expression network. Therefore, our method may
identify new modules. Third, our method applies suit-
able calculation models. For example, the algorithm of
GeneRank takes advantage of both the topological
structure of the module network and the statistical
relationship between the modules’ gene expression data
and the prognostic risks of cancer patients. As we know,
the modules in the co-expression network are
co-expressed with each other. Therefore, the use of the
average value of the genes’ expression levels in the
module as the statistical value of the module may re-
move the noise in the gene expression data.

Conclusion

In conclusion, we proposed a useful method to identify
key modules in prognosis. Our method could also be
applied in the study of other biological problems as long
as there are enough samples with transcriptome data.

Additional file

Additional file 1: The file includes six figures (Figures S1-S6) and thirteen
tables (Tables S1-513). (DOCX 2399 kb)
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