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Abstract

Background: Protein ubiquitination occurs when the ubiquitin protein binds to a target protein residue of lysine
(K), and it is an important regulator of many cellular functions, such as signal transduction, cell division, and
immune reactions, in eukaryotes. Experimental and clinical studies have shown that ubiquitination plays a key role
in several human diseases, and recent advances in proteomic technology have spurred interest in identifying
ubiquitination sites. However, most current computing tools for predicting target sites are based on small-scale
data and shallow machine learning algorithms.

Results: As more experimentally validated ubiquitination sites emerge, we need to design a predictor that can
identify lysine ubiquitination sites in large-scale proteome data. In this work, we propose a deep learning predictor,
DeepUbi, based on convolutional neural networks. Four different features are adopted from the sequences and
physicochemical properties. In a 10-fold cross validation, DeepUbi obtains an AUC (area under the Receiver
Operating Characteristic curve) of 0.9, and the accuracy, sensitivity and specificity exceeded 85%. The more
comprehensive indicator, MCC, reaches 0.78. We also develop a software package that can be freely downloaded
from https://github.com/Sunmile/DeepUbi.

Conclusion: Our results show that DeepUbi has excellent performance in predicting ubiquitination based on large
data.
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Background
Ubiquitin was first discovered by Goldstein et al. in 1975
[1]. Ubiquitination, covalent attachment of ubiquitin to a
variety of cellular proteins, is a common post-translational
modification (PTM) in eukaryotic cells [2]. In the process
of ubiquitination, ubiquitin is attached to substrates on ly-
sine (K) residues by a three-stage enzymatic reaction.
There are three enzymes involved-ubiquitin activating en-
zyme (E1s), ubiquitin conjugating enzyme (E2s) and ubi-
quitin ligating enzyme (E3s), which work one after
another [3–5]. The ubiquitination system is responsible

for many aspects of cellular molecular function, such as
protein localization, metabolism, regulation and degrad-
ation [4–7]. It also participates in the regulation of various
biological processes such as cell division and apop-
tosis, signal transduction, gene transcription, DNA re-
pair and replication, intracellular transport and virus
budding [4, 5]. Evidence has shown that ubiquitination
has a close relationship with cell transformation, immune
response and inflammatory response [8]. Abnormal ubi-
quitination status is also involved in many diseases. For
example, the ubiquitination of metastasis suppressor 1,
mediated by the skp1-cullin1-F- box beta-transducin
repeat-containing protein, is essential for regulating cell
proliferation and migration in breast and prostate cancers
[9].
Due to the roles of ubiquitination, the precise prediction

of ubiquitination sites is particularly important. Conven-
tional experimental methods are time-consuming and
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labour-intensive, and thus computational methods are ne-
cessary as a supplementary approach [10, 11]. In recent
years, a variety of machine learning methods have been
applied to predict protein ubiquitination sites. Tung and
Ho [12] developed a ubiquitination site predictor UbiPred,
using support vector machine (SVM) with 31 informative
physicochemical features selected from the published
amino acid indices [13]. Radivojac [14] used a random
forest algorithm to develop a predictor, UbPred, in which
586 sequence attributes were employed as the input
feature vector. Zhao [15] adopted an ensemble approach
to the voting mechanism. Lee [16] designed UbSite, which
uses an efficient radial basis function (RBF) kernel to
identify ubiquitination sites. Chen [17] proposed a pre-
dictor, CKSAAP_UbSite, using the composition of
k-spaced amino acid pairs (CKSAAP). Cai [18] proposed a
predictor utilizing the nearest neighbour algorithm. Chen
[19] proposed a new tool, UbiProber, which was designed
for general and specific species. Chen [20] developed
hCKSAAP_UbSite by integrating four different types of
predictive variables. Qiu [21] developed iubiq-lys using
support vector machine. Cai and Jiang [22] used multiple
machine learning algorithms to predict ubiquitination
sites. Wang [23] designed a tool, ESA-UbiSite, using an
evolutionary algorithm (ESA). In addition, there are many
other predictors such as UbiSite [24], UbiBrowser [25],
RUBI [26], the WPAAN classifier [27], MDDLogoclus-
tered SVM models [28] and the non-canonical pathway
network [29]. Although various ubiquitination site predic-
tors have been developed, there are still limitations. As
noted above, the existing computational methods for pre-
dicting ubiquitination sites are shallow machine learning
methods and their datasets are small. However, a large
amount of biomedical data has been accumulated and
shallow machine learning algorithms do not handle big
data well. In this study, we propose a lysine ubiquitination
predictor, DeepUbi, using a deep learning framework on a
large dataset.

Results
Cross-validation performance
For the series of hyperparameter choices, we obtain a set
of better performing hyper-parameters, which are shown
in Table 1. Using a set of clear and effective metrics de-
fined in Eq. 4 to measure the quality of predictors, we
considered how to objectively derive the values. Three
different verification methods are generally used to evalu-
ate the predictive performance: the independent dataset
test, sub-sampling test and jackknife test [30]. The jack-
knife test can exclude the “memory” effect and the
arbitrariness problem because the outcome obtained by
the jackknife cross-validation is always unique for a given
benchmark dataset [21]. However, it is time-consuming,
especially for big datasets. In this study, k-fold cross

validation was utilized to evaluate the performance of the
proposed predictors because of the large dataset.
First, the 4-fold, 6-fold, 8-fold and 10-fold cross valida-

tions are executed 10 times on the simple One-Hot
encoding scheme. The results are shown in Table 2. All of
the accuracies are greater than 85% and the highest accur-
acy reaches 88.74%, illustrating the robustness of the
CNNUbi. The ROC curves and AUC values are shown in
Fig. 1 and are more intuitive, and the largest AUC value
was 0.89. These results show that the deep learning frame-
work learns some instinct information and has good
performance. To obtain more information, we add three
other features into the One-Hot encoding scheme (see
Table 3 and Fig. 2). In the 10-fold cross-validation, all the
ROC curves are very close to each other. The One-Hot
plus CKSAAP encoding scheme clearly performs the best
in all of these features. We call it DeepUbi with an AUC
of 0.9066 and MCC of 0.78.
Our DeepUbi predictor was obtained using balanced

data. In the experimentally verified ubiquitination and
non-ubiquitination data, the ratio of positive and nega-
tive peptides was 1:8. We also tested the performance on
naturally distributed data when the algorithm was
trained with balanced data. The results in Table 4 illus-
trate that the performance is slightly worse than with
balanced data.

Comparison with other existing methods
A comprehensive comparison of our models with the
available sequence-based predictors was performed and
the corresponding data and results are shown in Table 5.

Table 1 The values of super-parameter tuning

Super-Parameter Preferred Setting

Embedding length 21

Batch size 65

Maximum epoch 30

Convolution blocks ([2–6], 64, ReLU)

Fully connected layer units 128

Cutoff 0.5

Dropout 0.7

Learning rate 0.01 with decay rate 0.95

Regularization L2

Table 2 The results of 4-, 6-,8-,10-fold cross-validations with the
One-Hot feature

Cross-Validation Acc (%) Sn (%) Sp (%) AUC MCC

4-fold 86.86 84.33 89.57 0.8787 0.74

6-fold 88.47 86.65 90.43 0.8853 0.77

8-fold 88.06 88.26 87.84 0.8884 0.76

10-fold 89.58 87.65 91.65 0.8905 0.79
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In the last decade, many researchers have contributed to
the prediction and research of ubiquitination sites in
proteins. The comparison shows that the deep learning
model performs very well on big datasets. The predictors
improved the accuracy by adding new features, using a
variety of machine learning algorithms or adding new
datasets. The precision of the predictors is approxi-
mately 0.8. In this study, we propose the DeepUbi pre-
dictor and apply a deep learning framework with more
accuracy. The AUC close to 0.9 and other indicators of
accuracy, sensitivity and specificity are also better than
those of existing methods. These results suggest that
DeepUbi learned deeper characteristics.
To eliminate the impact of data volume differences

and make a more vivid comparison, we conduct add-
itional experiments. We randomly select the same num-
ber of positive and negative samples as the existing

predictor from our data 10 times. Each sample set is
tested with 10 cross-validations, and the average results
are listed in Table 6. Comparison of Table 5 and Table 6
shows that the DeepUbi results are much higher than
those of other predictors for the same number of sam-
ples. For example, the data in UbiPred has an Acc of
84.44%, Sn of 83.44%, Sp of 85.43%, AUC of 0.85 and
MCC of 0.69. Selecting the same number UbiPred data
as the test set 10 times, the average result for DeepUbi
is an Acc of 98.77%, Sn of 98.87%, Sp of 98.67%, AUC of
0.99 and MCC of 0.98. The AUC values of DeepUbi are
close to 0.9, illustrating the performance of deep
learning.

Analysis of ubiquitination peptides
To illustrate the performance of our predictor, we also
conduct an analysis using the training data. First, the
probabilistic histogram of composition of flanking amino
acids surrounding the ubiquitination candidate sites is
generated, as shown in Fig. 3a and b. Amino acid residues
Ala (A), Glu (E), Leu (L), Arg (R) and Ser (S) appear more
ratio in positive data (ubiquitination fragments), while Cys
(C), Phe (F), His (H), Ile (I) and Val (Y) are more enriched
in negative data (non-ubiquitination fragments). Next, a
well-known tool, Two Sample Logo [31], is applied to
detect the position-specific amino acid composition

Fig. 1 ROC curves of different cross-validations. ROC curves and their AUC values of 4-, 6-, 8-, and 10-fold cross validations with the One-Hot
encoding scheme

Table 3 The results of four different encoding schemes in the
10-fold cross-validation

Features Acc (%) Sn (%) Sp (%) AUC MCC

One-Hot 89.58 87.65 91.65 0.8905 0.79

One-Hot + CKSAAP 88.98 89.80 88.10 0.9066 0.78

One-Hot + PseAAC 86.05 87.58 84.41 0.8847 0.72

One-Hot + IPCP 86.41 83.44 89.61 0.8932 0.73
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difference between the training data, and the sequence
logo is shown in Fig. 3c. The results reveal the dependen-
cies of flanking amino acids around the substrate sites.

Discussion
We use the biggest data repository designed for protein
lysine modification to learn the DeepUbi predictor. A
convolutional neural network, a deep learning frame-
work, is adopted to predict ubiquitination. It is com-
posed of a convolutional layer, a nonlinear layer and a
pooling layer. Convolutional neural networks can learn a
large number of mapping relations between input and
output without any precise mathematical expression be-
tween the input and output. We construct six steps, in-
cluding inputting the fragment, constructing an
embedding layer, building multi-convolution-pooling
layers, adding features, constructing fully connected
layers, and the output layer. The deep learning frame-
work is first used to predict ubiquitination.

Four better encoding schemes are adopted in the
feature construction, One-Hot encoding, the physico-
chemical properties, the composition of k-spaced amino
acid pairs (CKSAAP) and the pseudo amino acid com-
position. One-Hot plus CKSAAP have the best perform-
ance with and AUC of 0.9066 in the cross-validation.
In the data, the sequence motif analysis shows that

there are differences between positive and negative
fragments. Thus, it is feasible to obtain classification
information from the peptide itself. Different features
are adopted to train the model. The hybrid of
One-Hot and CKSAAP is selected as the best, with
an AUC of 0.9066.
DeepUbi has better performance than the existing tools.

Researchers could use the predictor to select potential
candidates and conduct experiments to verify them. This
will reduce the range of candidate proteins and save time
and labour. The sequence analysis of the ubiquitination
will provide suggestions for future work.
In the future, we will investigate other feature construc-

tions that may better extract the properties of samples. Sec-
ond, we aim to improve performance by increasing the
depth and model parameters through system learning. The
current method may also be used to identify other PTM
sites in proteins.

Fig. 2 ROC curves of different feature constructions. ROC curves and their AUC values of four features in the 10-fold cross validation. These
curves are very close to each other which illustrate the robustness of the model

Table 4 The results for naturally distributed DeepUbi data

No. of fragments Acc (%) Sn (%) Sp (%) AUC MCC Pos:Neg

900 50.56 45.50 91.00 0.5490 0.23 1:8

9000 49.56 44.46 90.30 0.6626 0.22 1:8
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Conclusion
In this work, we propose a new ubiquitination predictor,
DeepUbi, which uses a deep learning framework and
achieves satisfactory success with the biggest data set. Dee-
pUbi extracts features from the original protein fragments
with an AUC of 0.9066 and an MCC of 0.78. We construct
six steps including inputting fragment, constructing an em-
bedding layer, building multi-convolution-pooling layers,
adding features, constructing fully connected layers, and
output layer. The deep learning framework is first used in
prediction of ubiquitination. However, DeepUbi is not too
deep, as we only use two convolution-pooling structures.
We also develop a software package for DeepUbi that can
be freely downloaded from https://github.com/Sunmile/
DeepUbi. The deep learning model is an effective predic-
tion method and will improve accuracy by increasing the
depth in the future.

Methods
Benchmark dataset
In this study, the ubiquitination data is collected from
the PLMD (v3.0, June. 2017) database [32], which is the
biggest online data repository designed for protein lysine
modification. The original data contains 121,742 ubiqui-
tination sites from 25,103 proteins. If the data contains
homologous samples, it would increase the bias of re-
sults. We remove the redundant protein sequences to
eliminate homology bias using the CD-HIT web server
[33], which is freely available at http://weizhongli-la-
b.org/cd-hit/, and obtains 12,053 different proteins with
≤30% sequence identity. A sliding window with the
length of 15 × 2 + 1 = 31 is used to intercept the protein
sequences with lysine residues in the centre. If the up-
stream or downstream residues of a protein are less than
15, the lacking residue is filled with a “pseudo” residue
‘X’. There are too many negative peptides compared to
the positive peptides. To obtain a better predictor, we se-
lect the negative samples by deleting the redundant seg-
ments using 30% identity to ensure that none of the
segments had ≥30% pair-wise identity in the negative
peptides [24]. Finally, we obtain a training dataset contain-
ing 53,999 ubiquitination and 50,315 non-ubiquitination
fragments. A detailed flow chart of these steps is shown in
Fig. 4.

Feature construction
A good feature can extract the correlation of instinct
ubiquitination characters and the targets from peptide
sequences [34]. Four better feature encoding schemes
are adopted, One-Hot encoding, the physicochemical
properties, the composition of k-spaced amino acid pairs
and the pseudo amino acid composition.
One-Hot Encoding.
The conventional feature representation of amino acid

composition uses 20 binary bits to represent an amino acid.
To deal with the problem of sliding windows spanning out
of the N-terminal or C-terminal, one additional bit is
appended to indicate this situation. Then, a vector of size

Table 5 Comparison of DeepUbi and other ubiquitination prediction tools

Predictor No. of positive samples Acc (%) Sn (%) Sp (%) AUC MCC

UbiPred 151 84.44 83.44 85.43 0.85 0.69

UbPred 265 72.0 – – 0.79 –

UbSite 385 74.5 65.5 74.8 – –

CKSAAP_UbSite 263 73.4 69.85 76.96 0.81 0.47

UbiProber 22,192 – 37.0 90.0 0.77 0.63

hCKSAAP_UbSite 9537 – – – 0.77 –

iUbiq-Lys 659 82.14 80.56 99.39 – 0.50

ESA-UbiSite 85 94.0 96.0 92.0 – 0.92

DeepUbi 53,999 88.98 89.80 88.10 0.91 0.78

Table 6 The DeepUbi results for the same number of samples
as the other existing tools

No. of positive samples Acc (%) Sn (%) Sp (%) AUC MCC

UbiPred 84.44 83.44 85.43 0.85 0.69

DeepUbi 98.77 98.87 98.67 0.9993 0.98

UbPred 72.0 – – 0.79 –

DeepUbi 98.51 98.45 98.57 0.9975 0.97

UbSite 74.5 65.5 74.8 – –

DeepUbi 97.99 97.79 98.18 0.9933 0.96

CKSAAP_UbSite 73.4 69.85 76.96 0.81 0.47

DeepUbi 99.19 98.96 99.42 0.9959 0.98

UbiProber – 37.0 90.0 0.77 0.63

DeepUbi 91.83 90.12 93.55 0.9093 0.84

hCKSAAP_UbSite – – – 0.77 –

DeepUbi 94.10 92.31 95.89 0.9289 0.88

iUbiq-Lys 82.14 80.56 99.39 – 0.50

DeepUbi 98.92 98.90 98.93 0.9913 0.98

ESA-UbiSite 94.0 96.0 92.0 – 0.92

DeepUbi 95.59 95.53 95.65 0.9947 0.91
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(20 + 1) bits is used to represent a sample. For example, the
amino acid A is represented by ‘100000000000000000000’
and R is represented by ‘010000000000000000000’.

Informative physicochemical properties (IPCP)
In PTM site prediction, physicochemical properties are
essential to extract information for a fragment or pro-
tein. Tung [12] proposed an informative physico-
chemical property mining algorithm that could
quantify the effectiveness of individual physicochemi-
cal properties in prediction. They used the value of
the main effect difference (MED) [35] to estimate the

individual effects of physicochemical properties. The
property with the largest MED is the most effective
in predicting ubiquitination sites. In the study, 31 in-
formative physicochemical properties are selected as
the features for calculation, and are listed in Add-
itional file 1: Table S1.

Compositions of K-spaced amino acid pairs (CKSAAP)
The CKSAAP encoding scheme is the composition of
k-spaced residue pairs (separated by k amino acids) in
the protein sequence, which is useful for predicting pro-
tein flexible or rigid regions [36]. For example, there are

Fig. 3 Different sequence analysis charts about ubiquitination and non-ubiquitination peptides. a A bar chart to compare the number of flanking
amino acids surrounding the ubiquitination and non-ubiquitination peptides. b A circular chart to compare the percentage of flanking amino
acids surrounding the ubiquitination and non-ubiquitination peptides. c Two Sample Logos web-server to calculate and visualize differences
between ubiquitination and non-ubiquitination peptides
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441 residue pairs (i.e., AA, AC, ..., XX). Therefore, the
feature vector can be defined as

NAA

Ntotal

NAC

Ntotal
;⋯;

NXX

Ntotal

� �
ð1Þ

where Ntotal is the total number of k-spaced residue pairs
in the fragment and NAA is the number of amino acid
pair AA in the fragment. Each component in the vector
represents the contribution of k-spaced amino acid pairs.
For instance, the AA component is represented as NAA

Ntotal
.

In this paper, k = 0, 1, 2, 3, 4, and a 441 × 5 = 2205 vector
was obtained by the CKSAAP encoding scheme.
Pseudo Amino Acid Composition (PseAAC).
Chou’s pseudo amino acid composition is a set of

discrete serial correlation factors combined with trad-
itional 20 amino acid components [37]. In the study, we
select 20 correlation factors and the weight of these
factors is 0.05, and a 40-dimension vector is acquired.

Algorithm
Deep learning, which evolved from the acquisition of big
data, and the power of parallel and distributed comput-
ing have facilitated major advances in numerous do-
mains such as image recognition, speech recognition,
and natural language processing [38]. Every protein is a
sentence, and residues in the protein sequence can be
seen as “words”. The prediction of ubiquitination can be
seen as a ‘natural language prediction’ (NLP) task.
Therefore, we propose a convolutional neural network
(CNN) deep learning model and obtain good prediction

performance on a large data set. A convolutional neural
network (CNN) is a deep learning framework. It is com-
posed of a convolutional layer, a nonlinear layer and a
pooling layer. Our model is constructed with six steps
(Input a fragment, Construct an embedding layer, Build
multi-convolution-pooling layers, Add features, Con-
struct fully connected layers, and an Output layer), as
shown in Fig. 5a.
The input protein fragment representation is x ∈ RL ×

21, where L is the length of the fragment. The first layer
is the embedding layer, which maps input vectors into
low-dimensional vector representations. It is essentially
a lookup table that we learn from data. E = xWe, where e
is the embedding dimension, We is the embedding
weight matrix and E ∈ RL × e is the embedding matrix,
which is a continuous product. Then, we assign the em-
bedding matrix E as an image and use the convolutional
neural network to extract features. Because the adjacent
residues in the fragments are always highly correlated,
one dimensional convolution can be used. The width of
the convolution kernel is the dimension of the embed-
ding vector. The height is a super parameter, which is a
manual set. For example, if there is a convolution filter
with size ak, then a feature map is obtained by the
convolution

zk mð Þ ¼ f
Xak

i¼1

Xe

j¼1
w i; jð Þ � E iþm; jð Þ

� �
ð2Þ

where f is the activation function, which is a rectified
linear unit (ReLU) [39], w is the weight vector and zk∈
RL−akþ1 . The number of convolution filters of size ak is

Fig. 4 Flow chart of the data collection and processing. Firstly, collecting the raw proteins and then removing the redundant protein sequences
with CD-Hit; secondly, intercepting the protein sequences with a 31 sliding window to get the positive and negative fragments; at last, using
30% identity in negative samples to get a balanced training data
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also set. The feature map obtained from different convo-
lution kernels is a different size, so a max-pooling func-
tion is use to maintain the same dimension. The final
eigenvector h is then obtained. For more intuitive under-
standing, see Fig. 5b. For the first model, CNNUbi, we
use the features obtained from the last step without add-
itional features, i.e., hnew = h. For comparison, the second

model, DeepUbi, is built with additional features and
hnew = [h, b], where b is the additional features. Finally,
each of the two output units has a score between 0 and

1, illustrating by the softmax equation pi ¼ eiP
j
e j
. Here, i

= Fcwo represents the input of class unit i, Fc is the out-
put of the fully connected layer and wo is the weight

Fig. 5 a Flow chart of the CNN deep learning model. b An example of convolution-pooling structure. a Input a fragment and encode; construct
an embedding layer; build multi-convolution-pooling layers; construct fully connected layers; and then get the output. b Use different filters with
different sizes to get a series of feature maps; and then use a max-pooling and concatenating together to form a feature vector. Finally, the
softmax function regularization is used to get the classification
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matrix. The cross-entropy objective function is assigned
as the cost function Add features

CE ¼ −
XN

n¼1
yn lnP yn ¼ 1jxnð Þ

þ 1−ynð Þ lnP yn ¼ 0jxnð Þ ð3Þ

where N represents the batch size of the training set
and xn and yn represent the n-th protein fragment and
its label, respectively. Using the Adam optimizers, Dee-
pUbi is trained based on a variety of super-parameters
such as the batch size, maximum epoch, learning rate,
dropout rate and convolution blocks.

Model evaluation and performance measures
A confusion matrix is a visual display tool for evaluating
the quality of classification models. Each column of the
matrix represents the sample situation of the model
prediction and each row of the matrix represents the
actual situation of the sample. There are four values in
the matrix, where TP represents the number of true pos-
itives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false
negatives. In the literature, the following metrics based
on the confusion matrix are often used to evaluate the
performance of a predictor

Sp ¼ TN
TN þ FP

Sn ¼ TP
FN þ TP

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TN þ FPð Þ TP þ FPð Þ TN þ FNð Þp

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where Sn represents the sensitivity, Sp is the specificity,
Acc is the accuracy, and MCC is the Matthew’s correlation
coefficient. The ROC (Receiver Operating Characteristic)
curves and the area under the ROC curve (AUC) are usu-
ally used to evaluate the classifier’s resolving power.

Additional file

Additional file 1: Table S1. The 31 informative physicochemical properties
and their corresponding MED (main effect difference) scores. (XLSX 42 kb)

Abbreviations
Acc: Accuracy; AUC: Area under the ROC curve; CKSAAP: Composition of k-
spaced amino acid pairs; CNN: Convolutional neural network;
IPCP: Informative physicochemical properties; MCC: Mathew’s correlation
coefficient; MED: Main effect difference; PseAAC: Pseudo amino acid
composition; PTM: Post-translational modification; RBF: Radial basis function;
ReLU: Rectified linear unit; Sn: Sensitivity; Sp: Specificity; SVM: Support vector
machine

Acknowledgements
Dr. Jun Ding helped us with the programming and processed the data. We
also thanked the anonymous reviewers who gave us very valuable
suggestions. The manuscript is edited by American Journal Experts (AJE)
prior to submission.

Funding
This work is supported by grants from the Natural Science Foundation of
China (11671032) and the 2015 National Traditional Medicine Clinical
Research Base Business Construction Special Topics (JDZX2015299). The
funders have no role in the design of the study, collection, analysis, and
interpretation of the data or writing the manuscript.

Availability of data and materials
A total of 121,742 ubiquitination sites were collected from PLMD database
(http://plmd.biocuckoo.org/) and the proteins were retrieved from UniProt
(https://www.uniprot.org/). The data is provided on website https://
github.com/Sunmile/DeepUbi and the file name is “Raw Data”.

Authors’ contributions
YX and YY conceived of and designed the experiments. HF, XW, HW and YY
performed the experiments and data analysis. HF and YX wrote the paper.
YX and YY revised the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Information and Computing Science, University of Science
and Technology Beijing, Beijing 100083, China. 2Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100190, China. 3Beijing
Key Laboratory for Magneto-photoelectrical Composite and Interface
Science, University of Science and Technology Beijing, Beijing 100083, China.

Received: 8 November 2018 Accepted: 12 February 2019

References
1. Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA.

Isolation of a polypeptide that has lymphocyte-differentiating properties
and is probably represented universally in living cells. Proc Natl Acad Sci U
S A. 1975;72(1):11–5.

2. Wilkinson KD. Protein ubiquitination: a regulatory post-translational
modification. Anticancer Drug Des. 1987;2(2):211–29.

3. Ou CY, Pi HW, Chien CT. Control of protein degradation by E3 ubiquitin
ligases in Drosophila eye development. Trends Genet. 2003;19(7):382–9.

4. Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in
protein regulation. Circ Res. 2007;100(9):1276–91.

5. Welchman R, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as
multifunctional signals. Nat Rev Mol Cell Biol. 2005;6(8):599–609.

6. Hurley JH, Sangho L, Gali P. Ubiquitin-binding domains. Biochem J. 2006;
399(Pt 3):361.

7. Nath D, Shadan S. The ubiquitin system. Nature. 2009;458(7237):421-21.
8. Schwartz AL, Ciechanover A. The ubiquitin-proteasome pathway and

pathogenesis of human diseases. Annu Rev Med. 1999;50:57–74.
9. Zhong J, Shaik S, Wan L, Tron AE, Wang Z, Sun L, Inuzuka H, Wei W.

SCF beta-TRCP targets MTSS1 for ubiquitination-mediated destruction to
regulate cancer cell proliferation and migration. Oncotarget. 2013;4(12):
2339–53.

10. Hitchcock AL, Kathryn A, Gygi SP, Silver PA. A subset of membrane-
associated proteins is ubiquitinated in response to mutations in the
endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A.
2003;100(22):12735–40.

11. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. EMBO Rep.
2008;9(6):536–42.

Fu et al. BMC Bioinformatics           (2019) 20:86 Page 9 of 10

https://doi.org/10.1186/s12859-019-2677-9
http://plmd.biocuckoo.org/
https://www.uniprot.org/
https://github.com/Sunmile/DeepUbi
https://github.com/Sunmile/DeepUbi


12. Tung CW, Ho SY: Computational identification of ubiquitylation sites from
protein sequences. Bmc Bioinformatics 2008, 9(1):310–310.

13. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa
M. AAindex: amino acid index database, progress report 2008. Nucleic Acids
Res. 2008;36(Database issue):D202–5.

14. Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG,
Iakoucheva LM. Identification, analysis, and prediction of protein
ubiquitination sites. Proteins. 2010;78(2):365–80.

15. Zhao X, Li X, Ma Z, Yin M. Prediction of lysine ubiquitylation with ensemble
classifier and feature selection. Int J Mol Sci. 2011;12(12):8347–61.

16. Lee TY, Chen SA, Hung HY, Ou YY. Incorporating distant sequence features
and radial basis function networks to identify ubiquitin conjugation sites.
PLoS One. 2011;6(3):e17331.

17. Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang ZD. Prediction of
ubiquitination sites by using the composition of k-spaced amino acid pairs.
PLoS One. 2011;6(7).

18. Cai YD, Huang T, Hu LL, Shi XH, Xie L, Li YX. Prediction of lysine
ubiquitination with mRMR feature selection and analysis. Amino Acids. 2012;
42(4):1387–95.

19. Chen X, Qiu JD, Shi SP, Suo SB, Huang SY, Liang RP. Incorporating key
position and amino acid residue features to identify general and species-
specific ubiquitin conjugation sites. Bioinformatics. 2013;29(13):1614–22.

20. Chen Z, Zhou Y, Song JN, Zhang ZD. hCKSAAP_UbSite: improved prediction
of human ubiquitination sites by exploiting amino acid pattern and
properties. Bba-Proteins Proteom. 2013;1834(8):1461–7.

21. Qiu WR, Xiao X, Lin WZ, Chou KC. iUbiq-Lys: prediction of lysine
ubiquitination sites in proteins by extracting sequence evolution
information via a gray system model. J Biomol Struct Dyn. 2015;33(8):
1731–42.

22. Cai B, Jiang X. Computational methods for ubiquitination site prediction
using physicochemical properties of protein sequences. BMC Bioinformatics.
2016;17:116.

23. Wang JR, Huang WL, Tsai MJ, Hsu KT, Huang HL, Ho SY. ESA-UbiSite:
accurate prediction of human ubiquitination sites by identifying a set of
effective negatives. Bioinformatics. 2017;33(5):661–8.

24. Huang C-H, Su M-G, Kao H-J, Jhong J-H, Weng S-L, Lee T-Y. UbiSite:
incorporating two-layered machine learning method with substrate motifs
to predict ubiquitin-conjugation site on lysines. BMC Syst Biol. 2016;10(1):S6.

25. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, et al. An
integrated bioinformatics platform for investigating the human E3 ubiquitin
ligase-substrate interaction network. Nat Commun. 2017;8(1):347.

26. Walsh I, Di Domenico T, Tosatto SCE. RUBI: rapid proteomic-scale prediction
of lysine ubiquitination and factors influencing predictor performance.
Amino Acids. 2014;46(4):853–62.

27. Kai-Yan F, Tao H, Kai-Rui F, Xiao-Jun L. Using WPNNA classifier in
ubiquitination site prediction based on hybrid features. Protein Pept Lett.
2013;20(3):318–23.

28. Nguyen V, Huang K, Huang C, Lai KR, Lee T. A new scheme to characterize
and identify protein ubiquitination sites. IEEE/ACM Trans Comput Biol
Bioinform. 2017;14(2):393–403.

29. Ghosh S, Febin Prabhu Dass J. Non-canonical pathway network modelling
and ubiquitination site prediction through homology modelling of NF-κB.
Gene. 2016;581(1):48–56.

30. Chou KC. Some remarks on protein attribute prediction and pseudo amino
acid composition. J Theor Biol. 2011;273(1):236–47.

31. Vacic V, Iakoucheva LM, Radivojac P. Two sample logo: a graphical
representation of the differences between two sets of sequence
alignments. Bioinformatics. 2006;22(12):1536–7.

32. Xu H, Zhou J, Lin S, Deng W, Zhang Y, Xue Y. PLMD: an updated data resource
of protein lysine modifications. J Genet Genomics. 2017;44(5):243–50.

33. Huang Y, Niu BF, Gao Y, Fu LM, Li WZ. CD-HIT suite: a web server for
clustering and comparing biological sequences. Bioinformatics. 2010;26(5):
680–2.

34. Plewczynski D, Tkacz A, Wyrwicz LS, Rychlewski L. AutoMotif server:
prediction of single residue post-translational modifications in proteins.
Bioinformatics. 2005;21(10):2525–7.

35. Tung CW, Ho SY. POPI: predicting immunogenicity of MHC class I binding
peptides by mining informative physicochemical properties. Bioinformatics.
2007;23(8):942–9.

36. Chen K, Kurgan LA, Ruan J. Prediction of flexible/rigid regions from protein
sequences using k-spaced amino acid pairs. BMC Struct Biol. 2007;7:25.

37. Chou KC. Prediction of protein cellular attributes using pseudo-amino acid
composition. Proteins-Structure Function and Genetics. 2001;43(3):246–55.

38. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;
18(5):851–69.

39. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. In: International conference on international conference on
machine learning; 2010. p. 807–14.

Fu et al. BMC Bioinformatics           (2019) 20:86 Page 10 of 10


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Cross-validation performance
	Comparison with other existing methods
	Analysis of ubiquitination peptides

	Discussion
	Conclusion
	Methods
	Benchmark dataset
	Feature construction
	Informative physicochemical properties (IPCP)
	Compositions of K-spaced amino acid pairs (CKSAAP)

	Algorithm
	Model evaluation and performance measures

	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

