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Abstract

Background: Although there is an enormous number of textual resources in the biomedical domain, currently,
manually curated resources cover only a small part of the existing knowledge. The vast majority of these information
is in unstructured form which contain nonstandard naming conventions. The task of named entity recognition, which
is the identification of entity names from text, is not adequate without a standardization step. Linking each identified
entity mention in text to an ontology/dictionary concept is an essential task to make sense of the identified entities.
This paper presents an unsupervised approach for the linking of named entities to concepts in an ontology/dictionary.
We propose an approach for the normalization of biomedical entities through an ontology/dictionary by using word
embeddings to represent semantic spaces, and a syntactic parser to give higher weight to the most informative word
in the named entity mentions.

Results: We applied the proposed method to two different normalization tasks: the normalization of bacteria
biotope entities through the Onto-Biotope ontology and the normalization of adverse drug reaction entities through
the Medical Dictionary for Regulatory Activities (MedDRA). The proposed method achieved a precision score of 65.9%,
which is 2.9 percentage points above the state-of-the-art result on the BioNLP Shared Task 2016 Bacteria Biotope test
data and a macro-averaged precision score of 68.7% on the Text Analysis Conference 2017 Adverse Drug Reaction test
data.

Conclusions: The core contribution of this paper is a syntax-based way of combining the individual word vectors to
form vectors for the named entity mentions and ontology concepts, which can then be used to measure the similarity
between them. The proposed approach is unsupervised and does not require labeled data, making it easily applicable
to different domains.

Keywords: Text mining, Natural language processing, Named entity normalization, Entity linking, Entity
categorization, Bacteria biotopes, Adverse drug reactions, Word embeddings

Background
Currently, the vast majority of the biomedical resources
are in unstructured form which originate from an assort-
ment of different resources that incorporate nonstandard
naming conventions, which makes the required informa-
tion difficult to use and understand [10]. Ontologies help
researchers to overcome these kinds of difficulties and
help researchers facilitate the vast amounts of biomed-
ical knowledge available [41]. An ontology can provide
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a unique identifier for describing information for each
entity, which solves the heterogeneity problem and pro-
vides standardized and homogeneous data [39].
Linking named entities in text through an ontology is an

essential process to make sense of the identified named
entities [11]. When an ontology/dictionary containing a
set of entities E and a text containing a set of entity men-
tions M are given, entity linking is the task of mapping
each named entity mentionm in the given text to its corre-
sponding entity e in the given ontology/dictionary, where
m ∈ M and e ∈ E [40]. This task is also called entity
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normalization, entity grounding, or entity categorization,
which are used interchangeably throughout this paper.
Figure 1 demonstrates a sample text with annotated bac-

teria habitat (biotope) mentions, which are represented
in bold and Fig. 2 demonstrates a sample portion from
Onto-Biotope, which is an ontology for bacteria habitats.
Given a sample text with annotated habitat mentions, the
aim of habitat entity normalization is to link the mentions
through the Onto-Biotope Ontology. For instance, “pedi-
atric”, “respiratory”, and “children less than 2 years of age”
are habitat entity mentions. The concept that is associated
with the “pediatric” habitat mention in the Onto-Biotope
ontology is “pediatric patient”, the one associated with the
“respiratory” habitat mention is “respiratory tract part”,
and for “children less than 2 years of age” it is “pediatric
patient”.
The association between the entity mention “pediatric”

and the ontology concept term name “pediatric patient”
can be relatively more easily detected due to the lexical
similarity between them. Similarly, the habitat mention
“respiratory” and the ontology concept “respiratory tract
part” also share a common word, making them lexically
similar. However, lexical similarity may not always exist
between entity mentions and concept term names or con-
cept synonyms. For example, there is no lexical similarity

between the habitat mention “children less than 2 years of
age” and ontology concept term name “pediatric patient”,
which calls for the utilization of semantic similarity.
Entity normalization can also be performed through a

dictionary. For instance, the sample sentence “In Study 3,
67% of patients treated with ADCETRIS experienced any
grade of neuropathy.” states a relation between the drug
mention “ADCETRIS” and adverse drug reaction men-
tion “neuropathy”. The adverse drug reaction mention
“neuropathy” can be normalized to the “peripheral neu-
ropathy” term in the Medical Dictionary for Regulatory
Activities (MedDRA) [7].
Even if the named entities are given, linking the iden-

tified named entities to a unique concept identifier in an
ontology/dictionary is not a trivial task in the biomedical
domain. There are many challenges in the task of named
entity linking through an ontology or a dictionary, two
of which are the variety and ambiguity problems of the
named entities [4]. A named entity may appear in different
surface forms in a given text, which is called the vari-
ety problem. Furthermore, two named entities with the
same surface form may have different semantic meanings,
which is called the ambiguity problem. Linking of named
entities for the biomedical domain has another big chal-
lenge besides these two common problems in the general

Fig. 1 Sample text. Sample abstract of [21] with habitat entity mentions annotated
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Fig. 2 Sample ontology. A sample portion from the Onto-Biotope
ontology

natural language processing domain. In the biomedical
domain, the training data is relatively smaller and the
number of the ontology/dictionary categories that should
be considered is larger compared to many other domains
in natural language processing [6]. This poses a challenge
for the standard supervised classification algorithms. For
example, there are 2,221 semantic categories in the Onto-
Biotope ontology, while the available training set contains
only 747 entity mentions, and 16,295 words. For adverse
drug reaction normalization, this situation is worse since
there are 22,499 MedDRA dictionary terms.
In this paper, for the ontology based normalization

of the named entity mentions in text, we propose an
unsupervised approach, which utilizes both semantic and
syntactic information. The proposed approach uses word
embeddings learned from large unlabeled text to cap-
ture semantic information and syntactic parsing informa-
tion to re-rank the candidate ontology/dictionary concept
terms. The proposed approach is tested on two different
data sets, which are the BioNLP Shared Task 2016 Bacteria
Biotopes (BB3) categorization sub-task data to normalize
habitat entities through the Onto-Biotope ontology and
the Text Analysis Conference 2017Adverse Drug Reaction
data to normalize adverse drug reactionmentions through
the MedDRA dictionary. On both data sets, the proposed
normalization method with syntactic re-ranking achieved
better performance than the normalization method with-
out syntactic re-ranking. Furthermore, we obtained the
new state-of-the-art results with 2.9 percentage points
above the previous best result for the Bacteria Biotopes
(BB3) categorization sub-task.

Related work
Several approaches have been proposed for biomedical
entity normalization for different types of biomedical
entities including genes/proteins [20, 32, 36, 46], bacte-
ria biotopes [6, 13, 23, 37, 43], and diseases [14, 28].
Early systems tried to link the entity mentions to the
knowledge base entities by utilizing dictionary look-up
and string matching algorithms [16, 36]. Some studies
[14, 23] used hand-written rules to measure the mor-
phological similarity between entity mentions and ontol-
ogy/dictionary entities, while others [17] automatically
learned patterns of variations of the entities. Machine-
learning based approaches, which learn the similarities
between biomedical entity mentions and ontology con-
cept names from labeled training data have also been
proposed and applied as a solution to the normalization
task of various biomedical entities such as diseases [28].
Most previous studies focused on utilizing morphologi-

cal information for named entity normalization. However,
morphological similarity alone is not adequate to nor-
malize biomedical entities, which generally have forms
different from the concept terms that they should be
tagged with [6]. Word embedding models, which learn
distributed representations of words from large unlabeled
corpora, are promising approaches for capturing seman-
tic information [34]. They have been successfully used in
several recent Natural Language Processing (NLP) tasks
including the biomedical domain [3, 8, 35, 42]. Recently,
word embeddings have also been used for the task of
biomedical named entity normalization. Li et al. [30]
proposed a convolutional neural network (CNN) architec-
ture leveraging semantic and morphological information,
which handles the biomedical entity normalization task
as a ranking problem. In the proposed method, firstly
candidates are generated using hand-crafted rules, and
then they are ranked according to semantic and morpho-
logical information, which are represented by a CNN-
based model. Experiments on two benchmark datasets
(the ShARe/CLEF eHealth dataset and the NCBI disease
dataset) showed that semantic information is beneficial
for the biomedical entity normalization task as well as
morphological information. However, the requirement of
hand-crafted rules and labeled data makes the adaptation
of this method to different domains harder and time-
consuming. Cho et al. [9] proposed a semi-supervised
approach that facilitates word embeddings to represent
semantic spaces for normalizing biomedical entities such
as disease names and plant names and obtained promis-
ing performance. This method requires a domain specific
corpus and dictionary. Therefore, the adaptation of it to other
domains isnoteasy, if there are no such resources available.
A number of community-wide challenges including the

BioCreative Challenges [1, 2, 22, 29, 47] and BioNLP
Shared Tasks [13, 24, 25, 37], which have been conducted
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to assist the progress of research in biomedical text min-
ing, also addressed the task of biomedical entity nor-
malization. The Bacteria Biotope task, whose ultimate
aim is information extraction regarding bacteria and their
habitats, was first addressed in the BioNLP Shared Task
2011 [5, 25], and has been conducted in 2013 [6, 37]
and 2016 again since then. We evaluated our proposed
approach on the BB-cat subtask of the 2016 edition of
the Bacteria Biotope task, which addressed the normal-
ization of habitat entity mentions in PubMed abstracts
using the OntoBiotope ontology [13]. In the official task,
the teams TagIt [12] and LIMSI [18] proposed rule-based
methods, while BOUN [43] proposed a similarity-based
method that utilizes both approximate string match-
ing and cosine similarity of word-vectors weighted with
Term Frequency-Inverse Document Frequency (TF-IDF).
According to the official results, the best precision (62%)
for habitat mention normalization was obtained by the
BOUN system.
The bacteria habitat mention normalization problem

continued to attract the attention of the researchers after
the shared task. CONTES is a recently proposed semi-
supervised method for linking habitat entity mentions
through the Onto-Biotope ontology [15]. The system
is based on word embeddings that are induced from
PubMed by utilizing the Word2Vec tool. The cosine sim-
ilarities between term vector representations and concept
vector representations are calculated to find themost sim-
ilar ontology concept to the given entity mention. They
applied the proposed normalization method to the test
dataset of the Bacteria Biotope 2016 Task 3 (BB-cat), and
obtained comparable results to that of the state-of-the-art
for the task of Bacteria Biotopes categorization. CONTES
contains a transformation step to make comparable the
term vectors and the entity vectors which are represented
in different dimensions. The need for the transformation
step makes the method semi-supervised, since it requires
labeled data for training the prediction model. Recently,
Mehryary et al. [33] used TF-IDF weighted vector space
representation for the named entity categorization of bac-
teria biotopes. Each ontology concept name and each
entity mention is represented with a TF-IDF weighted
vector considering each concept name in the ontology as
a separate document and calculating IDF weights based
on these names. The ontology concept with the highest
cosine similarity is assigned to a given entity mention.
Although they achieved state-of-the-art results in the nor-
malization task, the TF-IDF based scheme has limitations
in capturing the semantic relations between the ontology
concepts and entity mentions, since it is primarily based
on the surface forms of the words.
Besides the Bacteria Biotopes normalization task, we

also evaluate our approach on the task of normalizing
Adverse Drug Reaction (ADR) mentions in drug labels to

the MedDRA terms. We use the recently provided data
set from the Text Analysis Conference (TAC) 2017. Differ-
ent types of data sources such as electronic health records
[19], scientific publications, and social media data [38] and
different types of lexicons such as the Unified Medical
Language System (UMLS) [31] and the side effect resource
(SIDER) [44] have been used to extract ADRs from text.
Many of these studies proposed a lexicon-based match-
ing approach for ADRs recognition. Although a number
of studies have been conducted to automatically identify
ADRs in text and map them through a dictionary using
NLP techniques, as far as we know the normalization of
the ADRs through a dictionary has not been studied as a
separate task without named entity recognition.

Methods
We developed a semantic similarity based unsupervised
method for entity linking through an ontology/dictionary,
the workflow of which is displayed in Fig. 3. Given a set
of documents with annotated named entities and a cor-
responding ontology, the normalization task is done in
two steps. In the first step, the semantically most sim-
ilar ontology concepts are generated as candidates, and
in the second step, the candidates are re-ranked accord-
ing to the syntactic-based weighted semantic similarities.
The details of our approach are described in the following
subsections.

Data sets
Bacteria biotope entity normalization
In this study, we used the official data set that is provided
by the BioNLP Shared Task 2016 organizers for the Bac-
teria Biotope categorization subtask. Since our proposed
approach is unsupervised and does not require any train-
ing data, the training and development sets are used for
error analysis during the development of the system, and
the separate test set is used for evaluating the performance
of the proposed system. The data set provided by the
shared task organizers was created by collecting titles and
abstracts from PubMed, which contain general informa-
tion about bacteria and habitats. The data set, consisting
of 71 training, 36 development, and 54 test documents,
was manually annotated by the bioinformaticians of the
Bibliome team of MIG Laboratory at the Institut National
de Recherche Agronomique (INRA) [13].

Adverse drug reaction normalization
For Adverse Drug Reaction Normalization, we used the
official data set that is provided by the Text Analysis Con-
ference (TAC) 2017 organizers. The test set is used for
evaluating the performance of the proposed system. The
data set contains general information about drug labels
consisting of 101 training and 99 test documents, which
were manually annotated by the organizers.
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Fig. 3 System Workflow. Workflow of the Named Entity Normalization System

Preprocessing
In the preprocessing step, the annotated named entities
and the ontology concept names with their synonyms
are tokenized, and the stop words are removed from the
named entity mentions and the ontology concept names.
Furthermore, all non-ASCII characters are stripped from
both the named entities and the ontology concept names.

Word representations
Our proposed approach is mainly based on the assump-
tion that semantically similar words have similar vector
spaces. Based on this assumption, if the semantic similar-
ity of named entity mentions and ontology concept terms
can be computed, themost similar concept in the ontology
can be assigned as the normalized concept to the named
entity mention.
To compute the semantic similarity, each word is rep-

resented in the vector space as a real-valued vector using
a pre-trained word embedding model that is publicly

available [8]. The model has been trained leveraging word
vectors that were induced from PubMed by theWord2Vec
tool [34]. The trained model is applied to each word
to obtain the corresponding word vector. We used the
model variant with window size of 30, since it has been
shown to obtain higher performance in the biomedical
concept similarity and relatedness tasks in the previous
study by Chiu et al. [8].

Identifying the semantically similar ontology concepts
The vectors of the ontology concept terms and the ref-
erence named entities (i.e., the named entity mentions in
text) are computed in the same way as described below.
For each word in the named entities and ontology con-
cept terms, the vector representations are obtained by the
pre-trainedmodel as explained in the previous subsection.
For the multi-word named entities and ontology concepts,
the vector representations are computed by averaging the
vectors of their composing words. Figure 4 presents the
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Fig. 4 Sample multi-word expression. Computation of the corresponding real-value vector for a sample multi-word expression “a day-care center”,
where �e(t) is the word embedding vector for token t

computation of the vector representation for a sample
multi-word named entity “a day-care center” and shows
how the averaging is done. In the preprocessing step, the
stop-word “a” and the hyphen character are removed. The
tokens “day”, “care”, and “center” are considered and used
for averaging to compute the vector representation of the
multi-word named entity. Each token is represented with a
real-valued vector using the pre-trained word embedding
model that is explained in the previous subsection. The
real-valued vectors of the tokens comprising the multi-
word entity mention are summed to create a real-valued
vector, which is called �sum. At the end, �sum is divided by
the number of tokens other than the stop-words, which is
3 for the example entity mention, to obtain a normalized
real-valued vector for the multi-word named entity.
For each reference entity and for each ontology con-

cept term, a cosine similarity score is calculated to get
the semantic similarity between the related entity and
the ontology concept term. Since the vectors of ontology
concept terms and reference named entities are com-
puted in the same way, unlike the CONTES system,
there is no need for a transformation step for the vec-
tors in order to compute the similarity between them.
For each reference entity, ontology terms are ranked
according to the semantic similarity scores, the top k of

which are the candidates for syntactic weighting based
re-ranking.
We also investigated using word mover’s distance

(WMD), instead of cosine similarity. WMD is a distance
metric which represents text documents as a weighted
point cloud of embedded words and computes the dis-
tance between documents as the minimum cumulative
distance that words from a document need to travel to
another [27]. It is based on the idea that documents with-
out common words may convey similar meanings and
bag-of-words (BOW) is not enough to detect this kind of
similarity.

Syntactic re-ranking
Our system without syntactic analysis is not adequate
alone to normalize entitymentions like “children attending
a day-care center”. Table 1 (Before re-ranking part) shows
the output of our system without syntactic re-ranking
for the sample entity mention “children attending a day-
care center”. The semantically most similar concepts to
the mention are found as “OBT:001423 medical center”,
“OBT:001801 clinic”, and “OBT:000259 research and study
center”, which are false positives. The correct concept is
“OBT:002146 child”, which is very similar to the headword
“children” of the mention “children attending a day-care
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Table 1 Semantically most similar concepts to the entity
mention “children attending a day-care center” with/without
re-ranking

Rank Concept Similarity score

Before Re-ranking

1 OBT:001423 medical center 0.8297

2 OBT:001801 clinic 0.7917

28 OBT:002146 child 0.6979

After Re-ranking

1 OBT:002146 child 0.7484

3 OBT:001801 clinic 0.6519

24 OBT:001423 medical center 0.5460

center”. As this example shows, if the system can identify
the most informative word in the reference entity men-
tion, the correct concept can be assigned to it (see Table 1
(After re-ranking part)).
We proposed a re-ranking module based on syntac-

tic parsing to identify the correct concept from among
the top k candidates returned by the word-embedding
based similarity ranking. The re-ranking module makes
use of the Stanford Parser (version 3.8.0) [26] to detect the
most informative word in the reference entity mention. It

computes the semantic similarity between the most infor-
mative words of the reference mention and the candidate
ontology concept, and re-ranks the top k semantically
most similar concepts.
The intuition behind our re-ranking approach is that the

entity mentions are noun phrases and the heads of the
noun phrases are the most informative words in the men-
tions. To obtain the corresponding head words, the part-
of-speech tags and syntactic parses of the entity mentions
are required. We used the Stanford Parser by providing
the entity mentions as input and obtaining the syntactic
parses composed of their constituent phrases as output.
Next, the syntactic parses are processed to find the most
informative words in the mentions by utilizing the algo-
rithm whose pseudo-code is given in Fig. 5. According to
this algorithm, the top level rightmost “noun” is searched
in the tree structured syntactic parse and assigned as the
head of the mention phrase. For example, for the sam-
ple mention “children attending a day-care center”, the
Stanford Parser generates the syntactic parse, which is
shown in Figs. 6 and 7. Figure 6 demonstrates the syn-
tactic parse with its constituent phrases and Fig. 7 shows
the tree view. The head of the sample mention is found as
“children” and the head of the concept name “OBT:001423
medical center” is found as “center” by leveraging the
algorithm.

Fig. 5 Pseudo-code. Algorithm for finding the most informative word in an entity mention whose syntactic parse is given as input. NP: Noun Phrase;
NN: Noun singular; NNS: Noun plural ; NNP: Proper noun singular; NNPS: Proper Noun plural
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Fig. 6 Sample syntactic parse. Syntactic parse of the Stanford Parser for the sample named entity mention “children attending a day-care center”

After the detection of the head words of the phrases as
“children” for the “children attending a day-care center”
entity mention and “center” for the “OBT:001423 medical
center” ontology concept name, the semantic similarities
are recomputed based on these new information. The sim-
ilarity scores of the concepts with unrelated head words
(e.g. “OBT:001423medical center”) will be lower and those
of concepts with related head words (e.g. “OBT:002146
child”) will be higher after the re-ranking phase (see
Table 1).
The mathematical formulation of the syntactic weight-

ing based similarity used for re-ranking is shown in
Equation (1), where SRR(m, c) is the final computed sim-
ilarity between mention m and candidate concept c,
and SS is the semantic similarity, in which mhead is the
head word of the mention m and chead is the head
word of the concept c, SS(m, c) is the similarity between
mention m and concept c computed as described in
“Identifying the semantically similar ontology concepts”
section, and w is a weighting parameter which can take
values between 0 and 1.

SRR(m, c) = (w ∗ SS(mhead, chead)) + ((1 − w) ∗ SS(m, c))
(1)

Fig. 7 Tree view of the sample parse. Tree view of the syntactic parse
of the sample named entity mention “children attending a day-care
center”

Results
In this section, the results of the proposed systems both
with and without re-ranking are presented.

Evaluation metrics
Evaluation for bacteria biotopes
For evaluation of the bacteria biotopes entity normaliza-
tion predictions, we used the official on-line evaluation
service to compute the precision score, which is the official
measure used to rank the submissions in the BioNLP
SharedTask 2016Bacteria Biotopes categorization sub-task.
In the BioNLP Shared Task 2016 Bacteria Biotopes cate-

gorization sub-task, entities have been given and the par-
ticipants were required to predict the normalization of the
entities. In the official on-line evaluation, for each normal-
ized Habitat entity, Wang similarity W [45] is calculated
with s = 0.65 to measure the similarity between the ref-
erence and the predicted normalization. Wang similarity
is the Jaccard index between the two sets of the predicted
and the reference concept ancestors with a weighted fac-
tor ds, where d is the distance between the corresponding
concept and the ancestor, and s is a parameter between 0
and 1. The submissions are evaluated with their Precision
values:

Precision =
∑

Sp/N (2)

where Sp is the total Wang similarityW for all predictions
[13], and N is the number of predicted entities.

Evaluation for adverse drug reaction
For evaluation of the adverse drug reactions entity nor-
malization predictions, we computed the macro-averaged
andmicro-averaged scores for precision, recall and f-score
measures. True positives (TP), false positives (FP), and
false negatives (FN) are calculated by comparing the pre-
dicted normalization concept with the reference normal-
ization concept in the gold standard via exact matching.
To compute Micro-average scores, the true positives,

false positives, and false negatives of the system are
summed up for all drug labels to get the statistics (Eqs. 3
and 4).N is the total number of drug labels in the data set.



Karadeniz and Özgür BMC Bioinformatics          (2019) 20:156 Page 9 of 12

Micro − average Precision =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FPc)
(3)

Micro − average Recall =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FNc)

(4)

On the other hand, the macro-averaged scores are com-
puted as the average of the individual precision and recall
values obtained on each drug label (Eqs. 5 and 6).

Macro − average Precision =

N∑
c=1

(Precisionc)

(N)
(5)

Macro − average Recall =

N∑
c=1

(Recallc)

(N)
(6)

Results for bacteria biotopes
Table 2 shows the results of our proposed approach with
and without syntactic re-ranking. The results show that
the system with the syntactic re-ranking module achieves
a higher performance. Recall that the proposed system
without re-ranking computes the vector representations
for the multi-word entities by averaging the vectors of
their composing words. On the other hand, the proposed
systemwith syntactic re-ranking computes the vector rep-
resentations by giving higher weights to the head words.
This means that instead of averaging the vector repre-
sentations, giving higher weights to the most informative
words is a more suitable way for vector representations of
multi-word entities.
Table 3 presents a comparison of the proposed sys-

tem, named as BOUNEL (BOUN Named Entity Linker),
with the prior work on the task of habitat named entity
normalization. We compared our results with the previ-
ous systems that are tested on the BioNLP Shared Task
2016 BB cat subtask test set. We computed two differ-
ent baseline results; the BASELINE-1 assigns the exact
match of the term in the ontology. In case of non-existence
of an exact match, BASELINE-1 assigns the term to the
root concept of the Onto-Biotope ontology hierarchy,

Table 2 Results for the system with and without syntactic
re-ranking

System Train Dev

Before Re-ranking 0.601 0.629

After Re-ranking 0.648 0.677

Precision values for the training and development data sets are reported. k is set to
5 and w is set as 0.25 for the re-ranking module

Table 3 Comparison with previous systems for the
normalization task of bacteria biotopes

System Precision

BOUNEL(Our system) 0.659

TURKU [33] 0.630

BOUN [43] 0.620

CONTES [15] 0.597

LIMSI [18] 0.438

BASELINE-2 0.322

BASELINE-1 0.225

Precision values for the test data set are reported. k is set to 5 and w to 0.25 for the
proposed system (BOUNEL) based on the results on the training and development
sets

which is “bacteria habitat” concept. On the other hand,
BASELINE-2 assigns all terms to the “bacteria habitat”
concept without searching for an exact match. The results
show that our system obtained a score of 65.9% which
is higher than both of the baselines BASELINE-1 and
BASELINE-2. Our proposed method also obtained higher
scores than all other previously proposed methods on the
bacteria biotope normalization task, achieving the new
state-of-the-art results.

Results for adverse drug reactions
Table 4 presents the results of the proposed system before
and after syntactic re-ranking for the task of adverse drug
reactions entity normalization on the Text Analysis Con-
ference 2017 Adverse Drug Reaction training and test data
sets. We used the same values for the parameters of the
re-ranking module as the bacteria biotope normalization
task (k=5 and w=0.25). Since there is no prior work on

Table 4 Results of the proposed method with/without
re-ranking on the adverse drug reaction normalization task

Baseline Before Re-ranking After Re-ranking

Training set

Macro-average Precision 0.999 0.737 0.742

Macro-average Recall 0.522 0.732 0.736

Macro-average F-score 0.686 0.735 0.739

Micro-average Precision 0.999 0.728 0.730

Micro-average Recall 0.513 0.723 0.725

Micro-average F-score 0.665 0.726 0.728

Test set

Macro-average Precision 0.999 0.683 0.687

Macro-average Recall 0.494 0.677 0.681

Macro-average F-score 0.661 0.675 0.684

Micro-average Precision 0.999 0.682 0.686

Micro-average Recall 0.489 0.675 0.680

Micro-average F-score 0.657 0.678 0.684

Precision, recall and f-score values for the training and test sets are reported
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the task of adverse drug reactions entity normalization
task on the same data set, we compared our results with
the baseline. We computed baseline results by assigning
the mention to the exact match of the term in the Med-
DRA dictionary. As the results on Table 4 demonstrate,
the new system with syntactic re-ranking obtained higher
precision, recall, and f-measure scores on both the train-
ing and test data sets than the system without syntactic
re-ranking. Furthermore, the new system with syntactic
re-ranking achieved significantly higher recall than the
baseline, as a result achieving higher f-measure scores.

Discussion
Bacteria biotopes
Table 5 shows the performance of the proposed system
without syntactic re-ranking for returning the correct
concept from the ontology among the top k ranked candi-
dates. For example, when k = 1, the concept assignment
is considered correct, only if the correct concept is ranked
first by the system. On the other hand, when k = 10, the
concept assignment is considered correct, if the correct
concepts is ranked in the top ten by the system. These
results motivated the development of the re-ranking mod-
ule, since as k increases, the precision of the system also
increases. The goal of syntactic re-ranking is to re-rank
the top k retrieved candidate concepts, so that the correct
concept moves to the first rank, as in the example shown
in Table 1.
Table 6 demonstrates the results of our proposed

approach with syntactic re-ranking, when the top k can-
didates retrieved by the system without re-ranking are
provided as input to the re-ranking module. As the results
show, for values of k = 10, k = 15, k = 20 and k =
25, the results are nearly the same on the training and
development sets, which means that after a threshold of
k = 5, different values of k make no big difference in the
results. Therefore, based on the results on the training and
development sets, k is chosen as 5 empirically.
We also investigated the effects of using different sim-

ilarity/distance metrics, word mover’s distance (WMD)
and cosine similarity. The results show that the system
with cosine similarity achieved better precision scores
than the system with WMD on both the training (WMD:
58.6%; Cosine: 60.1%) and development (WMD: 49.0%;
Cosine: 62.9%) data sets.

Table 5 Prediction performance of our system without syntactic
re-ranking among the semantically most similar top (k = 1, 5, 10,
20, 25, 50) concepts

k 1 5 10 15 20 25 50

Train 0.614 0.656 0.672 0.711 0.726 0.738 0.831

Dev 0.655 0.683 0.725 0.753 0.789 0.804 0.894

Precision values for the training and development data sets are reported when the
reference concept is among the top k

Table 6 Results for the system with syntactic re-ranking for the
different number of semantically most similar top (k = 5, 10, 15,
20, 25, 50) concepts

k 5 10 15 20 25 50

Train 0.648 0.634 0.637 0.639 0.640 0.643

Dev 0.677 0.668 0.667 0.667 0.668 0.632

Precision values for the training and development data sets are reported when the
reference concept is at the first rank after re-ranking the semantically most similar
top (k = 5, 10, 15, 20, 25, 50) concepts

Table 7 shows the effect of the parameter w, which is
used in Equation 1 to give weights to the most informative
words (head of the noun phrase) with the ultimate aim to
calculate the similarity between the named entity mention
phrases and the reference ontology terms. As the results
show, for w = 0.25 our proposed approach obtains higher
precision on both the training and the development sets.
During the error analysis of the proposed system with

syntactic re-ranking on the training and development sets,
we realized the existence of falsely normalized mentions,
which are possessive prepositional phrases (PPP). These
phrases include compound noun phrases in the “NP of
NP” form. For example, the entity mention “throats of
two healthy children” is composed of two noun phrases
“throats” and “two healthy children”, where the first NP
“throats” is the only informative NP for normalizing
the entity mention to the correct concept “OBT:000374
throat”. As a result of this fact, a syntax rule is added
before re-ranking to strip the non-informative words fol-
lowing “of” from the entitymentions, if they are possessive
prepositional phrases.

Adverse drug reactions
Although experimental results showed that the new sys-
tem with syntactic re-ranking obtained higher precision
scores on both data sets than the system without syntac-
tic re-ranking, the improvement of the new system on the
Text Analysis Conference 2017 Adverse Drug Reaction
(ADR) data set is lower compared to the improvement
that is achieved on the BioNLP Shared Task 2016 Bac-
teria Biotopes data set. Error analysis revealed two main
sources of errors, which are more prevalent in the ADR
data set. The first source of errors is the usage of abbrevia-
tions and acronyms as entity mentions, which are hard to

Table 7 Results for the system with different weights for the
most informative words (w = 0, 0.25, 0.50, 0.75)

w Train Dev

0 0.614 0.655

0.25 0.648 0.677

0.50 0.648 0.669

0.75 0.632 0.661

Precision values for the training and development data sets are reported
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normalize without incorporating the context of the men-
tions. For example, in the training set, there are entity
mentions such as “sjs” and “ten”, which are acronyms
that should be normalized to the corresponding con-
cepts “Stevens-Johnson syndrome” and “Toxic epidermal
necrolysis” in the MedDRA dictionary. Rare words are the
second source of errors. Although the word embedding
model, which is used to calculate the semantic similarities,
has been learned from PubMed articles, there may still
exist out of vocabulary words, which are rare. For example,
for the ADR mention “Neoscytalidium infections”, the
“Neoscytalidium” word does not exist in the model that is
used to calculate the word embeddings. In that case, the
semantically most related concepts are found incorrectly
by the proposed system considering only the existing
word “infections” as “Nosocomial infection”, “Opportunis-
tic infection” and “Granulicatella infection”, while the
correct concept is “Neoscytalidium infection”.

Conclusion
In this study, we introduce an unsupervised approach
for biomedical entity normalization through an ontology
by utilizing word embeddings and syntactic re-ranking.
The proposed approach is applied to the normalization
problem of the habitat entities through the Onto-Biotope
ontology and the adverse drug reaction entities to the
MedDRA dictionary, and tested on the BioNLP Shared
Task 2016 Bacteria Biotopes data set and the Text Anal-
ysis Conference 2017 Adverse Drug Reaction data set,
respectively. The new system with syntactic re-ranking
obtained higher precision scores on both data sets than
the systemwithout syntactic re-ranking. Furthermore, the
system achieved a precision score of 65.9% on the BioNLP
Shared Task 2016 Bacteria Biotopes data set, which is
2.9 percentage points above the current state-of-the-art,
demonstrating that it is as effective as supervised and
semi-supervised approaches for biomedical named entity
normalization.
Our proposed approach with syntactic re-ranking

(named as the BOUNEL system) uses the Stanford Parser,
which is a supervised parser. However, BOUNEL is unsu-
pervised in the sense that it does not require training data
manually annotated with entity mentions and their cor-
responding concepts in the ontology. Furthermore, the
Stanford Parser has not been re-trained using biomedi-
cal data, but the off-the-shelf parser pre-trained with the
Penn Treebank has been used. Therefore, the proposed
approach can be easily adapted for normalizing different
types of biomedical entities.
As future work, we will investigate incorporating the

context of the reference entity mentions in text into
the vector representations. Error analysis over the train-
ing sets revealed that the proposed approach is more
successful for the normalization of entity mentions whose

constituent words have semantic meanings, compared
to the entity mentions which contain abbreviations,
acronyms, or rare words. We believe that incorporating
context information may improve the performance of the
system for such entity mentions.
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