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Abstract

Background: Using meta-analysis, high-dimensional transcriptome expression data from public repositories can be
merged to make group comparisons that have not been considered in the original studies. Merging of
high-dimensional expression data can, however, implicate batch effects that are sometimes difficult to be removed.
Removing batch effects becomes even more difficult when expression data was taken using different technologies in
the individual studies (e.g. merging of microarray and RNA-seq data). Network meta-analysis has so far not been
considered to make indirect comparisons in transcriptome expression data, when data merging appears to yield
biased results.

Results: We demonstrate in a simulation study that the results from analyzing merged data sets and the results from
network meta-analysis are highly correlated in simple study networks. In the case that an edge in the network is
supported by multiple independent studies, network meta-analysis produces fold changes that are closer to the
simulated ones than those obtained from analyzing merged data sets. Finally, we also demonstrate the practicability
of network meta-analysis on a real-world data example from neuroinfection research.

Conclusions: Network meta-analysis is a useful means to make new inferences when combining multiple
independent studies of molecular, high-throughput expression data. This method is especially advantageous when
batch effects between studies are hard to get removed.
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Introduction
Network meta-analysis has been widely used for aggre-
gating results of clinical trials to make direct and indirect
inferences about treatment effects, and several methodical
concepts for network meta-analysis have been proposed
[1–3]. Published examples of network meta-analysis are
for example the comparison of the efficacy of differ-
ent treatments against each other [4], the comparison of
different therapies [5], or the study of safety of differ-
ent drugs [6]. In contrast to ‘traditional’ meta-analysis
which aggregates studies on the same study question, net-
workmeta-analysis also involves studies on different study
questions which are linked by pairwise same treatment
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groups. Treatment comparisons that have not been stud-
ied in the original studies can indirectly be made within
the network meta-analysis. Thus, inferences about group
comparisons which are not linked within the network of
study groups from the original studies are possible. While
‘traditional’ meta-analysis has already been used to merge
the results of high-dimensional gene expression studies
from microarray or RNA-seq experiments, and this topic
has also been elaborated methodically [7–9], the rela-
tively new methodology of network meta-analysis has not
been considered for such data so far. Examples of ‘tradi-
tional’ meta-analysis of high-dimensional expression data
are for example the identification of genes differentially
expressed in cancer [10] or in neurological tissues [11, 12].
The aim of this work is to compare network meta-

analysis as a tool for indirect inferences with the analysis
of merged gene expression data. Sincemost journals in the
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area of high-dimensional expression data demand submit-
ting authors to deposit their original data in public repos-
itories such as Gene Expression Omnibus (GEO) [13] or
ArrayExpress (AE) [14] alternatives to meta-analysis and
network meta-analysis have opened up: the direct merg-
ing and subsequent joint analysis of the original data.
Merging of original data can also be an approach of
making indirect comparisons. However, merging becomes
difficult if the data was taken using devices from different
manufacturer or even different technologies. Problems in
data merging may for example arise when expression data
in some studies were taken by means of DNA microar-
rays as continuous fluorescence values [15] and by means
of RNA-seq as read counts [16] in other studies. In some
cases, batch effects between different types of expression
data can be removed [17, 18]. However, even after apply-
ing a batch effect removing step onto themerged data false
discoveries may occur as was shown by [19]. Therefore,
merging of results in form of meta-analysis appears to
be advantages in such cases, meaning that meta-analyses
should be preferred over data merging strategies. Here-
upon, the question arises how comparable indirect infer-
ences from network meta-analysis and from the analysis
of merged data are.
In this article, we evaluate the possibility of indirect

group comparisons using either the strategy of data merg-
ing or of network meta-analysis. Specifically, we study
how strong the lists of differentially expressed genes
detected in indirect group comparisons by either type of
analysis differ. Furthermore, we study how strong the indi-
rect fold changes of genes determined by the two ways
of analysis are correlated, and how strong they are corre-
lated to the true fold changes. After briefly describing the
approaches of network meta-analysis and the alternative
analysis variant based on merged data sets, we demon-
strate the benefits and limitations of either approach
in a simulation study and on a data example of high-
dimensional gene expression data from infection research.

Methods
Consider a study network with n different experimental
groups. Let furtherm denote the number of possible pair-
wise group comparisons in this network. Thus, a graph
is formed with n nodes and m edges. In practice, not all
m edges will be covered by direct study internal com-
parisons. In this case, mdirect ≤ m denotes the number
of existing comparisons for which effect estimates are
available directly from at least one study. One goal of
the network meta-analysis is to obtain estimates for the
non-existing mindirect = m − mdirect comparisons. The
study networks depicted in Fig. 1 consist of n = 3 nodes
and mdirect = 2 directly available comparisons, while for
mindirect = 1 pair of study groups no direct compar-
isons exist from the original studies. Thus, the whole study

network consists of m = 3 edges. In the study network
at the bottom of Fig. 1, the comparison of treatment A
versus control is supported by three independent studies.
Thus, the number of available independent comparisons
can be even larger than mdirect . We therefore introduce
m′

direct ≥ mdirect as the number of available independent
comparisons in the network.
Differential expression analysis can either be performed

on the m′
direct available individual studies so that results

can be merged in a network meta-analysis. Alternatively,
differential expression analysis can be performed on the
merged data. Both variants allow for direct and indirect
inferences.

Differential testing
As method for differential testing between each pair{
k, k′} of experimental groups

(
k �= k′; k, k′ = 1, ..., n

)
we

use the linear models implemented in the R-package
‘limma’ [20]. After fitting this model to the data, we obtain
for each gene g (g = 1, ...,G) the estimated regression
coefficient and its related standard error from the result
object from the ‘eBayes’ function of the ‘limma’-package:

β̂g and SE
(
β̂g

)
. (1)

In these linear models, the regression coefficients can be
interpreted in the sense of the log fold change of a gene
between two experimental groups. Besides, test results
in form of a p-value per gene are procuced, of course.
Fold changes, standard errors and p-values can then be
used in the network meta-analysis to bring together the
results of the individual studies and also to make indirect
comparisons.

Network meta-analysis
To estimate regression coefficients and their standard
errors within the network of comparisons (direct as well
as indirect comparisons) we employ the method proposed
by [2] which we briefly sketch in the following and refer
the reader to this publication for further details. The
calculations of the network meta-analysis are done sep-
arately for each gene g (g = 1, ...,G). Here, G is the
number of genes jointly studied in all independent stud-
ies. Genes for which the expression measurements are
not available in all studies are excluded from the analy-
sis. To determine in this network the log fold change of
gene g and its standard error related to the comparisons
of all m pairs of groups

{
k, k′} (

k �= k′, andk, k′ = 1, ..., n
)
,

a
(
m′

direct × m′
direct

)
weight matrix W is constructed first,

with diagonal elements 1/SE(β̂)2 and with all other entries
being equal zero. With this weight matrix, comparisons
with a high standard error get less weight in the net-
work. Furthermore, the regression coefficients β̂g from
the individual comparisons are stored in the vector x.
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Fig. 1 Schemes of study networks. Networks were either simulated or represent the infection example. Top: two studies are connected by a similar
control group. (This scenario is evaluated in simulations no. 1a and no. 1b and by the infection example.). Bottom: the edge representing the
comparison between treatment A and control is supported by three independent studies (This scenario is evaluated in simulation no. 2.)
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Next, an
(
m′

direct × n
)
matrix B is constructed where each

row represents one of the m′
direct available comparisons,

and where the connections of the nodes to each other are
represented. Therefore, in each row of B, a 1 is put in the
column related to the node of experimental group k and
a -1 one is put in the column related to the other group
k′ of the available comparison represented by this row. All
other elements are zero. Thus, matrix B shows for which
pairs of experimental groups, results of differential expres-
sion analysis are available from the original studies. Using
the matricesW and B, a Laplacian matrix as used in graph
theory and its Moore-Penrose inverse are calculated as
follows:

L = BTWB, and L+ = (L − J/n)−1 + J/n, (2)

where J is an (n × n) matrix of ones. The variances of the
log fold changes in the network meta-analysis can then be
determined by the (n × n) matrix R with entries

Rk,k′ = L+
k,k + L+

k′,k′ − 2L+
k,k′ . (3)

Note that R is symmetric, i.e. Rk,k′ = Rk′,k . The standard
errors for each comparison in the network meta-analysis
are then given by

√
R.

In order to calculate estimates of the direct log fold
changes in this network, stored in vector v of length
m′

direct , the following equation is used:

v = BL+BTWx. (4)

In the case that m′
direct = mdirect , the elements of v

are equal to the input fold changes stored in x. In cases
where m′

direct > mdirect , the elements of v for network
edges which are supported by multiple studies are a sum-
mary of the fold changes from these studies. The fold
changes for the indirect comparisons can be obtained by
a subtraction procedure between the elements of v. This
subtraction procedure is detailed by the example code
provided within [2] (cf. three fold for-loop to construct
the matrix ‘all’ in their example code). To perform these
calculations in our simulations and in the analysis of the
infection data, we employ the R-package ‘netmeta’ that
provides the implementation of the methods by [2].
Example R-code that shows how to use the ‘limma’-

results in the package ‘netmeta’ is provided as supplemen-
tary material (Additional file 1).

Batch effect removal in merged data sets
A regular problemwhenmerging data from different stud-
ies are batch effects. Therefore, we base our simulation
study on a gene expression model that includes additive
and multiplicative batch effects [17]. This model was rec-
ommended as a results of a systematic comparison by [18].
We refer to a further comparison of methods for batch
effect removal in the discussion section of this work. In
this model, the gene expression level of gene g in group j
and study i is drawn by

Yijg = αg + βgj + γig + ρigεijg , (5)

where αg and βgj are the overall and the group specific
expression level, respectively. The components γig and
ρig are an additive and multiplicative batch effet, respec-
tively, and εijg is the overall error. Estimation and removal
of these types of batch effects are implemented in the
‘ComBat’ function of the R-package ‘sva’.

Results
To evaluate network meta-analysis of transcriptome pro-
files and to compare the results with the analysis of
merged data sets, we ran a simulation study and applied
the methods to an example from neuroinfection research.
All simulation scenarios were first performed using 500
runs and then repeated with 1000 runs which led to the
same conclusions. Therefore, the authors considered 1000
runs a appropriate choice.

Simulation study
Simulation no. 1a represents two studies on two different
diseases (A and B), each study involving samples from dis-
eased individuals and from healthy controls. In practice, a
researcher would usually be interested in a comparison of
two diseases from a similar area (e.g. different cancers or
different infectious diseases). While the individual stud-
ies provide the direct comparison between samples from
the disease group versus control samples, data merging or
network meta-analysis can be used to make the indirect
comparison of the samples from the two disease groups
(Fig. 1). The comparison of the transcriptome expression
data from the disease groups could provide insights about
their differences, e.g. which genes are highly expressed
under disease A but not under disease B. Assuming, alter-
natively, not a scenario with diseases but with different
treatments (where the control group represents untreated
samples) the indirect comparison of the different treat-
ment samples could uncover which genes are influenced
by treatment A but not by treatment B.
In the simulation, the parameters of the model specified

by Eq. (5) were mainly drawn from the normal distribu-
tion except for the multiplicative batch effect which was
drawn from the inverse Gamma distribution (Table 1).
Using the inverse Gamma distribution was also proposed
by [17] to obtain values distributed around 1. Hence, for
most genes, the multiplicative effect is rather weak. For
both studies, different values of the distribution param-
eters were chosen for the batch effects. Note also, that
the term for the fold change, βgj, was set to zero for
the control groups. In total, we simulate data for G =
100 genes which is enough, here, to compare ranking
lists from differential expression analysis. Sample sizes
per group were chosen as n1 = n2 = 10 in this
simulation.
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Table 1 Setting of simulation parameters

Group/group αg βgj γig ρig εijg

Study 1: Control N (0, 1) 0 N (0, 1) InvGamma(1, 1) N (0, 1)

Study 1: Disease A N (0, 1) N (0, 1) N (0, 1) InvGamma(1, 1) N (0, 1)

Study 2: Control N (0, 1) 0 N (2, 1) InvGamma(1, 2) N (0, 1)

Study 2: Disease B N (0, 1) N (0, 1) N (2, 1) InvGamma(1, 2) N (0, 1)

Study 3: Control N (0, 1) 0 N (0, 1) InvGamma(1, 1) N (0, 1)

Study 3: Disease A N (0, 1) N (0, 1) N (0, 1) InvGamma(1, 1) N (0, 1)

Study 4: Control N (0, 1) 0 N (0, 1) InvGamma(1, 1) N (0, 1)

Study 4: Disease A N (0, 1) N (0, 1) N (0, 1) InvGamma(1, 1) N (0, 1)

Simulation nos. 1a and 1b involve studies 1 and 2, only, while simulation no. 2
involves all four studies

Comparing in simulation no. 1a the ranks of p-values
and ranks of log fold changes from the network meta-
analysis versus those from the merged data analysis, high
correlations can be observed (Fig. 2). The results of both
analysis variants would therefore lead to similar biolog-
ical conclusions. If we look at the true simulated fold
changes, β.1 − β.2, and correlate them with either the
fold changes from the network meta-analysis or from the
merged data analysis, again no large differences between
the two analysis variants could be observed. Taken from
1000 simulation runs, the mean (+/- standard deviation)
correlation between the true fold changes and those from
the network meta-analysis or from the merged data was
0.74 +/- 0.18 each (Additional file 2).

In order to study how the correlation between the true
fold changes and those from either network meta-analysis
or from the merged data analysis changes when sample
sizes are increased, the simulation scenario was extended
with sample sizes per group being increased from n1 =
n2 = 100 to n1 = n2 = 1000 by steps of 100 (simulation
no. 1b). Again, 1000 runs were performed for each value
of the sample sizes. In this simulation, the correlation
increases when the sample size per group was increased
(Fig. 3). Still, no relevant differences in the correlation can
be seen between the two analysis variants, i.e. for each
sample size the corresponding two boxplots are nearly
identical.
Network meta-analysis also allows that an edge of the

network is supported by multiple studies (Fig. 1 bot-
tom). In simulation no. 2, we generated data from three
independent studies to support the comparison between
treatment A and control, and data from one study to
support the comparison between treatment B and con-
trol. In this scenario, the correlation between true and
calculated logFC was overall higher when using network
meta-analysis than in the analysis of the merged data
(Fig. 4).

Examples: transcriptome expression profiles in
neuroinfectious diseases
Our real world example involved transcriptome expres-
sion profiles from ZIKA virus (ZIKV) infected neural
progenitor cells [21] as well as expression profiles of differ-
entiated NT-neurons infected with herpes simplex virus

Fig. 2 Correlation between results of data merging versus results of network meta-analysis. Smoothed scatterplots representing the ranks of
p-values (top) and of log fold changes (bottom), respectively, resulting from network meta-analysis versus the results from the analysis of merged
data in the simulation of two independent studies (Simulation no. 1a). The plots represent the results from 1 of 1000 simulation runs
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Fig. 3 Precision of fold change estimation in a simple scenario.
Boxplots representing the correlation between true and estimated
logFC versus sample size per group observed in the analysis of
merged data and in network meta-analysis. 1000 simulation runs of
two independent studies were performed per sample size
(Simulation no. 1b). Both analysis variants show nearly the same
correlation which increases with increasing sample sizes

1 (HSV1). No journal publication is available for the lat-
ter study. Both data sets were selected from GEO with
accession numbers GSE80434 (African ZIKVM and mock
infected samples only) and GSE24725, respectively. Fur-
thermore, both studies follow a two group design with

Fig. 4 Precision of fold change estimation in more complex scenarios.
Correlation between true and estimated logFC observed in the
analysis of merged data and in network meta-analysis from 1000 runs
of simulation scenario no. 2., where one edge of the network is
represented by multiple independent studies

the infected cells compared to control samples. ZIKV is
a mosquito-borne Flavivirus, first discovered in 1947 in
Uganda [22]. HSV1 belongs to the class of Herpesviri-
dae and is transmitted by direct contact. The capacity of
both viruses to infect neural tissues following initial sys-
temic virus spread means that a network meta-analysis
can be helpful to identify genes that show a different
expression in hosts infected by either virus [23]. The inter-
section of both studies was G = 7912 genes that were
subjected to the joint analysis. In order to compare the
expression profiles of ZIKV and HSV1 infected neural
cells we first merged both data sets, performed the batch
effect removal and finally differential expression analysis.
We denote the resulting p-values and log fold changes by
pmerged and logFCmerged, respectively. As second analysis
variant, we performed network meta-analysis obtaining
pnet and logFCnet , respectively.
In general, the order of the p-values and log fold changes

in both analysis variants were highly but not perfectly cor-
related (Fig. 5). Thus, the top selected genes can differ
between the two strategies, and biological conclusions can
vary. Variations in the biological interpretation from both
analysis strategies will be discussed in the last chapter.
In addition to the differential expression analysis, we

studied how gene set enrichment analysis changes when
using either merged data analysis or network meta-
analysis. Therefore, ranked gene lists resulting from
differential expression analysis were subjected to GO
term enrichment analyses. In total 4860 GO terms
were analysed. Based on the merged data analysis, 43
GO terms were significantly enriched among the dif-
ferentially expressed genes between ZIKV and HSV1,
while 67 GO terms were selected when using net-
work meta-analysis. The overlap of these two sets
included 13 GO terms that would contribute to the
biological interpretation regardless of the type of anal-
ysis. Again, the commonalities and differences in bio-
logical interpretation will be discussed in the last
chapter.

Discussion
Differences in biological interpretation
The analyses of the infection data by data merging and
network meta-analyis, respectively, have shown common-
alities and differences in the results. This can have conse-
quences on the biological interpretation as will be demon-
strated in the following.
In general, among the top 10 genes selected with both

analysis variants (Table 2) are genes with diverse functions
in cell recruitment, apoptosis or neuronal development.
Some of these genes were already described in connection
with the development of other neuropathic diseases, in
particular with Alzheimer’s, Parkinson’s and Huntington’s
Disease.
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Fig. 5 Correlation of results in infection data set. Smoothed scatterplots representing the ranks of p-values (top) and log fold changes (bottom),
respectively, resulting from network meta-analysis versus the results from the analysis of merged ZIKV and HSW1 data sets

Looking at the 6 genes that occur in both top 10 lists,
CXCR3 is expressed on activated T-lymphocytes, natu-
ral killer cells and on B-lymphocyte subsets and medi-
ates T-cell migration into inflammatory areas of the ner-
vous system during viral infection [24, 25]. Furthermore,
CXCR3-deficientmice showed an increasedmortality rate
(associated with higher viral load) after West Nile Virus
(WNV) or dengue virus infection [26, 27] that can also
lead to neuropathic diseases. In contrast, an elevated level
of viral clearance was observed during HSV-1 encephali-
tis in CXCR3-deficient mice resulting in reduced clinical

Table 2 Top 10 differentially expressed genes (i.e., with the
smallest p-values), selected from either merged data sets (left)
and network meta-analysis (right), respectively

Rank Merged analysis Network meta-analysis

1 COX7B RHO

2 CXCR3 LTB

3 LTB CXCR3

4 RHO COX7B

5 TNFAIP2 TPO

6 SF1 SLC39A2

7 ENO1 HAL

8 SLC4A1 TNFAIP2

9 PNMA1 PNMA1

10 H1FX MFN2

Bold names indicate 6 genes that appear in both top 10 lists

signs and decreased mortality [28, 29] . CXCR3 activa-
tion lead to transactivation of pro-inflammatory genes,
and initiation of apoptosis in neurons. To prevent neu-
ronal cell death duringWNV Encephalitis, WNV-infected
cells induce TNFα-regulated signaling pathways which
result in down regulation of CXCR3 [30]. COX7B is one
of the small, nucleus-encoded subunits of cytochrome
c-oxidase, the terminal complex in the mitochondrial res-
piratory chain. The small subunits have regulatory func-
tions and play an essential role in complex assembly [31].
Furthermore, mutations lead to microcephaly, indicating
a role for COX7B in brain and eye development [32].
Expression changes of COX7B have also been described
during the development of neurodegenerative diseases
[23, 33, 34]. Anti-PNMa1 autoantibodies can be found
in patients with paraneoplastic neurological disorders
[35] in connection with brainstem or limbic encephali-
tis, hypothalamic disorder and dementia. Furthermore,
PNMA1 expression is also increased in apoptotic neurons,
although the underlying mechanism is poorly understood
[36]. Lymphotoxin B (LTB) is a type II membrane pro-
tein encoded by the LTB gene and plays a key role during
lymph node development, LTB gene deletion inmice leads
to a lack of peripheral lymph nodes and Peyer’s patches
[37]. LTB only binds its receptor LTBR, leading to NFκB
activation and cell death [38, 39]. With respect to ZIKV
and HSV-1, these 6 genes could play a similar role.
Among the top 10 genes selected by the analysis of the

merged data are ENO1, H1FX, SF1 , SLC4A1, which only
occur in the network meta-analysis from rank 469 and
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below, and would probably not be considered in a bio-
logical interpretation of the results. ENO1 catalyzes the
penultimate step in glycolysis, but is also involved in reg-
ulation processes, such as inflammatory cell recruitment
[40] and tumor suppression [41]. The protein interacts
with ZIKV non-structural proteins and is able to influ-
ence cell proliferation and differentiation [42, 43]. H1FX
belongs to the histone H1 family. H1 linker histones bind
the nucleosomal core particle around the DNA entry and
exit sites and stabilize the chromatin structure. In this way,
H1 proteins are involved in transcriptional regulation, but
also play a role in cell proliferation and differentiation. All
H1 variants have the same general structure, but differ
in their functions [44]. SLC4A1 is a chloride-bicarbonate
exchanger expressed in erythrocytes and intercalated cells
of renal collecting ducts. Mutations of SLC4A1 have been
described associated with distal renal tubular necrosis
and haemolytic anemia [45]. Little is known about SF1 in
connection with neuroinfection.
In contrast, the top10 genes selected by network meta-

analysis included HAL,MFN2, TPO, SLC39A2 which also
occur among the top20 list obtained from the analysis of
the merged data. Therefore, these 4 genes would even-
tually be regarded in the interpretation of both analysis
results. Mitofusin 2 (MFN2) GTPase is a mitochondrial
membrane protein that is also crucial in mitochondria
metabolism [46]. Furthermore, MFN2 is involved in acti-
vation of the inflammasome in macrophages during virus
infection [47]. The loss of MFN2 lead to an enhanced
virus-induced synthesis of IFNβ and decreased viral
reproduction [48]. Thyroid Peroxidase (TPO) is expressed
in the thyroid gland and is essential for thyroid hor-
monogenesis. Nevertheless, TPO promotor also contains
a specific NFκB binding site, leading to transactivation
after (LPS) stimulation [49].
In the gene-set enrichment analysis 13 GO terms were

identified regardless of the type of analysis. In general,
these 13 GO terms could hardly be related to either the
neurological or infection context. However, some of the
enriched GO terms have been described in connection
with viral infection. Polyoma virus infected cells showed
an upregulation of genes associated with positive regu-
lation of cell proliferation (GO:0008284) [50]. The term
GO:0006977 (DNA damage response, signal transduction
by p53 class mediator resulting in cell cycle arrest) is
enriched in in neoplastic cells infected with Epstein-Barr
Virus (EBV), another member of the herpesvirus fam-
ily [51]. If only network meta-analysis was performed,
GO:0006915 (apoptosis) was selected for example. The
term GO:0006915 was identified to be overrepresented in
retinal epithelium cells after infection withWest Nile virus
compared to uninfected cells [52]. In contrast, if only the
merged data were analysed, the term GO:0007049 (cell
cycle) was selected, which was detected to be enriched

among differentially expressed genes in patients with EBV
associated infectious mononucleosis [53].

Methodical issues
We have demonstrated in a simulation study and by
the analysis of a real-world example that network meta-
analysis is a useful tool to make additional inferences
frommultiple independent studies with high-dimensional
molecular expression data. While the results of network
meta-analysis are highly correlated with the results of
merged data analysis in simply study networks, network
meta-analysis showed a higher correlation with the true
fold changes than merged data analysis when one edge
of the network was supported by multiple independent
studies. This might indicate that the step of batch effect
removal does not work well in the latter case. In our
data analysis we used the ‘ComBat’ method to remove
batch effects, and we used the same model for generating
the simulation data. Thus, our results could be too opti-
mistic with respect to the performance of the approach
of analyzing the merged data. In practice, there may also
be other types of batch effects which are not consid-
ered by the ‘ComBat’ model. Another batch effect removal
approach, ‘FAbatch’, was proposed by Hornung et al. [54]
that failed in their evaluation only in the case of extremely
outlying batches or in cases where batch effects were
very weak compared to the biological signal. Hornung et
al. also provide a more detailed discussion on different
batch effect models and methods for batch effect removal.
These specific cases where batch effect removal fails are
also an argument in favor of the network meta-analysis
approach. Furthermore, as mentioned in the introduction,
batch effect removal might also be a critical step when
expression data was taken by different platforms.
In order to further study the issue of multiple batches

we generated principal component plots under the sim-
ple and under the more complex study network sce-
narios, each before and after the step of batch effects
removal (Additional file 3). Therein, samples of the con-
trol groups cluster together after batch effect removal,
but samples from the different disease groups form sepa-
rate clusters that may be represented by different batches.
While most methods for batch effect removal have been
devised for scenarios with dichotomous target variables
(e.g. control versus diseased), typical scenarios of study
networks involve multiple groups of different diseases,
and these may be represented by different batches. By
circumventing the step of batch effect removal, network
meta-analysis can provide a helpful alternative over the
analysis of merged data sets when there is uncertainty
regarding the performance of the batch removal step.
Regarding the number G of genes involved in the analy-

sis, we mentioned in the methods part that genes that are
not involved in all studies of the network will be dropped
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from the analysis. In the case of larger study networks
and when using network meta-analysis it would be eas-
ily possible to study sub-networks and thus to re-include
some of the omitted genes. When using the data merging
approach, studying sub-networks with some of the omit-
ted genes re-included would require to newly perform
the data merging with batch effect and normalization
steps which would in summary make the results from the
different sub-networks hard to compare.
Regarding the method for network meta-analysis, we

have so far only used the methods by [2], implemented
in the R-package ‘netmeta’. A comparison with the results
of other network meta-analysis approaches would be
an interesting addition which we intend for our future
research.

Additional files

Additional file 1: Example R-code for network meta-analysis. R-code that
demonstrates how fold changes and their standard errors as obtained from
‘limma’ areused for networkmeta-analysis in the ‘netmeta’-R-package. (R 3 kb)

Additional file 2: Correlation between true and estimated logFC
(Simulation no. 1a). Boxplots representing the correlation between true
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