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Background: Fast and accurate automatic segmentation of skeletal muscle cell image is crucial for the diagnosis of
muscle related diseases, which extremely reduces the labor-intensive manual annotation. Recently, several methods
have been presented for automatic muscle cell segmentation. However, most methods exhibit high model
complexity and time cost, and they are not adaptive to large-scale images such as whole-slide scanned specimens.

Methods: In this paper, we propose a novel distributed computing approach, which adopts both data and model
parallel, for fast muscle cell segmentation. With a master-worker parallelism manner, the image data in the master is
distributed onto multiple workers based on the Spark cloud computing platform. On each worker node, we first
detect cell contours using a structured random forest (SRF) contour detector with fast parallel prediction and generate
region candidates using a superpixel technique. Next, we propose a novel hierarchical tree based region selection
algorithm for cell segmentation based on the conditional random field (CRF) algorithm. We divide the region
selection algorithm into multiple sub-problems, which can be further parallelized using multi-core programming.

Results: We test the performance of the proposed method on a large-scale haematoxylin and eosin (H&E) stained
skeletal muscle image dataset. Compared with the standalone implementation, the proposed method achieves more
than 10 times speed improvement on very large-scale muscle images containing hundreds to thousands of cells.
Meanwhile, our proposed method produces high-quality segmentation results compared with several state-of-the-art

Conclusions: This paper presents a parallel muscle image segmentation method with both data and model
parallelism on multiple machines. The parallel strategy exhibits high compatibility to our muscle segmentation
framework. The proposed method achieves high-throughput effective cell segmentation on large-scale muscle

Keywords: Muscle image segmentation, Cloud computing, Multi-core programming

Background

Skeletal muscle has been extensively recognized as the
tissue related to many diseases such as heart failure and
chronic obstructive pulmonary disease (COPD) [1, 2]. To
accelerate the disease diagnosis at the cellular level and
reduce the inter-observer variations, these exist increas-
ing demands for accurate and efficient computer-aided
muscle image analysis system [3]. Automatic muscle cell
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segmentation is usually the first step for further image fea-
ture quantification. In recent years, several state-of-the-
art algorithms have been reported for cell segmentation
on skeletal muscle and various cancer images [4—10]. For
example, unsupervised methods, such as the deformable
model [4, 10, 11], Liu et al. [4] propose a deformable
model-based segmentation algorithm, which uses color
gradient for cell boundary seeking. Later a contour detec-
tion and region-based selection algorithm, which is able to
deal with low quality skeletal muscle images, is presented
in [12]. However, due to the high model complexity, these
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methods are not applicable to large-scale muscle images
(e.g. 4000 x 4000).

Recently, there is an encouraging evidence that applying
medical image analysis [13, 14] to high performance com-
puting resources can significantly improve the running
time of the algorithms. Meanwhile, analyzing the whole-
slide images can provide much richer information, which
is helpful to clinical diagnosis [15]. Therefore, there is an
urgent need of efficient large-scale image analysis algo-
rithms. High performance computing techniques emerge
as one solution to tackle this challenge, and have attracted
a great deal of research interests in medical image analy-
sis [14, 16, 17]. In particular, we have successfully applied
a cloud computing framework [13, 18, 19] to content-
based sub-image retrieval on whole-slide tissue microar-
ray images, and another application is reported in [14]
for high throughput landmark based image registration.
Although many high performance computing applications
in medical image analysis have been presented in recent
literatures, there exits very few reports focusing on cell
segmentation.

In this paper, we first present an effective muscle
cell segmentation framework, mainly consisting of three
steps: 1) muscle cell contour detection using structured
random forests (SRF); 2) region candidate generation
using superpixel techniques, and 3) hierarchical tree
based region selection. A similar framework is first pre-
sented in our previous conference version [12], and we
extend this approach to a distributed computing frame-
work in this paper. Figure 1 shows the time profile of each
step of the framework running on a standalone machine.
It indicates that the region selection dominates the run-
ning time (accounting for around 94%), this paper mostly
focuses on accelerating this step with both data and model
parallelism.

We propose a parallel approach using cloud comput-
ing techniques which is able to handle very large-scale
muscle images. A master-worker parallelism manner is
exploited to distribute image data onto multiple worker
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nodes of a cloud cluster. On each worker node in the
cluster, we propose a hierarchical tree based region selec-
tion leveraging on the conditional random field (CRF)
algorithm. Its optimization process is divided into multi-
ple sub-problems, which can be solved using multi-core
programming techniques. Our proposed method achieves
more than 10 times speed improvement on very large-
scale muscle images containing hundreds to thousands of
cells. Meanwhile, our proposed method produces supe-
rior segmentation results compared with several state-of-
the-art muscle image segmentation methods on our H&E
skeletal muscle image dataset.

The rest of the paper is constructed as follows: we start
by introducing our muscle image segmentation method
and analyze its characteristics for parallelism; then we
present the parallel approach to accelerate the overall
segmentation efficiency; next, the “Experimental results”
section evaluates the speed and accuracy of our proposed
muscle image segmentation method; the last section con-
cludes this paper.

Contour detection and region candidate
generation

We present the proposed cell segmentation method in
this section. Effective contour detection is the first step of
most region-based image segmentation methods [20-22].
We start by introducing a structured random forest (SRF)
based method for fast and accurate muscle contour detec-
tion, SRF is selected because its: 1) fast prediction ability
for high-dimensional data, 2) robustness to label noise
[23], and 3) good support to arbitrary size of outputs.
Next, a superpixel algorithm is used to generate region
candidates. Finally, we present a hierarchical tree based
method to select the optimal candidate regions based on
CRE, Fig. 2 shows the entire process.

Contour detection
Random forest (RF) classifier is an ensemble learning
technique which combines ¢ decision trees to form a forest
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Fig. 1 The time profile for each step of the proposed entire segmentation algorithm running on a standalone machine with a 6000 x 6000 image.
The hierarchical tree based region selection step dominates the running time, around 94% of the total time cost
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Fig. 2 lllustration of the contour detection and region candidate map generation. For each local patch from input test image, our SRF detector
outputs a contour prediction patch. The contour image is generated by averaging all pixel-wise predictions. Then the region candidate map is

F = {T,}}t:1 [24]. Each tree T; is trained independently
and the final classification is determined by applying a
majority voting to all the outputs of trees.

However, conventional RF can not capture the inherent
contour structures inside local image patches so that it is
difficult to obtain satisfactory contour detection perfor-
mance [25]. In order to capture rich structures of contours
during the SRF training, we propose to deploy SRF [26], a
variation of RF, to detect the muscle cell contours. SRF is
trained with a set of training data D = {(x,y) € X x )V},
where X = R@#X¢ s the feature space of a d x d image
patch, so that each pixel in the image patch is featured by
a c-dimensional vector. The structured label y € ) € Z4¢
corresponding to x is a patch cropped from the ground
truth image, which is a binary image having the value of 1
in contour pixels and 0 otherwise.

To enable the training of SRF with structured labels,
in node i where training data D; falls, we adopt a map-
ping function proposed by [26] to map structured labels
into a discrete space for each x € D;, which intrinsically
consider the contour structure information. Then a split
function h(x,0) = 1[x(k) < t] splits and propagates the
data D; C X x Y to the left L (when & = 0) or right R
(h = 1) substree of node i, which is the same as the node
splitting procedure of RE. The t and k are determined by
maximizing the standard information gain criterion C; at
node i [24]:

24

D]

Ci=HD)— Y

o€{L,R}

H (D7), (1)

where H(D;) is the Gini impurity measure, H(D;) =
>yl — ¢p). ¢; denotes the proportion of data in D;
with label I. After the data in D; is propagated to the
child nodes, the above steps are performed recursively
until leaf nodes are reached (i.e., the stopping criteria is
satisfied [24]). The most representative structural label y
(close to mean) in each node is stored as its structured
prediction [27].

In practice, following [25], we utilize three color chan-
nels computed using the CIE-LAB color space. Two gra-
dient magnitude channels are computed with varying
amounts of blur (we use Gaussian blurs with ¢ = 0 and
o = 1.5). Additionally, eight orientation channels in two
image scales to represent the features of image patches.
Such that in total ¢ = 13 channels in X are extracted by
using optimized code from [28] available online!. To pre-
vent overfitting when training SRF, each tree randomly
selects a subset of training samples and features for train-
ing. In the testing stage (see Fig. 2), since the prediction of
each tree for each pixel is independent, we can parallelize
this stage using a multi-thread technique [26].

Region candidate generation

Based on the contour image detected by our SRF contour
detector, region candidates can be generated using super-
pixel techniques, which is able to group similar pixels in
terms of color, edge strength (referring to our detected
contour image), and spatial cues.

In this paper we use the well-known oriented watershed
transform and ultra-metric contour map (OWT-UCM)
[29] algorithm to obtain our region candidate maps for
three main reasons: 1) it is very efficient to handle large-
scale images; 2) regions in a map are well nested at
different thresholds; 3) it guarantees that the bound-
aries of each region are closed and single-pixel wide.
These characteristics can facilitate the parallelism of
the subsequent proposed hierarchical tree based region
selection algorithm. OWT-UCM takes a contour image
as input and outputs an over-segmented region candidate
map [30], which is illustrated in Fig. 2. The next step is
to select those regions using our proposed hierarchical
tree-based region selection algorithm.

Hierarchical tree-based region selection

Given the over-segmented region candidate map,
our region selection algorithm aims to select region
candidates as final segmentation by merging or discarding
the segments in the region candidate maps.
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First we build a hierarchal tree structure using the
region candidate map. In our hierarchical tree structure,
the leaf nodes represent the initial regions of the region
candidate map. The regions are pair-wised merged using
a simple hierarchical clustering algorithm to construct the
tree. The root node of the tree corresponds to the whole
image region. Each node in the tree is a candidate region.
The tree structure satisfies the “non-overlapping” criteria,
a common way for hierarchical tree based segmentation
methods [12, 31, 32].

Suppose there are N base candidate regions, the total
number of nodes in the tree would be 2N — 1. We denote
R = {Ry,Ry,...,Ron—_1} as the region candidate map
consisting of a set of region candidates R;. Our goal is
to select nodes in the tree as our final muscle cell seg-
ments. We show that this can be achieved by the condition
random field (CRF) algorithm [33].

CREF has been widely used in image segmentation. It is a
probabilistic graphical model aiming at maximizing a pos-
terior given a defined energy function. In our method, the
energy function is defined as

2N+1
ER) = Y UiR)+ Y Vi(RyRy), (2)
=1 (B)eR

where R is the subset of R contains all adjacent regions
(i.e., any leaf nodes of a common father node) in leaves of
the hierarchical tree. U;(R;) is the unary term for region
R;, which is a score to evaluate the probability of R; cov-
ering a complete cell segment. We adopt our previously
developed method [12] to evaluate U; by training a cell
scoring classifier, which is able to assign a probability value
to determine whether a segment is a good region candi-
date. In brief, a set of features based on multiple cues are
proposed to represent the candidate regions and a stan-
dard RF classifier is trained to classify the cell regions.
Vi (R,«, R,») is the pair-wise term to evaluate the dissimilar-
ity between two regions R; and R;. We define V; (R,',Rj) as

V; (R, B) = pe BReR) 5 (R, R)), 3)
where B(R;,R;) is the boundary strength and L (R;, R))
is the boundary length. p is a constant to trade-
off the contribution of the two terms. These two
terms can be calculated based on the single-pixel
wide and closed region candidate maps generated by
OWT-UCM [29].

The inference procedure is to minimize the energy
function E so as to assign a label (1 means this region
is a complete cell segment and 0, otherwise) to each
region in the node and, at the same time, satisfy the “non-
overlapping” criteria, i.e., any substree can only has one
label. We deploy the pylon model, a hierarchical CRF
model, to minimize E [34]. However, the tree will become
very big as the number of initial segments inside increases.
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In the next section, we propose a strategy to divide the
inference procedure into several sub-problems which can
be parallelized using multi-core programming.

Parallel muscle image segmentation

In this section, we present the proposed data distributed
and model parallelized approach for muscle cell segmen-
tation. We first introduce the data distribution procedure,
which assigns the data (i.e., non-overlapped image tiles)
to multiple workers using a master-worker parallelism
manner. Then we introduce the method to parallelize the
proposed hierarchical tree based region selection method
using multi-core programming. Figure 3 illustrates the
two steps.

Data distribution using spark

Due to the extremely high resolution of muscle images,
the running time cost on a standalone machine is com-
putational expensive. Since the segmentation of different
image regions is independent with each other, we propose
to divide the image into multiple partially-overlapped
tiles and distribute them onto multiple worker nodes for
concurrent processing.

To this end, we implement this parallel strategy in a
master-worker manner with the Spark cloud comput-
ing platform [35]. In comparison with other distributed
computing frameworks, Spark has the following advan-
tages: 1) it has a flexible cluster management mech-
anism such that a parallel system can be easily built
and run on local clusters; 2) it uses an Resilient Dis-
tributed Datasets (RDDs) technique [36] to perform in-
memory computations, which is suitable for applica-
tions requires large storage space; 3) it exhibits strong
compatibility, supporting multiple standard programming
languages.

Our parallel muscle image segmentation algorithm con-
sists of three steps: 1) data distribution: the test image
is divided into w tiles, I, ..., I, and the master dynam-
ically maps I, to all worker nodes using a user-defined
map function; 2) segmentation: on each worker node, the
proposed cell segmentation algorithm will be executed on
multi-cores to perform contour detection, region candi-
date generation, and region selection; 3) data collection:
the segmentation results returned by each worker node
are collected to form the final segmentation. To avoid the
loss of cell segments crossing the stitching positions of dif-
ferent tiles, we simply pad the tiles to make neighborhood
tiles partially overlapped (the padding size is empirically
set to 300 x 300). In order to reduce the overhead of
data transfer between master-worker and alleviate extra
cost of combing results returned from workers, we only
require workers to return masked binary images which
will be concatenated as the final segmentation results
as shown in Fig. 3a.
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Fig. 3 a: The partially overlapped tiles (left muscle image) are distributed to workers as tasks. The returned segmentation results are combine to
generate the right image. b: Close-up patches of the test image in (a) is shown. From top to bottom, the four close-up patches are the original
image, contour image, initial region candidate map, and the candidate map thresholded by a high value, respectively. The initial candidate map is
built into a tree structure. Each region in the high-thresholded candidate map is a small tree using region-wise distance computed using the
contour image. The hierarchical tree based inference algorithm is parallelized using multi-core techniques

With above data level parallelism, we can speed up
the segmentation algorithm with no more than K times
(because of data communication overhead) with K worker
nodes in the cluster. To further speed up our segmenta-
tion algorithm, we parallelize the proposed hierarchical
tree based region selection algorithm.

Hierarchical inference in parallel

The proposed hierarchical tree based inference method
is mainly composed of: 1) building a tree structure using
the region candidate map, 2) extracting feature represen-
tation for each R; in the tree node, 3) computing U;(R;) for
each R;, and 4) minimizing the energy function E. Based
on our experiments, we observe that steps 2 and 3 dom-
inate the time cost when number of nodes in the tree

grow to a large size. This is usually owing to two rea-
sons. First, there are a large number of cells in an muscle
image. Second, the low muscle image quality causes con-
tour image having many false positive detections, which
make the generated region candidate map contain numer-
ous initial over-segments. However, we can still use the
intensity of the contour image to evaluate the probability
of real cell contours. We cut the tree from top-to-bottom
by the region-wise distance computed from the detected
contour image. We regard two adjacent regions whose
common contour intensity above a certain threshold as
two separate cells, and thus this two regions are not nec-
essary to be clustered to a single substree, so as their
ancestor nodes. Figure 3b illustrates the idea. Therefore,
the tree is separated into several substrees and the energy
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Fig. 4 a: The running time cost using different number of nodes on Spark. b: The comparison of time cost between the proposed parallel method

M spark
«s0 |l Standalone

400 -

350 -

300 (-

Timch: (s)

200 -

X 2x 3x
Image size (pixels)

(b)




Cui et al. BMC Bioinformatics (2019) 20:158

Page 6 of 9

visualization

Fig. 5 Segmentation results on four sample H&E stained skeletal muscle image patches. The left column is the original images and the right column
is the corresponding overlaid segmentation results. The blue lines are the contours of segmented cells overlaid on the original images for better

minimization process (step 4) between substrees is inde-
pendent. We parallelize the inference algorithm using a
multi-core programming technique on all worker nodes.

Experimental results

In this section, we demonstrate the efficiency of our
proposed parallel approach compared with the stan-
dalone mode for large-scale muscle image segmentation.
We also evaluate the segmentation accuracy compared

with other methods on a H&E stained skeletal muscle
image dataset, which are captured by the whole-slide
digital scanner from the cooperative institution Muscle
Miner and the segmentation ground truth is annotated by
several experts.

Data preparation
The images are cropped from a set of whole-slide scanned
skeletal muscle images. We evaluate the efficiency of
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the proposed method using a set of large-scale images
(larger than 4500 x 3500). In addition, we measure the
segmentation accuracy with a dataset contains 100 train-
ing images and 69 test images. The size of the images
is varying from the scale of 600 x 600 to 2000 x 2000.
The segmentation ground truth is annotated by several
experts. Note that we use this dataset for the segmenta-
tion accuracy evaluation as the image size of this dataset
is adaptable to the competing muscle image segmentation
methods.

Efficiency evaluation

To evaluate the efficiency, we build a small cluster using
8 Linux machines, each with 6 cores (Intel i7@3.60GHz
x 6) and 32 GB RAM. Each core is treated as a indepen-
dent computing unit (worker node). In total we construct
a cloud cluster with 48 nodes and 256 GB RAM.

The parallelism of the proposed method has two lev-
els: data level parallelism using cloud computing and
model level parallelism using multi-cores. Based on
our observation, there is a trade-off between the tile
size and the number of tiles (each tile is a task dis-
tributed to a worker node in the cluster). Given a test
image, the more tiles we have, then the smaller tile size
we obtain. If the tile size is too small, the computa-
tion duty of a worker node is too slight to maximize
the performance of the multi-core parallel hierarchi-
cal tree region selection algorithm. Meanwhile, a large
number of tiles would bring too much data communi-
cation cost. On the other hand, our model level par-
allelism may have resource (cores of each machine)
conflicts with data level parallelism. Practically we use
only 2 cores of each machine as worker nodes in
the cluster, and thus in total we use a maximum
number of 16 worker nodes.

In Fig. 4a, we visualize the time cost using differ-
ent number of worker nodes in the cluster with a
4600 x 3800 test image. As we can see, as the num-
ber of nodes increases, the time cost drops dramatically.
We can achieve a significant speed improvement when
the number of node increasing from 1 to 8, but
the time decreasing is not obvious from 9 to 12.
This is attributed to the trade-off between the size
and the number of image tiles, and the data commu-
nication overhead. The time cost for data communica-
tion will gradually increase as the tile size decreases. In
Fig. 4b, we compare the time cost between the Spark
based parallel mode and the standalone mode. We can
obtain more than 10 times speedup with 5x (5000 x 4000)
image size.

Segmentation performance
To evaluate segmentation performance, we report preci-
sion, recall and F;-score, which is defined as
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SN G|
IS
Precision - Recall

SN G|
, Recall = )
|G|

Precision =

(4)

Fi—score = 2 - — s
Precision + Recall

where S is the segmented cell region and G is the corre-
sponding groundtruth cell region. | - | means the area of
the region. Since the evaluation is cell-wised, for each test
image, precision and recall is computed by averaging all
cell evaluation results.

Figure 5 shows some the segmentation results, where
the test images exhibit significant variations on cell
sizes, shapes and appearances. It is clear that the pro-
posed algorithm can accurately segment out most of
the individual cell, which demonstrates the robust-
ness of our proposed method. Figure 6 shows the
precision-call curve of our method. Our proposed
method can preserve high precisions at recalls in a
large range, which means that our method is capable
to preserve and segment most of the cells in muscle
images.

We compare the proposed parallel muscle image seg-
mentation algorithm with two state-of-the-art image seg-
mentation algorithms: 1) gPb [29], which is an edge-based
image segmentation algorithm and has been widely used
in the image segmentation field. The major drawback is
its low efficiency, which takes about 300s for a 1000 x 100
test image; 2) Isoperimetric graph partition (ISO) [37],
which produces high quality segmentations as a spectral
method with improved speed and stability. In Table 1,
the proposed method outperforms the comparative

09 1

08 1

Precision

06 1

05 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall
Fig. 6 Precision-recall curve on our muscle image dataset, which is
drawn by varying the score threshold of the selected candidate
regions
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Table 1 The comparison results of state-of-the-art image segmentation algorithms

Method F-score (%) Precision (%) Recall (%)

mean std mean std mean std
15O [37] 80.50 0.0993 89.88 0.0589 74.29 0.1369
gPb [29] 79.04 0.0780 91.23 0.0515 70.11 0.0962
Proposed method 84.61 0.0134 85.99 0.0035 85.11 0.0181

Our results reported here are computed by setting the score threshold of the selected candidate regions to 0.26 (see Fig. 6). Our proposed method shows significantly higher

recall than others. These entries in boldface are means the best results

segmentation approaches. Although gPb performs a
high precision, it exhibits very low recall. Compared
with these algorithms, our algorithm achieves largely
improved recall while exhibits significantly improved run-
ning time cost.

Conclusion

In this paper, we propose a parallel approach for fast
and accurate H&E stained skeletal muscle image seg-
mentation using cloud computing and multi-core pro-
gramming, which can provide a high throughput solution
for computer-aided muscle image analysis with signifi-
cantly reducing the labor efforts. Specifically, we present a
novel muscle image segmentation framework and demon-
strate its accessibility to be parallelized. Then a data
parallel approach is proposed to accelerate the proposed
segmentation method in a master-worker parallelism
manner based on the Spark cloud computing plat-
form. To further maximize the computational efficiency
on each worker node, we propose to a new strategy
to parallelize our proposed hierarchical tree inference
algorithm for region selection using multi-core tech-
niques. Experimental results indicate a more than 10
times speed improvement compared with the standalone
mode of the proposed segmentation method. Moreover,
the comparison results with several competing methods
demonstrate the superior performance of the proposed
method on our H&E skeletal muscle image dataset.

Endnote
Lhttps://github.com/pdollar/toolbox/tree/master/
channels
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