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Abstract

Background: Understanding the cellular architecture is a fundamental problem in various biological studies. C.
elegans is widely used as a model organism in these studies because of its unique fate determinations. In recent years,
researchers have worked extensively on C. elegans to excavate the regulations of genes and proteins on cell mobility
and communication. Although various algorithms have been proposed to analyze nucleus, cell shape features are not
yet well recorded. This paper proposes a method to systematically analyze three-dimensional morphological cellular
features.

Results: Three-dimensional Membrane Morphological Segmentation (3DMMS) makes use of several novel
techniques, such as statistical intensity normalization, and region filters, to pre-process the cell images. We then
segment membrane stacks based on watershed algorithms. 3DMMS achieves high robustness and precision over
different time points (development stages). It is compared with two state-of-the-art algorithms, RACE and BCOMS.
Quantitative analysis shows 3DMMS performs best with the average Dice ratio of 97.7% at six time points. In addition,
3DMMS also provides time series of internal and external shape features of C. elegans.

Conclusion: We have developed the 3DMMS based technique for embryonic shape reconstruction at the single-cell
level. With cells accurately segmented, 3DMMS makes it possible to study cellular shapes and bridge morphological
features and biological expression in embryo research.

Keywords: 3D morphological segmentation, Watershed segmentation, Shape features, C. elegans

Background
Advanced imaging technologies provide the biologist with
considerable insight into the micro-sized embryo, and
extend the possibility to conduct research at single-cell
level. However, manually analyzing countless cell images
is tedious and time-consuming. Automatic image process-
ing becomes essential for exploiting spatiotemporal cellu-
lar features [1]. Computer-aided analysis frees biologists
from manual work so that they can focus on experiments.
Considerable researches on nuclei stack images promote
the formulation of biological theories related to nuclear
shape and location [2–4]. Membrane, as the physical
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boundary of the cell, plays a vital role in cell-to-cell com-
munication and development [5–8]. Segmenting clustered
cells in 3D, as an important step of image processing, is
challenging due to the high-density of cells in the embryo.
Although Shan et al. showed remarkable results in 2D
cell-shape segmentation [9], the morphology and motion
of cell in 3D environments are different from its expres-
sion in a single layer 2D image [10–12]. Asan et al. tried
to partially stain cells in the embryo, and used cell con-
tours to build a 3D shape model manually [13]. This puts
a heavy burden on researchers to annotate a large number
of images. Padmini et al. adopted mathematical models
and numerical simulations to decode information in cell
morphological features [14]. Malte et al. also experimen-
tally demonstrated the dependence between membrane
shape and cell communication [15].
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C. elegans conserves many genes that play significant
role in the cell development of advanced animals [16].
More importantly, a C. elegans embryo develops via an
essentially invariant pattern of divisions, termed as fate
determination [17, 18]. The cell division information pro-
vides a road map that includes the ancestry and future
of each cell at every time point of the development [19].
Therefore, C. elegans is used extensively as a model organ-
ism to study biological phenomena, such as the genes that
influence cell fate decision. It is also important to con-
sider cell shapes during cell division in addition to the
timing of the division. Some existing algorithms perform
cell morphological segmentation and provide cell shape
information, but they are often error-prone on the focal
plane, and are exposed to segmentation leakage when
the membrane signal is missing. In RACE [20], layer-
by-layer results were fused into a 3D cell shape, making
RACE a high-throughput cell-shape extractor. However,
RACE would segment the membrane surface into one
cell instead of interface when the membrane is parallel to
the focal plane. This led to the confusing boundaries of
two cells in 3D segmentation results. By adding multiple
embryos with weak signal, Azuma et al. prevented seg-
mentation leaking into the background in BCOMS [21].
However, the leakage still existed in channel-connected
regions caused by the cavity of incomplete membrane sur-
face. Small cavity might lead to totally undistinguishable
segmentations.
This paper develops a method for 3D Membrane-

based Morphological Segmentation (3DMMS) to extract
cell-level embryonic shapes. Novel methods are used
to guarantee the precision and robustness of 3DMMS
in segmenting a wide range of membrane images.
First, intensity degeneration along the slice depth is
adjusted statistically through normalization. Hessian
matrix transformation is used to enhance the mem-
brane surface signal. Then, a region filter is adopted
to remove noisy regions by calculating the loca-
tion relationship between different components. Subse-
quently, surface regression is utilized to recover miss-
ing surfaces. For the sake of computational efficiency,
a membrane-centered segmentation is implemented.
Finally, time-lapse fluorescent embryos are segmented
at the single-cell level. Combined with the nucleus lin-
eage, 3DMMS can further perform name-based retrieval
of cell shape features. Source code is publicly available
at [22].
In this paper, “Methods” section presents critical

steps in 3DMMS, including pre-processing, membrane-
centered watershed segmentation and division correction.
“Results” section provides experiment results and a com-
parison with different algorithms. “Discussion” section
explains the advantages and limitations of 3DMMS
and points out other possible applications. “Conclusion”

section summarizes our contributions and describes our
future work.

Results
Segmentation results from 3DMMS were quantitatively
evaluated and compared with two state-of-the-art meth-
ods, RACE and BCOMS. To elaborate the performance
of 3DMMS, time points with a large number of cells are
preferred. However, membrane signal becomes blurry as
the number of cells increases, especially for slices at the
top of the stack. This prevents experts annotating high-
density cells confidently. To enhance the reliability and
feasibility of manual annotation, semi-manual segmenta-
tion was applied. Six membrane stacks corresponding to
time points t = 24, 34, 44, 54, 64, 74 were selected. When
annotated by experts, all membrane stacks were overlaid
with pre-segmentations, which came from nuclei seeded
watershed algorithm. After one expert finished the anno-
tation in ITK-SNAP [23], two other experts checked the
results individually. All annotations are available at the
source code repository.

Comparison with RACE and BCOMS
To obtain the results from RACE and BCOMS, all images
were resampled and resized into 205×285×134. In RACE,
parameters, such as Max 2D Segment area and Min 3D
Cell Volume, were tuned for optimal performance. For
BCOMS, three consecutive stacks were concatenated into
one stack because BCOMS required summing 4D image
to generate a single 3D stack for embryonic region seg-
mentation. Only results at the middle time points were
used for comparison. For example, we concatenated stacks
at t = 23, 24, 25 into one stack with size 205 × 285 × 402.
Slices from 135 to 268 were extracted as the segmentation
results of the stack at t = 24. The reader is recom-
mended to read more details about parameter settings
[see “Additional file 1”].
Dice ratio is universally used in measuring the overlap

between the segmentation results Iseg and ground truth
Itruth. In this paper,

p =
2

n∑

i=1
|Iitruth ∩ Iiseg|

n∑

i=1
|Iitruth| + |Iiseg|

(1)

is adopted to evaluate the segmentation with multiple cell
labels, where n is the number of cells in Itruth. Evaluation
results are show in Fig. 1. 3DMMS achieves better seg-
mentation precision and robustness over different time
points than other methods.
A deeper insight into the difference among 3DMMS,

RACE and BCOMS is illustrated in Fig. 2. RACE provides
segmentation with clear and smooth boundaries among
neighboring cells. It reconstructs 3D segmentations by
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Fig. 1 Dice ratio of 3DMMS, RACE, and BCOMS

fusing results slice-by-slice, making it difficult to distin-
guish boundaries parallel to the focal plane. In Fig. 2f, cells
are sliced off at the top and bottom area. Slice-by-slice
segmentation is error-prone in keeping boundary details
in 3D because inter-slice information is lost when seg-
menting a 3D object in 2D. The fusion stage in RACE
uniforms labels of fragments, but hardly revises segmenta-
tion boundaries. In BCOMS, fewer parameter settings are
involved owning to the biological constrains. Moreover,

the embryonic eggshell is extracted first to prevent seg-
mented area leaking into the background. This strat-
egy relies on an assumption that the embryonic surface
attaches to the eggshell closely. However, the embryonic
is not always closely attached to the eggshell, as the man-
ual annotation at t = 54 in Fig. 3. Constrained by a static
eggshell boundary, a cell regions may flow into the gaps
between the eggshell and the embryonic surface if a cavity
occurs on the embryo surface. 3DMMS shows advantage

Fig. 2 Results comparison. All images come from the same embryo segmentation results. Each column corresponds to the results from the method
shown above. Images in the second row are shown in different orientation to images in the first row
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Fig. 3 Large gap (cyan arrow) between embryonic surface and eggshell

in both cases, preserving 3D details and diminishing the
leakage.

Segmentation of cells on the boundary
During cell imaging, an embryo is stained with a fluo-
rophore and then it is illuminated though a high-energy
laser. The membrane signal intensity is determined by
the number of photons available to each voxel. The
image quality is strongly limited by photo-bleaching, flu-
orophore concentrations, and small exposure time for
acquiring stacks. A membrane image inevitably suffers
from the lost information, especially for cells at the

boundary of the embryo. Incomplete embryonic surface
is a major factor influencing the overall precision. To
check the accuracy of the segmentation on the bound-
ary cells, we calculated the Dice ratio corresponding to
cells inside and at the boundary of the embryo, respec-
tively, as shown in Fig. 4. Comparing Figs. 4a and b,
we find that three methods produce a higher Dice ratio
inside the embryo, particularly for BCOMS. This obser-
vation meets our expectations because inside the embryo,
the image has a higher signal-to-noise ratio. The primary
error of BCOMS originates from the leakage around the
embryonic surface. In 3DMMS, embryonic surface is well

Fig. 4 Segmentation precision of cells in the embryo. This figure shows the Dice ratio of segmentation results of cells (a) inside and (b) at the
boundary of the embryo, respectively. All cells contact the background at t = 24, 34, 44, so they are not showed in (b)



Cao et al. BMC Bioinformatics          (2019) 20:176 Page 5 of 13

repaired in the surface regression procedure, effectively
preventing cell region flooding into the background. To
emphasize the necessity of repairing cavity in Fig. 4a, the
Dice ratio of the results from 3DMMS without cavity
repair is also shown in Fig. 5.

Discussion
In “Results” section, 3DMMS is compared with two state-
of-the-art methods. 3DMMS provides better segmenta-
tion results of the whole embryo. Note that our contri-
butions focus on processing membrane stack images and
producing 3D embryo structure. In order to elaborate the
benefits of 3DMMS fully, nucleus lineage information is
utilized from AceTree [24]. After integrating cell shapes
into the lineage, researchers can not only obtain cell mor-
phological features, such as volume, surface area and
neighboring cells, but also make a longitudinal compar-
ison of cellular shapes. To our best knowledge, 3DMMS
is the first software that can achieve the cell-name-based
retrieve for shape features, such as volumes and interface
between neighboring cells. This dramatically expends our
study from the nucleus to the whole cell. In this section,
we will discuss other potential applications of 3DMMS.

Applications to the study of internal features
Recent studies indicate that gene expression and protein
synthesis are influenced by the nuclear shape [25]. In fact,
3DMMS can provide a way to study whether biological
expression modulates cell shapes. Previous algorithms are
designed for either individual cell image or time-lapse
nucleus image. They neglect the shape deformation of a

cell with time. Although AceTree provides cell trajectory,
it is limited to the nuclei without any cell shape infor-
mation. Segmentation in 3D is essential for tracking the
whole dynamic cell across multiple slices. With the cell
shape lineage, we can track time series of cellular shape
deformation. One cell division process is demonstrated in
Fig. 6 as an example. Thus, our method is useful for the
study of temporal morphological deformations of cells.

Applications to the study of external features
Ratajczak et al. reported that information can be trans-
ferred through cell membrane, further affecting the cell’s
development [26]. Various works have qualitatively ana-
lyzed the communication between cells, but few of them
were involved in measuring the interface of two cells. Sta-
tistical analysis is also needed to enhance the reliability
of shape deformation. It leads to a demand for the 3D
shape information in 3DMMS. With the region of each
cell clearly identified, we can easily infer cell’s contex-
tual information, such as neighboring cells. Example in
Fig. 7 presents the interface ratio of cell “ABala” to its
neighboring cells.

Applications to other types of images
This paper utilizes C. elegans to explain the implemen-
tation of 3DMMS. However, methods in 3DMMS are
not confined to the segmentation of C. elegans embryos.
Our algorithm provides a systematic procedure for cell
segmentation. No assumptions dependent on C. elegans
are made in the entire process. With algorithms, such
as TGMM [27], MaMuT [28], which can produce the

Fig. 5 Comparison between 3DMMS with and without cavity repair
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Fig. 6Morphological deformation of cell “ABala” during division

Fig. 7 Interface matrix between cell “ABala” and its neighboring cells. The sum of each column equals to 1. Every element represents the ratio of the
interface between one cell and “ABala”, to the overall interface

Fig. 8 Gap (cyan arrow) between cells inside the embryo
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Fig. 9 Flowchart of our methodology

cell lineage of other similar embryos, 3DMMS can be
also used to exploit other kinds of cell’s morphological
features.

Weakness of the 3DMMS
Based on the watershed algorithm, 3DMMS builds
boundary lines if and only if two basins contact with each
other. Therefore, 3DMMS might fail to detect gaps inside
the embryo. In our experiments, most of cells were closely
attached to its neighbors. However, some cases did appear
where small gap arose among neighboring cells, as shown
in Fig. 8. We will conduct much more experiments and
study different configurations of various gaps to improve
the performance of 3DMMS in the future.

Conclusion
This paper reports an effective method based on 3DMMS
to analyze embryonic morphological features at the
single-cell level. 3DMMS is robust and can adapt to
images at different time points. Based on this method,
it is feasible to analyze cell shape longitudinally and
transversally. Our future work will include designing spe-
cific geometric model, such as the formulation proposed
by Kalinin et al [29]. Then, we will carry out statistical
analysis on a large dataset of C. elegans embryos. We
envision that 3DMMS could help biologists investigate
morphological features related to biological regulations.

Methods
Optical appearance of cell membrane is variable due to
different size, number, and position of fluorescent signals
on the focal plane. In our method, a membrane image
is preprocessed with multiple steps. A fluorescent micro-
scope produces membrane stack (red) and nucleus stack
(blue) simultaneously. While nucleus channel is used to
generate (nucleus-level) seedsmatrix by existingmethods,
we obtain the cellular shapes by leveraging the membrane
channel. The framework of 3DMMS can be divided into
three parts, membrane image preprocessing, membrane-
centered segmentation and division correction, as illus-
trated in Fig. 9.

Data
C. elegans was first stained with dual labelling in cell
nucleus and membrane. All the animals were maintained
on NGM plates seeded with OP50 at room temperature
unless stated otherwise. Membrane marker and lineaging
marker were rendered homozygous for automated lineag-
ing. To improve the overall resolution, 4D imaging stacks
were sequentially collected on both green and red fluo-
rescent protein (mCherry) channels at a 1.5-min interval
for 240 time points, using a Leica SP8 confocal micro-
scope with a 70-slice resonance scanner. All images were
acquired with resolutions of 512 × 712 × 70 stack (with
voxel size 0.09 × 0.09 × 0.43 μm). All the images were
deconvoluted and resized into 205 × 285 × 70 before
analysis.

Membrane image preprocessing
Statistical intensity normalization
Fluorescent images are often corrupted by noise, such
as Poisson distributed incoming photos. Besides, signal
intensity decreases along the z-axis because of the attenu-
ation of laser energy. To achieve parameter generalization
through the whole stack, Gaussian smoothed membrane
image was adjusted by statistical intensity normalization,
which balanced the intensity distribution of symmetrical
slices in each stack. First, pixel intensity histogram of each
slice was embedded into an intensity distribution matrix
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Fig. 10 Slice intensity distribution matrix. a Intensity matrix before adjustment with red threshold line; b Intensity matrix after adjustment with
green threshold line. Red line in (a) is also plotted for comparison. Both red and green lines correspond to the same threshold on “Number of points”

as a row. Background pixels were ignored for computa-
tional stability. An example of Gaussian smoothed inten-
sity distribution matrix is shown in Fig. 10a. A threshold
of the pixel number was applied, thus a threshold line
(red in Fig. 10a) was formed across all slices. Slices at the
deeper half of the stack were multiplied by the ratio of this
slice’s intensity on the red line to that of its symmetrical
slice. The stack intensity distribution after the adjustment
is shown in Fig. 10b.

Additionally, the membrane stack was resampled to
205 × 285 × 134 with linear interpolation on the z-axis.

Hessianmatrix enhancement
Cell surfaces are composed of plane components. Mem-
brane signals can be enhanced by selecting all pixels
that belong to a plane structure. We took the associate
quadratic form to exploit intensity changes surrounding a
pixel, and further determined its structure components.

Fig. 11 Influence of noise spot and valid membrane region on the EDT of membrane surface. This figure includes steps in region filter. a Largest
membrane surface φmax; b Add noise spot φi to φmax; c EDT of noise and φmax; d Add valid membrane φi to φmax; e EDT of membrane and φmax.
Path (a)-(b)-(c) shows when a noise spot is added into the largest membrane surface, the influenced region R (transparent white mask in (c) and (e))
in the EDT tends to be round. Conversely, Path (a)-(d)-(e) indicates if a valid membrane region is added into the membrane surface, the influenced
region has notable polarization. Note that noise spot (yellow in (b)) and valid membrane region (blue in (d)) all exist in binary filtered membrane Ibn,
but shown here separately for better demonstration
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Fig. 12 Results obtained using the region filter. Results processed by region filter, where blue and yellow regions represent valid membrane signal
and noise spots, respectively

By diagonalizing the quadratic form, the Hessian descrip-
tor is defined as

H=

⎡
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⎡
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�e2
�e3

⎤

⎦

(2)

where λ1, λ2, λ3 are eigenvalues with |λ1| < |λ2| < |λ3|,
and �e1, �e2, �e3 are the corresponding eigenvectors. Pixels
could be allocated to three structures regarding the eigen-
values: (1) when |λ1|, |λ2| < 1 and |λ3| ≥ 1, the pixel

locates on a plane; (2) when |λ1| < 1 and |λ2|, |λ3| ≥ 1, the
point locates on a stick; and (3) when |λ1|, |λ2|, |λ3| ≥ 1,
the point locates in a ball. So membrane surface signal can
be enhanced with

Ien(x, y, z) = |λ3(x, y, z)|
max (|λ3(x, y, z)|x, y, z ∈ stack voxels)

(3)

where Ien is the stack image after enhancement.

Fig. 13 Surface regression on cavity. Binary image (red region in (a)) suffers from lost membrane surface. b is the segmentation results from (a). Two
cells are lost because of the background leakage to the embryo. Cavities are repaired with surface regression in (c), preventing background flowing
into the background
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Region filter
Preliminary experiment shows membrane based EDT
(in “Membrane-centered segmentation” section) is highly
dependent on the quality of binary membrane image. The
region filter is designed to screen noise regions in Ien.
After suppressing noise and enhancing membrane signal,
we choose a threshold to convert Ien into binary image
Ibn. It is composed of disconnected regions, denoted as
� = {φi}, some of which are noise spots. The largest
connected region φi belongs to valid cell surface signal
χ , but other regions need to be screened. Keeping noise
spots would introduce erroneous cell boundaries, whereas
missing valid signal results in segmentation leakages.
Herein, principal component analysis (PCA) was

employed to analyze the location relationship between
φmax and small regions in {�\φmax}. Noise and valid
regions had different influence on the Euclidean distance
transformation (EDT) of the membrane surface φmax. The
flow chart of the region filter is shown in Fig. 11. Cell sur-
face signal was initialized as χ = {φmax}. Following steps
were repeatedly used to update χ :

1. Construct zero matrix L with the same size as
Ibn. Points already in φmax are set as 1 in L. DL
denotes the EDT results on L. Similarly, after
another region φi (green or yellow region in
Figs. 11b and d) in {φ\χ} is combined into L,
EDT is also used to generate DL′.

2. We use

R = {
(x, y, z)|DL(x, y, z) �= DL′(x, y, z)

}

(4)

to obtain the influenced EDT region R when
we add φi into L.

3. Use PCA to analyze the polarization features
of R. Variance percentage on three directions

are γ1, γ2, γ3 and γ1 < γ2 < γ3. The coefficient
for adding φi into χ is measured by γ1

γ1+γ2+γ3
.

Our experiments shows that if this coefficient
is larger than 0.1, φi can be regarded as
membrane signal and should be grouped into
χ . Otherwise, φi will be ignored.

An example result is shown in Fig. 12. Filtered membrane
stack Ifm is a binary image whose points in χ is positive.

Surface regression
The embryonic surface cannot be imaged completely
because of a balance between the phototoxicity and signal
intensity. Moreover, the stain concentration is much lower
at the boundary where only one layer of the membrane
exists. Incomplete surface degrades the performance of
3DMMS because of the leakage between different tar-
gets, as shown in Fig. 13b. We use surface regression to
recover the boundary surface signal around the missing
embryonic surface area, noted as surface cavity. In surface
regression, we only modify surfaces in the cavities and this
is different from the embryonic region segmentation in
BCOMS.
We apply the active surface first to obtain the initial sur-

face of the entire embryo. The smooth factor is tuned to be
a large value to prevent segmented surface dropping into
the cavity. From Fig. 14, we know that cavity surface can
be found according to the vertical distance between the
segmented embryo surface and the membrane signal Ifm.
We defined a distance matrix as the same size as one slice.
For the upper half surface of the segmented embryonic
surface Seu, the distancematrix delineated the vertical dis-
tance between Seu and membrane signal Ifm. The distance
was set to zero when there were no corresponding signals.
Distance matrix was smoothed, and further thresholded
using Ostu’s method [30], to construct a binary mask
Rcavity. Positive masks in Rcavity indicated the location

Fig. 14 A graphical explanation of surface cavity repair. Dot lines represent the distance between segmented embryo surface Seu and membrane
signal Ifm. Pixels with large distance are projected to binary mask Rcavity with positive values
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Fig. 15 Comparison between nucleus-centered and membrane-centered watershed segmentation

Fig. 16 Example in division correction a Raw membrane image; b Segmentation before correction; c Segmentation after correction
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where the membrane signal should be modified with Seu.
We used

Ifm
(
x, y, Seu(x, y)

) =
{
1, if Rcavity(x, y) = 1
0, if Rcavity(x, y) �= 1

(5)

to repair Ifm. Partial surfaces with positive mask were
added into Ifm, shown as gray points in Fig. 13c.

Membrane-centered segmentation
Watershed segmentation is a fast algorithm to group
points with different labels according to specific ter-
rain map based on image intensity. Along the steepest
descent, all pixels are classified into different catchment
basin regions by tracing points down to the corresponding
local minima [31], which are also termed as seeds. After
watershed transformation, each region consists of points
whose geodesic descent paths terminate at the same seed.
The number of seeds controls the number of regions.
Redundant seeds result in over-segmentation where one
region is split; whereas, absent seeds lead to under-
segmentation with two regions combined together. The
terrain map plays a dominant role in generating region
boundaries. In 3DMMS, a well-defined terrain map, com-
bined with nucleus channel, accommodates the difficulty
of lost information and membrane perception.
The nucleus image is simultaneously acquired with the

membrane image, which can be used as seeds to elimi-
nate merge-or-split mistakes. Generally, the terrain map is
the linear combination of membrane intensity in nucleus-
centered watershed segmentation [21, 32–34]. However,
it is difficult to make a tradeoff between two sources
of influence on the final region boundary, as shown in
Fig. 15 (combination of EDT and membrane). To over-
come this problem, we combined nucleus and membrane
stacks in a different way, noted as membrane-centered
watershed. The nucleus stack was processed by AceTree to
generate the nucleus matrix. The nucleus matrix In was
constructed as

In = li (6)

where (xi, yi, zi) and li were the nucleus location and
label in the lineage, respectively. We noted Dm as the
membrane-centered EDT on Ifm. Then Dm was reversed
and normalized by

Dm = max(Dm) − Dm

max(Dm)
(7)

The nucleus matrix In, plus a background minimum,
were used as seeds for the watershed segmentation on
new terrain map Dm. This map can, to a certain extent,
relieve the segmentation leakage by building a ridge at the
holes of the binary membrane signal, as demonstrated in
Fig. 15 (membrane-centered EDT). Channel-connected

cells were well separated with each other. It produces rea-
sonable boundaries in both the blurry area and surface
cavities.

Cell division revision
Two nuclei in a dividing cell would lead to a split, indi-
cated with red lines in Fig. 16b. We resolved this problem
by considering the membrane signal distribution of the
interface between two cells. First, we analyzed nucleus
lineage information and found out the daughter cells (or
nuclei). Details on the rules of finding daughter cells
can be found in [“Additional file 1”]. For each pair of
daughter cells, the intensity of their interface is exam-
ined to determine whether the division has finished. The
membrane-centered segmentation yields cell boundaries
with the membrane signal or ridges in EDT.We calculated
the average intensity of two cells’ interface to determine
whether this interface located at ridges with a hole. If the
interface includes a hole, the division is in process and two
cells should be merged. The average intensity threshold is
experimentally determined to be 40. Segmentation results
after cell division correction is shown in Fig. 16c.

Additional file

Additional file 1: Parameter settings of BCOMS and ACME in segmenting
membrane images. It also includes steps on finding daughter cells in Cell
division revision stage. (PDF 992 KB)
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