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Abstract

cell line cells, respectively.

mining related to bipolar disorder.

Background: Stem cells and stem cell lines are widely used in biomedical research. The Cell Ontology (CL) and Cell
Line Ontology (CLO) are two community-based OBO Foundry ontologies in the domains of in vivo cells and in vitro

Results: To support standardized stem cell investigations, we have developed an Ontology for Stem Cell Investigations
(OSCl). OSCI imports stem cell and cell line terms from CL and CLO, and investigation-related terms from
existing ontologies. A novel focus of OSCl is its application in representing metadata types associated with
various stem cell investigations. We also applied OSCI to systematically categorize experimental variables in an
induced pluripotent stem cell line cell study related to bipolar disorder. In addition, we used a semi-
automated literature mining approach to identify over 200 stem cell gene markers. The relations between
these genes and stem cells are modeled and represented in OSCI.

Conclusions: OSCl standardizes stem cells found in vivo and in vitro and in various stem cell investigation
processes and entities. The presented use cases demonstrate the utility of OSCl in iPSC studies and literature
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Background

There are many resources to support stem cell research.
For example, the Library of Integrated Network-based
Cellular Signatures (LINCS) project [1] has a total of 38
induced pluripotent stem cell (iPSC) types, embryonic
stem cell lines, and neural stem cell lines differentiated
from iPSC. Approximately 230 unique batches of those
cells have been used throughout LINCS assays. Initiated
by the Harvard Stem Cell Institute, the Stem Cell
Commons resource (http://stemcellcommons.org/) is an
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open source environment for sharing, processing, and
analyzing stem cell data [2]. Increasingly, studies exploiting
knowledge derived from stem cell data are being conducted
at a large scale as exemplified in the case of the California
Institute for Regenerative Medicine [3]. These examples
put emphasis on the needs for robust data management for
stem cell research.

Ontology plays a crucial role in data sharing, integra-
tion, and analysis by providing standardized metadata
and knowledge representation. Ontology supports minimal
information standards by providing formal semantics for
the data elements, experimental variables, and work-
flow in experimental studies. Ontologies can also be
used to coordinate biomedical investigations as a
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common terminology by providing a reference frame-
work to foster direct comparisons of investigative
findings across different experiments. The Open Bio-
logical and Biomedical Ontology Foundry (OBO Foun-
dry) library includes over 180 ontologies that are
developed under the same ontology principles and
framework [4].

There are two community-based ontologies from the
OBO Foundry ontology library that cover various con-
cepts of stem cells: The Cell Ontology (CL) represents
various in vivo cells, including stem cells [5]. The Cell
Line Ontology (CLO) is an ontology in the domain of
cell lines and the individual cell culture properties, with
a focus on in vitro cell maintenance (cell line cells) [6].
Both the CL and CLO are naturally integrated as they
follow the same OBO Foundry principles and frame-
work. The representation of stem cells and stem cell
lines within the CL and CLO has been developed in
coordination with the needs of laboratory practice.
For example, many stem cell-restricted genes have
been discovered and their relationship to stem cell
differentiation states needs further modeling and rep-
resentation. This has given a raison d’étre for relevant
CL-CLO interactions.

The Ontology for Biomedical Investigations (OBI),
co-developed by over 20 biomedical communities,
covers all phases of the investigation process (e.g., plan-
ning, execution, and reporting), and the entities in these
phases [7]. The OBI models general investigation
variables and pipelines, which can be used and extended
to represent stem cell investigation. Linking OBI to CL
and CLO builds a general foundation for modeling
experimental cells in the context of the work per-
formed at bench.

The recent Workshop on Ontologies for Stem Cells
and Stem Cell Line Cells (StemCellOW) (https://sites.
google.com/site/stemcellow/) aimed to translate stem
cell biology into an ontology framework supported by
CL, CLO, and relevant OBO Foundry ontologies. This
includes defining key ontology terms, ontology hierarchy
design, and ontology design patterns for crucial cell pro-
cesses (e.g., stem cell differentiation, replication, gene ex-
pression, and reprogramming), to support applications
such as modeling of experimental use cases.

The StemCellOW workshop discussions are crystalized
into two main areas of focus that will be described in this
paper: (i) Development of an ontology for stem cell inves-
tigations, utilizing existing information in ontologies in-
cluding CL, CLO and OBL (ii) Applying the resulting
stem cell investigation ontology concepts to a use case
consisting of an iPSC study of bipolar disorder stem cell
gene expression.

Bipolar disorder (BD) is a chronic neuropsychiatric
condition that is characterized by unusual shifts in
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mood, energy, and activity levels. BD is likely to have a
developmental origin as shown by altered neurodevelop-
mental factors in BD patient-derived neurons. The
ability to reprogram adult somatic tissues into a pluripo-
tent state now makes it possible to study the genesis of
BD. Many iPSC lines from BD have been derived in
several laboratories [8]. However, a better under-
standing of BD using iPSCs still requires careful in-
vestigation and analyses.

Deriving from the collaborative work at the StemCel-
10W workshop discussion, we have developed an
Ontology for Stem Cell Investigations (OSCI) with the
aim to incorporate entities from the CL, CLO, OBI, and
other ontologies to support the standardization and inte-
gration of stem cell knowledge. We have also applied
OSCI to analyze the iPSC-based BD studies.

Methods

OSCI development

Like CL, CLO, and OBI, OSCI also uses the Basic For-
mal Ontology (BFO) [9] as its upper-level ontology.
OSCI imports all stem cell related terms from CL and
CLO. OSCI was developed using the standard ontology
development strategy of combining top-down and
bottom-up methods. The top-down method works by
aligning OSCI with existing reliable ontologies such as
CL, CLO, and OBI. The bottom-up method works by
developing and applying OSCI to a model and
representing specific use cases. The use cases in our
current stage of study include iPSC experimental proto-
col standardization and stem cell-based BD study as de-
scribed below.

The Ontofox tool [10] was used to extract stem cell
related terms from existing ontologies and input them
into OSCI. The Protégé-OWL editor [11] was used for
manual ontology editing.

Since this is a collaboration among multiple parties,
we came to consensus through intensive discussions
during the StemCellOW workshop and afterwards in
follow-up teleconference meetings and email exchanges.

Stem cell investigation metadata collection and OSCI
representation

Various metadata from different sources were collected,
modeled, and represented in OSCI. The three main re-
sources we used include the Minimum Information
About a Cellular Assay for Regenerative Medicine (MIA-
CARM) [12], the LINCS metadata standards [13], and
the Eagle-i bioresource (https://www.eagle-i.net/).

Use case 1: iPSC study for bipolar disorder
investigation OSCI was used to model the pipeline and
variables found in the generation of iPSCs and the uses
of iPSCs derived from BD patients or healthy human
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subjects, and supports studies of mechanisms involved
in BD. The University of Michigan human Pluripotent
Stem Cell Core (hPSCC) directed by Dr. Sue O’Shea of-
fers training in human ESC and iPSC culture and differ-
entiation, and provides advice, technical help and
reagents for the generation of new iPSC lines (https://
cores.research.umich.edu/core/pluripotent-stem-cell-core/).
The studies and use cases taken from the hPSCC pro-
vide key examples for OSCI ontology-based stem cell in-
vestigation studies.

Use case 2: literature mining of bipolar disorder-related
stem cell gene markers and their representation in
OSCI To identify genes associated with different stem
cell stages (SCSs) we used our PubMed abstract text
mining pipeline that we generated for the development
of the Molecular Biology of the Cell Ontology (MBCO)
[14]. We defined the SCS stem cells derived from pa-
tients with bipolar disorder and downloaded all abstracts
that were obtained by the following PubMed query:

((“Stem cell”) OR (“Stem cells”) OR (iPSC)) AND (“Bi-
polar disorder”)

Downloaded abstracts and all other abstracts in our
background set were screened for gene related terms.
The background set consists of abstracts that we down-
loaded for the generation of the MBCO (~ 2. 1 million
abstracts) and included the abstracts of bipolar
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disorder SCS. We used Fisher’s Exact test to calculate
the selectivity of each obtained gene-SCS association
by comparing the number of abstracts in the SCS and
background abstract sets that mention or do not
mention the gene.

Additional genes were curated from O’Shea and McIn-
nis [8] and added to the predicted gene SCS associations
as identified from the literature mining process
described above.

The gene markers and their associated processes are
modeled and represented in OSCI, with the aim to
logically represent and better understand the mecha-
nisms of iPSC formation and applications.

OSCl ontology and code access

The OSCI ontology and example SPARQL code is pub-
licly available on the GitHub website: https://github.
com/stemcellontologyresource/OSCI. OSCI has been
deposited in Ontobee [15] at: http://www.ontobee.org/
ontology/OSCL

Results

Modeling stem cells using CL, CLO, and OSCI

OSCI is developed as an application ontology to support
the collaborative and standardized representation, inte-
gration, and analysis of various stem cells in vivo and in
vitro. Figure 1 shows the selected upper-level terms and
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hierarchical structure of the OSCI ontology. OSCI reuses
many terms from CL and CLO. CL primarily represents
native stem cells, while CLO primarily represents stem
cell line cells that have been generated and cultured in
vitro and maintain the features of in vivo stem cells.
OSCI imports these terms from CL and CLO and aligns
them naturally under the same common ontology frame-
work (Fig. 1).

In addition to the imported native stem cell types from
CL and stem cell line cell types from CLO, OSCI
emphasizes the standardization of stem cell
investigation-related metadata types and minimal infor-
mation standardization. To support this, we have also
imported many basic investigation related terms from
the OBI, the Ontology of Genes and Genomes (OGQG)
[16], and the Protein Ontology (PRO) [17]. CLO also in-
cludes many cell line cell culture related terms, which
are also imported into OSCI.

Figure 2 shows the general OSCI representation of
stem cell investigation with associated experimental vari-
ables that are semantically linked together. Several stem
cell specific process terms, e.g., stem cell culturing, stem
cell assay, reprogramming, are laid out in this Fig.

A total of 193 terms from CL were imported into
OSCI. In CL, ‘stem cell’ (CL_0000034) is defined as: “A
relatively undifferentiated cell that retains the ability to
divide and proliferate throughout life to provide progeni-
tor cells that can differentiate into specialized cells.”
Therefore, a stem cell has two fundamental capabilities:
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self-renewal (i.e., indefinite division while remaining in
an undifferentiated state), and the ability to differentiate.
These two capabilities are defined in CL as two axioms:

capable of’ some ‘stem cell division’.
capable of’ some Cell differentiation’.

Figure 3 shows the upper level hierarchy of stem
cell terms in the CL. Stem cell terms in the CL are
subtypes of ‘native cell’ and represent stem cells as
they occur in vivo, in both developmental and mature
stages of an organism. The basic division occurs be-
tween somatic and germ line stem cells which are dif-
ferentiated from the totipotent stem cells of the
morula from which all cell types arise, including
somatic cells, germ cells, and extraembryonic cells
such as those of the placenta.

In CLO, a cell line cell is defined as a cell of a stable
and homogeneous population (i.e., cell line) of cells with
a common biological origin and propagation history in
culture. A stem cell line cell is defined in CLO as a cell
line cell that has the two capabilities of stem cells, i.e.,
self-renewal and the ability to differentiate. Notably,
these two capabilities of stem cell line cells are the same
as the two capabilities for native stem cell defined in CL.

Figure 4 shows the design pattern of how CLO repre-
sents stem cell line cells. Note that CLO represents these
stem cell line cells as individual cells instead of as a
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In addition, OSCI represents different components
in various stem cell related processes such as stem
cell culturing, reprogramming, differentiation, and as-
says (Fig. 2).

OSCl modeling and representation of stem cell
experimental investigation metadata types

One of the main goals in developing OSCI is to sup-
port ontological representations of stem cell
investigation-related metadata types and their rela-
tions captured via logical axioms. The selected OSCI
metadata terms from two primary resources, the re-
cently reported Minimum Information About a Cellu-
lar Assay for Regenerative Medicine (MIACARM) [12]
and the LINCS metadata standards [13]. MIACARM
describes minimal information required for advanced
cellular experiments with human cell types, with a
specific emphasis on stem cells. In total, MIACARM
includes approximately 130 metadata types, covering
the areas of stem cell production, ethical operation,
materials (e.g., donor information, source cell, cell cul-
ture medium and substrate), the cell banking process,
cell characterization, and sterility testing [12].

Furthermore, OSCI includes many metadata fields
generated from the LINCS project. The LINCS project
has generated metadata standards and data exchange
specifications to describe, model, and integrate complex
and diverse high-throughput cellular response data [13].
The LINCS metadata specifications cover all manner of
biomedical reagents, including small molecules, protein
perturbagens, embryonic stem cells, iPS cells, cell lines,
primary cells, and more [13].

While other resources, such as the Eagle-i ontology
(https://www.eagle-i.net/) also include a reagent registra-
tion system and key terms relevant to stem cell general
information and experimental design, LINCS and MIA-
CARM were the major sources of metadata terms for
the OSCI, because of their well-developed lists of terms
focused on cell biology experiments.

The OSCI aims to ontologically represent and
standardize these metadata types. We have merged the
metadata lists from the aforementioned resources, iden-
tified and imported many of these metadata terms from
existing ontologies where possible, and generated new
terms if we could not find the terms from existing
ontologies. Table 1 summarizes the (unique) kinds of in-
formation currently collected in the MIACARM and
LINCS standards. Most of these terms are already avail-
able in OBO Foundry ontologies and, following OBO
Foundry principles, we imported terms when possible.

Table 2 summarizes the ontologies from which we
imported terms. For brevity, we only list those ontol-
ogies from which we imported 50 or more terms. Al-
though not listed, it is important to note that we use the
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Table 1 Stem cell metadata types from MIACARM and LINCS

Topic Example terms # of
terms
stem cell production stem cell name, stem cell id, 10

information provider contact information

ethical compliance/ informed consent from donor 2

regulation

materials used basal medium, feeder cell name, 45
HLA type

cell banking process source cell transferring protocol, 37

material transferring method

stem cell quality viability at thawing, morphology, 24
control tumorigenesis
Total 118

Basic Formal Ontology (BFO) as our upper level
ontology. BFO plays a critical role semantically
integrating terms from multiple ontologies.

When a suitable OBO Foundry term was not found,
we created specialized OSCI terms. This resulted in the
creation of 34 terms whose URIs have the “OSCI_" pre-
fix. Table 3 summarizes the kinds of terms added.

Many of the OSCI terms provide the basic information
about the stem cell culturing and reprogramming pro-
cessing. In 2012, Shinya Yamanaka was awarded the No-
bel Prize in Medicine for his discovery of the generation
of iPSCs using 4 transcription factors: Sox2, Oct4, Klf4
and c-Myc, under regular stem cell culture conditions
[18]. For regular stem cell culturing, we need: (i) Basal
medium, such as Essential 8 (E8) medium or mTeSR1™
medium; (ii) Growth additives (e.g., fetal bovine serum
(FBS), leukemia inhibitory factor (LIF)) to maintain cell
pluripotency; and (iii) Substrate or matrixes, including
feeder cells such as mouse embryonic fibroblasts (MEFs)
or an extracellular matrix such as Matrigel™ (or GelTrex
and Vitronectin) [19]. For reprogramming, we need the
stem cell culturing conditions as well as the presence of

Table 2 OSCI terms imported from external ontologies

Ontology Example terms #of
terms

UBERON organ, tissue 507

(anatomical entities)

Cell Ontology cell, stem cell, embryonic stem cell, 193
hematopoietic stem cell

Ontology for measurement datum, assay 157

Biomedical

Investigations

Gene Ontology cell development, cell differentiation 103

Cell Line Ontology cell line, cell line repository, induced 82

pluripotent stem cell line cell

Protein Ontology protein, CD14 molecule 54
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Table 3 Newly added OSCI terms

OSCl Term Type Example terms # of terms

protocols for cell culture protocol, feeder 7

passaging and cell preparation protocol

culturing

production and provided by, lot number, 7

provider information  contact information

cell culture media cell culture medium additive, 7

or substrate feeder cell, TeSR

stem cell marker iPSC marker process, neural stem 6

processes cell marker process

donor information donor screening method, age 4
of donor at time of donation

cell passaging and cell culture passage number, 2

concentration concentration measurement datum
publication reference publication 1
information

specific transcription factors. The Y5 plasmids (pCE--
hOCT3/4, pCE-hSK, pCE-hUL, pCE-mp53DD, and
pCXB-EBNAL1), for example, provide a way to induce ex-
pression of key transcription factors.

Our study identified many important variables and
procedures to model and represent in OSCI. Figure 5
illustrates an OSCI modeling of the stem cell cultur-
ing, which may be altered in a myriad of ways. More
specifically, the process of stem cell culturing needs to
consider different experimental conditions including
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cell culture medium, temperature, culturing time dur-
ation, CO,, and cell passage number. Likewise, the
stem cell culture medium includes a variety of compo-
nents such as fetal bovine serum (FBS), and molecular
entities such as leukemia inhibitory factor (LIF), each
at its optimal concentration. One special aspect of
stem cell culturing is the optional usage of feeder cells
which provide converted nutrients for the growth of
stem cells, primarily pluripotent stem cells. While this
methodology is less commonplace in most recent stem
cell research, the usage of feeder cells is still found in
many laboratories as part of stem cell culturing. In OSCI,
a cell can serve in the role of a feeder cell (Fig. 5).

Additionally, OSCI provides an ontological platform
to represent different protocols of stem cell culturing,
which can achieve different objectives, including the
maintenance, differentiation, or reprogramming of
stem cells (Fig. 5). For example, stem cell mainten-
ance has the objective of maintaining the pluripotency
of stem cell (Fig. 5). Cells can be induced or con-
verted from somatic cells to become pluripotent cell
(reprogramming), from differentiated cells into pro-
genitor cells (dedifferentiation), and from one type of
cell into another cell type (transdifferentiation) [20].
There are also many cell-based assays including iden-
tification of stem cells, characterization of stem cells,
and phenotyping of stem cells. These processes are
defined logically in OSCIL
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Use case 1: OSCI modeling and representation of bipolar
disorder specific stem cell experimental investigation

As a use case study, we applied OSCI to model a stem cell
specific use case derived from Dr. O’Shea’s laboratory. Dr.
O’Shea is interested in characterizing iPSC lines from pa-
tients with bipolar disorder and undiagnosed controls
through SNP/CNV (single nucleotide polymorphism/copy
number variation) testing, karyotyping, and qPCR of plur-
ipotency and germ layer markers. Dr. O’Shea and her re-
search group differentiate these iPSCs into neuronal cell
types including GABAergic, glutamatergic, and glial cells.
Furthermore, they collaborate with several universities to
standardize iPSC banking practices.

Within recent years, it has been possible to differenti-
ate neurons and astrocytes from iPSCs derived from in-
dividuals diagnosed with BD and controls. Gene
expression analyses of iPSCs, neurons and glial cells
have identified unique patterns of expression of signaling
molecules, transcription factors, and microRNAs in the
aforementioned study populations, with the goal of iden-
tifying new treatments for BD [21].

Figure 6 illustrates a more detailed procedure of
how iPSCs are generated from differentiated cells and
then used to study BD. Briefly, fibroblasts, immortal-
ized lymphoblastoid cell lines (LCLs), endothelial
cells, and amniotic fluid cells (AFCs) can be repro-
grammed to pluripotency using transcription factors
(TF): Oct 3/4, Sox2, KIf4, and c-Myc. Factors are de-
livered by episomal plasmids, virus, or other ap-
proaches including PiggyBac constructs. For each of
these approaches, knowledge of these factors is
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important for better representation of the methodo-
logical details. For example, for the viral method, we
need to identify the multiplicity of infection (MOI)
and titer; for episomal reprogramming approaches, it
is critical to ensure that there is no integration of the
plasmid.

As represented in Fig. 5, neural induction is produced by
dual Smad inhibition. Glial Precursor Cells (GPCs) are dif-
ferentiated into immature astroglia by adding Noggin,
PDGFAA, FGEF, EGE, LIF, and further matured with BMP4
and CNTF. Neuronal Precursor Cells (NPCs) generate cor-
tical forebrain neurons in the presence of patterning fac-
tors. Based on the characteristics of the original cell donors
(BD patients or human subject controls), the repro-
grammed iPSCs and the iPSC-derived differentiated cell
types have different phenotypic profiles. For example, the
calcium signaling in mature astrocytes derived from BD pa-
tients is altered compared to the cells derived from control
humans. Fewer excitatory neurons and more inhibitory
neurons can be identified in the BD-derived cells (Fig. 6).
Different experimental conditions will also have sig-
nificant effects on the resulting cell phenotypic pro-
files. Therefore, it is useful and important to carefully
dissect these experimental conditions and model them
using an ontological strategy.

The information illustrated in Fig. 6 is also being
represented in OSCIL. Overall, OSCI provides an
ideal ontological framework to logically and system-
atically represent the details of experimental stem
cell studies in a human- and computer-interpretable
format.
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Use case 2: literature mining and modeling of gene markers
or alterned genes related to stem cell-based bipolar
disorder investigation

Drs. Sue O’Shea (co-author of this paper) and Melvin G.
Mclnnis have recently published a review article that
lists 176 genes as gene markers or alterned genes of BD
at different stages of cell differentiation including those
genes identified in iPSCs and their derived cell types [8].
Many genes in the categories of WNT, Hedgehog or
Nodal pathway signaling are altered in BD patients,
likely causing the impairment of the differentiation of
BD patient-derived neurons to dorsal telencephalic de-
rivatives [8].

Our literature mining using the MBCO algorithm [12]
further identified 111 genes that appeared to be related
to stem cells and associated with BD. 25 of these genes
are mentioned in the review article by O’Shea and McIn-
nis. Manual annotation, using expert knowledge, is cur-
rently underway to validate which genes are markers of
BD in stem cells (e.g., iPSC) or stem cell-derived cell
types. Manual validation will be supported by our pipe-
line for computer-assisted fast validation [12].

An example of our manual evaluation is the identifica-
tion of the gene EEF1API6, i.e., eukaryotic translation
elongation factor 1 alpha 1 pseudogene 16 (NCBI Gene
ID 387845). Our annotation found that this gene can act
in a alterned gene role that is realized in the process of
neurodevelopment of iPS cells derived from BD patients
[22]. Therefore, we can represent such a relation using
the axiom defined below:

EEF1AP16 gene: ‘has role’ some (‘alterned gene role’
and (‘realized in’ some ‘neurodevelopment of iPSC
derived from bipolar disorder patient’)).

We are now in the process of adding all the litera-
ture references, and manually verified axioms about
gene roles to the OSCI ontology in a logical and
ontological way.

OSClI statistics and query

Currently, OSCI has 1548 terms, including 1310 classes,
103 object properties, 4 data properties, and 113 annota-
tion properties. Following OBO Foundry principles, we
imported terms from other OBO Foundry ontologies
when possible. Table 2 summarizes the ontologies from
which we imported more than 50 classes. Although not
listed, it is important to note that we use the Basic For-
mal Ontology (BFO) [9] as our upper level ontology.
BFO plays a critical role semantically integrating terms
from multiple ontologies. After importing terms from
existing ontologies, we also generated 37 OSCI-specific
created specialized terms to represent stem cell investi-
gation specific terms, many of which have been
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explained earlier in this article. The detailed OSCI statis-
tics can be found at: http://www.ontobee.org/ontostat/
OSCL

The OSCI information can be queried using DL query
or SPARQL query (data not shown). With more infor-
mation added to OSCI, the OSCI query will become a
powerful tool to support stem cell and stem cell
investigation-related data and knowledge queries and
computer-assisted automated reasoning.

Discussion

This paper reports our development and applications of
the OSCI with the aim to integrate, share, and analyze
stem cells, including native stem cells and in vitro stem
cell line cells. We have also focused our efforts on
ontological representation and standardization of meta-
data data types to support various stem cell
investigations.

Our ontology is developed using state-of-the-art tech-
nologies and tested with use cases. OSCI reuses multiple
subject ontologies all sharing a common upper level
ontology (BFO) [9]. The majority of classes in OSCI
were extracted from the constituent ontologies rather
than having to create classes specific to this endeavor.
OSCI is developed as an ontology for use in other stem
cell related investigations and is available as a publicly
accessible resource, which is consistent with the exten-
sive set of biomedical ontologies of the OBO Foundry
[4]. We also utilized semantic search technology, big
data and the analysis of unstructured data to correlate
terms, gene identifiers, and topics from our use case
study related to BD in the development of OSCI. As an-
other use case, we also performed SCP gene marker lit-
erature mining and use OSCI to ontologically model the
results obtained from the literature mining.

There exist many potential uses for OSCI. For ex-
ample, OSCI, in conjunction with the CL and CLO,
can be used to identify features of stem cell line cells
and link these cells based on their features. These on-
tologies can also be used to identify the origins of a
stem cell line, including the initial cell type, tissue,
organ, organism, or disease model from which a stem
cell line cell was derived. Additionally, OSCI enables
querying across multiple sets of data. For example,
across two experiments, we can query which factors
are shared or differ. As we acquire more use cases,
OSCI allows us to highlight commonalities and hone
in on the most important factors in these investiga-
tions. OSCI can also support many applications from
different projects, such as LINCS and the Harvard
Stem Cell Commons projects.

In the future, we plan to implement other supplemen-
tary features such as additional cell markers, genetic
modifications (e.g., gene mutation) and methods of
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conditioning cell cultures for cell differentiation (e.g.,
virus transfection). These features then can also be
co-analyzed and studied. We will also link the CL/CLO/
OSCI cell information to LINCS or other data sets.

Conclusion

We have developed the Ontology for Stem Cell Investi-
gations (OSCI) to support standardized representation
of stem cells in vitro and in vivo and annotation of mul-
tiple use cases in stem cell research including describing
experimental methodologies, literature mining to iden-
tify genes involved in stem cell biology, and integration
of data about stem cells and stem cell differentiation.
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