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Abstract

Background: A key problem in systems biology is the determination of the regulatory mechanism corresponding
to a phenotype. An empirical approach in this regard is to compare the expression profiles of cells under two
conditions or tissues from two phenotypes and to unravel the underlying transcriptional regulation. We have
proposed the method BASE to statistically infer the effective regulatory factors that are responsible for the gene
expression differentiation with the help from the binding data between factors and genes. Usually the protein-DNA
binding data are obtained by ChIP-seq experiments, which could be costly and are condition-specific.

Results: Here we report a definition of binding strength based on a probability model. Using this condition-free
definition, the BASE method needs only the frequencies of cis-motifs in regulatory regions, thereby the inferences
can be carried out in silico. The directional regulation can be inferred by considering down- and up-regulation
separately. We showed the effectiveness of the approach by one case study. In the study of the effects of
polyunsaturated fatty acids (PUFA), namely, docosahexaenoic (DHA) and eicosapentaenoic (EPA) diets on mouse small
intestine cells, the inferences of regulations are consistent with those reported in the literature, including PPARα and
NFκB, respectively corresponding to enhanced adipogenesis and reduced inflammation. Moreover, we discovered
enhanced RORA regulation of circadian rhythm, and reduced ETS1 regulation of angiogenesis.

Conclusions: With the probabilistic definition of cis-trans binding affinity, the BASE method could obtain the
significances of TF regulation changes corresponding to a gene expression differentiation profile between
treatment and control samples. The landscape of the inferred cis-trans regulations is helpful for revealing the
underlying molecular mechanisms. Particularly we reported a more comprehensive regulation induced by
EPA&DHA diet.
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Background
The central dogma is the core model of molecular biol-
ogy. According to this dogma, in a cell DNA is tran-
scribed into RNA, and the coding RNA is translated into
various kinds of proteins with specific biological

functions such as signaling, transport, molecular bind-
ing, etc. In recent decades the framework of DNA→
RNA→ protein has been extended by the discoveries of
many kinds of non-coding RNAs such as microRNA,
long non-coding RNA, and by the discoveries of many
kinds of molecular modifications such phosphorylation
and methylation. All these molecules and modifications
play important roles in the cellular networks.
When certain transcription factor(s) bind onto the

specific short sequence motifs in the upstream promoter
regions of a DNA segment, they can recruit polymerase

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lilei@amss.ac.cn
†Yance Feng and Sheng Zhang contributed equally to this work.
1National Center of Mathematics and Interdisciplinary Sciences, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
Full list of author information is available at the end of the article

Feng et al. BMC Bioinformatics 2019, 20(Suppl 7):201
https://doi.org/10.1186/s12859-019-2732-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2732-6&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lilei@amss.ac.cn


and the transcription starts. The short sequence motifs
and the factors are occasionally referred to as “cis” ele-
ments and “trans” factors. The coupling of “cis” elements
and “trans” factors is specific, although not necessarily
unique or exclusive. Mathematically, a “cis” motif could
be represented by a joint multinomial distribution, each
component of which corresponds to a DNA position in
the short sequence. Such a probabilistic model can be
transformed into a position weight matrices (PWM).
The databases of “cis” motifs, their PWMs together with
their corresponding “trans” factors include TRANFAC [1],
JASPAR [2]. The binding strength between a transcription
factor and a DNA segment could be evaluated in silico
using its motif PWM and the likelihood method. In con-
trast, the binding between transcription factors and DNA
sequences in vivo or in vitro can be measured by the tech-
nique of ChIP-chip or ChIP-seq [3]. The protein-DNA
binding results from ChIP-chip or ChIP-seq are condi-
tional on environments and on status of the cells in the
experiments while the binding affinity estimated in silico
is condition-free. In recent years, it is shown that chroma-
tin accessibility data are very valuable for predicting the
gene expression levels [4]. Nevertheless, the data of chro-
matin accessibility is condition-specific too.
A key problem in systems biology is the determination

of the regulatory mechanism corresponding to a pheno-
type. A typical situation is to compare the expression
profiles of cells under two conditions or tissues from
two phenotypes and to figure out the underlying mo-
lecular mechanism empirically. Around the year of 2006,
we postulated the problem of statistically inferring the
effective regulatory factors that are responsible for the
gene expression differentiation profiles based on the
binding data between the factors and genes. To achieve
the goal, C Cheng et al. [5] proposed a method that sta-
tistically infers activity changes of transcription factors,
referred to as BASE (Binding association with sorted ex-
pression differentiation). The notion of BASE is different
from those methods rooted in the Pearson correlation
coefficient. Later C Cheng and LM Li [6] applied the same
idea to infer the effective regulatory activities of miRNAs
by integrating expression profile data with miRNA target
predictions. In the version of BASE2.0 [7], we simplified
the calculations of p-values and made the transcriptional
inferences for the up- and down-regulated genes separ-
ately. The inference of BASE hinges on the binding data
between factors and the regulatory regions of genes. It is
ideal if ChIP-seq data of the corresponding conditions are
available. In the absence of ChIP-seq data, we still hope to
provide a sensible definition of binding strength using
only the information of genome sequences and motif
PWMs, which are condition-free. In our initial effort, we
consider the output of the MAST software [8], which of-
fers the p-value of a motif search within a sequence. We

take the negative logarithm of the p-values as the defin-
ition of binding strengths. In this article, we propose a
probabilistic model that defines the binding strength by a
chance. According to this model, it is the motif frequency
occurring in the regulatory regions that matters most in
the transcriptional inference. We illustrate the effective-
ness of the method by one case study.

Methods
A recapitulation of BASE 2.0
Since the proposal of BASE, we have modified its steps
in several aspects. For the sake of clarity, a recap of the
BASE 2.0 procedure is provided in the scenario of con-
trol and treatment. Suppose that we have the gene ex-
pression profiles of two samples, denoted by {eij, i = 1, 2,
…‚N, j = 0, 1}, namely, there are N genes, the value 0 and
1 of the label j respectively correspond to the control
and treatment sample, and eij is the expression abun-
dance of the i-th gene from the j-th sample, after appro-
priate preprocessing. As usual, we take the gene
expression changes by the logarithm of the fold changes,
i.e. di= logeei1/ei0. Denote the expression differentiation vec-
tor of the N genes by (d1, d2, … , dN). Hereafter, we consider
the up- and down-regulated gene expression profiles separ-
ately. Let, dþ ¼ ðdþ

1 ; d
þ
2 ;…; dþ

N Þ; d− ¼ ðd−
1 ; d

−
2 ;…; d−

NÞ ,
where dþ

i ¼ maxfdi; 0g , d−
i ¼ maxf−di; 0g . Let the

binding strength vector of a transcription factor T with
the promoter regions of the N genes be b = (b1, b2, … ,
bN). We first consider the inference of up-regulation using
d+, and the inference of down-regulation using d− can be
made similarly. The method BASE 2.0 include the
following steps,

[1] Sort the elements of d+ in the descending order,
and denote the result bydþ

πð1Þ≥d
þ
πð2Þ≥⋯≥dþ

πðNÞ,
where π = (π(1), π(2),⋯‚π(N)) is a permutation
of (1, 2,⋯, N) satisfying the above inequalities.

[2] Compute two cumulative distribution functions as
follows:

f 0 ið Þ ¼
Xi

j¼1
dπ jð Þ=

XN

j¼1
dπ jð Þ;

and

f 1 ið Þ ¼
Xi

j¼1
dþ
π jð Þbπ jð Þ=

XN

j¼1
dþ
π jð Þbπ jð Þ;

for i = 1, 2, ⋯‚N.

[3] Calculate the BASE score for this motif:

δ ¼ max
1≤ i≤N

f 1 ið Þ− f 0 ið Þ½ �

[4] Calculate the p-value of the above the BASE score δ
via permutation. That is, we randomly generate a
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permutation of (1, 2,⋯, N), denoted by λ = (λ(1), λ(2),
⋯‚λ(N)); in Step [2], re-calculate f1(i) replacing bπ(j) by
bλ(j); in Step [3], re-calculate the BASE score δ∗; denote
the scores resulted from K permutations by {δ∗(1), δ∗(2),
⋯ δ∗(K)}, then the p-value of the BASE score δ is
evaluated as follows,

p ¼ 1
K

XK

k¼1

1ðδ�ðkÞ > δÞ;

namely, the fraction of scores from permutations that are
larger than the observed one.
[5] Rank the motifs/factors according to their

significances, namely, p-values.

A probability model for the definition of cis-trans binding
strength
According to our observations, if a motif appears in the
promoter region of a gene, it usually appears multiple
times [9]. Thus, we consider a chance model for the
binding event of a factor and a DNA segment. Given a
regulatory factor T, the PWM of its cis-element motif,
and upstream sequence S of a gene, we can run a kind
of local alignment of the motif along S. A possible bind-
ing site is identified when the alignment score is above a
certain threshold. Suppose τ binding sites are found in S.
Furthermore, we assume the binding events of T with
these τ sites are independent, and identical distributed
Bernoulli trials with a binding probability p0. Then the
probability that T binds to the region S, or more
precisely, that T binds to at least one site is given by
1 − (1 − p0)

τ. When p0 is sufficiently small, we can ap-
proximate it by

1− 1−p0ð Þτ ≈ τp0

Consequently, we replace the binding vector by b ≈
p0(τ1, τ2,⋯, τN) Now the second equation in Step [2]
becomes

f 1 ið Þ ≈
Xi

j¼1
dþ
π jð Þτπ jð Þ=

XN

j¼1
dþ
π jð Þτπ jð Þ

Since p0 is a common term in both denominator and
numerator, it disappeared in this equation. According to
this probability model, the calculation of the BASE score
only involves the motif frequencies in the regulatory re-
gions. In other words, there is no need to estimate the
binding probability p0 for each transcription factor if
they are relatively small.
It is noted that the cumulative function f1(i) in Step

[2] is scale-free with respect to both the expression dif-
ferentiation vector d and the count vector τ = (τ1, τ2,
⋯, τN). Similarly, the cumulative function f1(i) in (1) is
as well scale-free with respect to the expression differenti-
ation vector d. Thus, the BASE score shown in Step [3] is

scale-free with respect to both the expression differenti-
ation vector and the count vector. The scale-free property
presents a kind of robustness in the BASE inference.
Given the PWM of a cis-element, the BASE 2.0 pro-

cedure evaluates the statistical significance of its regula-
tory role by a p-value. If we would like to have strong
control of the false discovery rate (FDR) over the mul-
tiple inferences, we could adopt the adjusted signifi-
cances, or the q-values [10]. The current procedure of
modified BASE is illustrated in Fig. 1.

Counting TF binding sites
In light of the probabilistic definition of cis-trans binding
strength, the calculation of BASE score, see the defin-
ition of f1(i), requires the counts of motif occurrences in
the promoter regions of genes. Our in silico solution is
to estimate the counts by the searching the motifs along
the promoter sequences. Specifically, we carry out the
counting as follows.

1) Extract the promoter sequences of all annotated
genes, say, − 1000 bp ~ + 200 bp from transcription
start sites (TSS), In the case study of this article, we
took the RefSeq mouse genome and annotation
GRCm38.p4;

2) For each cis-motif, find its occurrences in one
promoter sequence using the MATCH (version
2012) program provided by the TRANSFAC tool
suite (version 2012) [1]. Repeat this step for all the
motifs and all the genes.

The MATCH program has several options that re-
spectively addresses sensitivity, specificity, etc. In this
article, we select the option of minFN, which minimizes
false negative rates.

Variants
In cases when we are more concerned with the robust-
ness and reliability of the transcriptional inferences, we
might try some variant of the above modified BASE. For
one example, we could substitute the sorted log-fold of
gene expression vector {d1, d1, … , dN}and/or TF binding
affinity vector {b1, b1, … , bN}by their ranks. Such a
ranked-based BASE generally loses power of testing
while gains robustness.

Gene functional enrichment analysis with Wilcoxon rank
test
Other than transcriptional inference, gene functional en-
richment analysis (EA) is currently a direct and more
popular method to interpret expression differentiation
profiles into biology stories. That is, given a collection of
gene subsets defined by KEGG pathways, or Gene Ontol-
ogy (GO) including three related yet different aspects:
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biological processes, molecular functions and cellular
components, we want to know which gene subsets have
more occurances in the differentially expressed genes.
An intuitive EA approach is testing association be-

tween a gene subset and differentially expressed (DE)
genes. To do this, we need to set a threshold for the def-
inition of differentially expressed genes. When the ex-
pression difference of a gene is above the threshold, it is
differentially expressed. Then we could arrange the
counts of genes in a two by two contingency table

according to their status of DE and their memberships
of the gene subset. Consequently, the Fisher exact test
could be applied to test the association. The rankings of
the p-values from the association tests of all the gene
subsets form an enrichment profile. However, such an
EA procedure relies on the threshold for the definition
of DE genes. And its selection is subtle and not
straightforward.
In comparison, the most popular method, Gene Set

Enrichment Analsyis (GSEA, [11]) does not requires

Fig. 1 The workflow of the modified BASE using cis-trans binding strength defined by motif frequencies
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predefined DE genes. It has been widely adopted in bio-
informatic studies, even though its statistical properties
such as power remains largely unknown.
Chao Cheng et al [12] proposed an idea to implement

EA using the well-established Wilcoxon rank test of two
samples, which has a good balance between statistical
power and robustness.
The idea considers the gene ranks by their gene ex-

pression differences, and compares those falling inside a
gene subset and those falling outside. The Wilcoxon
rank sum test is applied to obtain a p-value under the
no-difference hypothesis. Finally, we rank the p-values of
all comparable gene subsets. Not only does this
rank-based non-parametric method skip the definition
of DE genes, but also gives robust conclusions. Its appli-
cations have led to several biological discoveries such as
those in yeast aging [12], which were verified in [13, 14].
In this article, our aim is to make statistical inference of

transcriptional regulation based on expression profiles
and cis-trans binding strength. In addition to the statistical
signfiances of the made inferences, it is very important to
present biological justifications as well. On one hand, we
could resorts to literature. On the other hand, we will use
gene functional enrichment analysis with Wilcoxon rank
sum test to confirm the inferences of regulations.

Results
The central dogma essentially states that the cis-trans
regulations are among primary causal factors of RNA
transcript profiles. The modified BASE reversely infers
the effective regulators from gene expression profile. In
cooperation with other common bioinformatical ana-
lyses, BASE can help us obtain meaningful biological in-
sights. Next we demonstrate how the modified BASE
works by one expression data set, which was from the
study of the the effects of EPA&DHA diets in mouse
small intestinal epithelial cells.
Dietary polyunsaturated fatty acids (PUFA) were re-

ported to be beneficial to human and animal health by
modulating many important biological processes. How-
ever, the underlying molecular mechanisms were not
completely clear yet. To find out key regulators involved
in the effects induced by EPA&DHA diet, we applied
our method to mouse expression data from the dietary
intervention experiment conducted by Van Schothor-
stand and colleagues [15]. In this experiment, the mice
were classified into two groups: the intervention group
fed with an EPA&DHA diet containing 6% EPA and 51%
DHA, and the control group fed with flax-seed oil (rich
in alpha-Linolenic acid, ALA) as the only lipid source.

Microarray data preprocessing
The gene mRNA expression values under the two diets
were obtained by Affymetrix MOE430_2 GeneChip

mouse arrays [15]. Each gene corresponds to one or sev-
eral probe sets, and each probe set contains 11 probes. In-
stead of the Affymetrix default algorithm (MAS 5.0),
which was used in [15], we took the Sub-array method to
normalize the microarrays [16] to reduce the unwanted
variations due to factors such as uneven hybridization and
washing. Namely, we divide each array into subarrays of
50 by 50 probes. Within each subarrays, a piecewise linear
relationship between the reference and target was esti-
mated using least trimmed squares [17]. And this piece-
wise linear transformation was used to adjust the target
sub-array. Adjacent subarrays overlap each other by 25
probes along both horizontal and vertical direction. Thus
one probe may get multiple adjusted values, and we took
their average as its normalized value. Finally we summa-
rized the normalized probe values into probe set values by
the PTR method [18].
The effectiveness of the normalization is illustrated on

the left of Fig. 2 that showed the density plots of the
probe set values before and after normalization. The cor-
rection of the bias is indicated by the reduced distance
of the mode from zero. The reduction of variation is also
obvious. As a matter of fact, the samples for microarray
experiments are pools of multiple biological replicates.
Thus the results represented a kind of average effect,
and relative robust expression levels. Additional
qRT-PCR experiments of some differentially expressed
genes were reported in [15]. We displayed the scatter
plot of the qRT-PCR results versus their microarray
counterparts on the right of Fig. 2. The results were con-
sistent, and their Pearson’s correlation coefficient is 0.73.

Comparison with existing promoter analysis
The bioinformatics study in [15] included a multiple-
step promoter analysis that detected seven transcription
factors. The modified BASE differs from this method in
several aspects. First, they used only 50 genes, which
were obtained by several filters, for the promoter ana-
lysis while we used all genes (around 20,000 genes) in-
cluded in the chip. Second, the promoter regions in
their analysis were 650 bp upstream from TSS while our
regions were from 1000 bp upsteam to 200 bp down-
stream. Thus we consider wider regulatory ranges.
Third, they did not separate the TFs into up-regulation
or down-regulation while we did. Fourth, they consid-
ered only those motifs whose factors were reported in at
least 3 published articles (function word level B2), while
we took a systematic approach and explored all available
vertebrate motifs from TRANCFAC, in which the num-
ber of motifs exceeds 1400.
We applied the procedure of modified BASE to the

gene expression data and expected to find out the TFs
driving the differentially expressed genes between the
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control and intervention groups. Compared with the
naïve TF identification by promoter analysis conducted
by van Schothorst et al in [15], our method detected all
seven TFs in their analysis, including PPARα involved in
fatty acid metabolism, NF-κB and Stat3 involved in in-
flammatory response, Dbp involved in circadian rhythm,
dimerization partners Ahr and Arnt, and the zinc finger
TF Sp1. Besides, we also detected many other novel
meaningful regulators such as PPARγ involved in lipid
metabolism, factors of the Ets family involved in angio-
genesis and Rora, another types of regulators involved in
circadian rhythm. The effects of EPA&DHA diet in
mouse small intestine cells and corresponding TFs were
summarised in Fig. 3. Some details of BASE inferences
were shown in Table 1. Complete results of BASE were
attached in Additional file 1. We highlighted some of
the biological discoveries as follows.

EPA&DHA promotes adipogenesis
Two well-known peroxisome proliferator-activated re-
ceptors, PPARα (p-value of its motif V$PPARA_01 =
1e-4) and PPARγ (p-value of its motif V$PPARG_01 <
1e-4), which both are ligand-activated TFs belonging to
a superfamily of the nuclear hormone receptors, rank at
top on the up-regulation side. Many downstream genes
of PAPPγ are associated with adipogenesis. PPARs are
able to sense fatty acid signals derived from dietary lipids
and then are activated to mediate: (1) lipid transport in
plasma; (2) lipoprotein uptake by living cells via the in-
duction of apolipoproteins and lipoprotein lipase expres-
sion; (3) and intracellular fatty acid metabolism [19, 20].
Another important class of TFs in the adipocyte

differentiation are C/EBPs (CCAAT-enhancer-binding
proteins), including C/EBPA (p-value of its motif
V$CEBPA_Q6 = 0.0058), C/EBPB (p-value of its motif
V$CEBPB_02 = 0.0039) et al. In vitro and in vivo studies
have demonstrated that each of them plays an important
role in adipogenesis [21–23]. Thereby up-regulation of
these TFs enhances adipogenesis.

EPA&DHA attenuates hyperlipidemia
The activation of PPARα is directly induced by the in-
take of fatty acid (FA). It is known that PPARα, whose
activation reduces hyperlipidemia, is highly expressed in
intestinal epithelial cells. Rino Kimura et al’s research
[24] revealed that DHA could increase FA oxidation and
oxygen consumption rate, and decrease the secretion of
triacylglyceride (TG) and apolipoprotein B (apoB), and
hence could attenuate hyperlipidemia. As shown aboved,
its binding motif V$PPARA_01 as well as V$PPARDR1_
Q2 are significantly up-regulated.

EPA&DHA inhibits angiogenesis
Angiogenesis is essential for normal development and
homeostasis. However, unwanted angiogenesis has been
implicated in a number of pathologic diseases, such as
vaso-occlusive, psoriasis, arthritis, obesity and even
tumor development [25, 26]. In the study, we discovered
that dietary intake of EPA&DHA could result in de-
creased activities of several transcriptional mediators of
angiogenesis. Assisted with the modified BASE, we
found that several motifs were significantly
down-regulated such as V$ERF_02 (p-value: 0.0084),
V$ELF4_02 (p-value: 0.0047), V$ELF5_03 (p-value:

Fig. 2 The validation of the expression profiles obtained by the microarray technique. Left: the kernel density of the gene expression differences
between the EPA&DHA diet and control, with normalization and without normalization respectively. After normalization, both the bias, as measure by
the closeness of the mode to zero, and the variation was reduced significantly. Right: the scatter plot of the expression fold changes of some significantly
differentially expressed genes obtained by microarray and qRT-PCR, respectively. Their Pearson correlation coefficient is 0.73
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0.0108), V$ETV3_01 (p-value: 0.0083), V$PEA3_Q6
(p-value: 0.0052), and V$ETS2_Q6 (p-value: 0.0109).
The ETS (E26 transformation-specific sequence) TF
family, including Elf, Erf, Ets,Pea3 and some other sub-
families, have been implicated in vascular development
and angiogenesis [27, 28]. The EPA&DHA diet results in
down-regulation of the ETS family and inihiting the an-
giogenic factors.

Hif − 1 signaling pathway
Angiogenesis is generally the downstream effect of the
Hif-1 signaling pathway. Arnt is also identified as the
beta subunit of the heterodimeric transcription factor,
hypoxia-inducible factor 1. In the BASE result, the
regulation of Arnt (p-value of its V$ARNT_01 =
0.0134) is significant on the down-side. Besides, the
regulation of NF-κB and Stat3, which are involved in
the Hif-1 signaling pathway, also played roles of
down-side regulations. All these point to the
down-regulation of Hif-1. In fact, it was suggested that

polyunsaturated fatty acid induces a reduction in hyp-
oxia in subcutaneous adipose tissue [29].

EPA&DHA promotes circadian rhythm
Van Schothorst et al [15] reported a significant TF Dbp
(D Site-Binding Protein) using their promoter analysis (2
out of the 50 genes they considered are targets of Dbp).
The encoded protein of Dbp could bind DNA as a
homo- or heterodimer and was involved in the regula-
tion of some circadian rhythm genes [30]. In our BASE
results, not only Dbp (p-value of its motif
V$DBP_Q6_01 = 0.0153) but also RORA and RORA2
(RAR-related orphan receptor alpha, p-value of motif
V$RORA_Q4 = 0.0035, p-value of motif V$RORA2_01 =
2e-4) were significantly up-regulated. RORAs also partic-
ipated in the transcriptional regulation of some genes in-
volved in circadian rhythm [31]. Put together the above
two observations, we would rather infer that the
EPA&DHA diet countributes to the maintaince of circa-
dian rhythm.

Fig. 3 The effects of EPA&DHA diet in the mouse small intestine cells and corresponding TFs/motifs
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Other transcription factors
As a matter of fact, the BASE results include more
transcriptional inferences other than the above factors,
Many of them were not report in [15]. For example,
Hnf4a is a known regulator induced by DHA and EPA
[15], but it was not identified in [15]. Nevetheless, in
the BASE results, Hnf4a’s regulation is significant on
the up-side (p-value of its motif V$HNF4_Q6_01,
V$HNF4A_02 < 1e-4). Hnf4a has been shown to inter-
act with the biosynthesis of long chain PUFA [32], and
the oxidative metabolites of PUFA in the fashion of
specific ligand dependence [33]. This illustrates that the

modified BASE inference is more systematic or
comprehensive.

Verification by gene functional enrichment analysis with
Wilcoxon rank test
Gene functional enrichment anaylysis is a common prac-
tice in the bioinformatics research. We used the rank-
based approach as descriped in Methods, to verify the TF
regulatory activities we inferred. Several conclusions from
the inference of TFs regulation with the modified BASE
were verified by the enriched pathways or biological pro-
cesses. A summary of the EA were shown in Table 2. In

Table 1 Partial inference results of the significant TFs/motifs in the exploration of EPA&DHA dietary effects

TFs Motifs P-values, upside** P-values, downside** Regulation* Functions

PPARα V$PPARA_01 0.00010 0.55 ↑ Attenuate hyperlipidemia [24]

Enhance insulin sensitivity [35, 36]

Promote fatty acid metabolism [37]

Regulate adipogenesis [19, 20]

V$PPARDR1_Q2 0.00030 0.37

PPARγ V$PPARG_01 < 0.00010 0.22 ↑

V$PPARG_02 0.00010 0.17

C/EBPs V$CEBP_C 0.0049 0.69 ↑ Induce adipogenesis [21–23]

V$CEBPA_Q6 0.0058 0.57

V$CEBPB_02 0.0039 0.66

V$CEBPD_Q6_01 0.0043 0.74

V$CEBPE_01 0.0006 0.97

V$CEBPG_Q6 0.0019 0.47

NF-κB V$NFKB_C 0.73 0.0039 ↓ Reduce inflammation [38]

V$NFKB_Q6 0.33 0.0033

Stats V$STAT1_Q6 0.011 0.27 ↑

V$STAT4_Q5 < 0.00010 0.26

V$STAT5A_02 0.0074 0.30

Ets family V$ETS2_Q6 0.91 0.011 ↓ Inhibit angiogenesis [27, 28]

V$PEA3_01 0.33 0.0050

V$CETS1_01 0.40 0.0066

V$CETS2_02 0.46 0.036

V$ELF_02 0.17 0.0098

V$ELF4_02 0.17 0.0047

V$ELF5_03 0.76 0.011

V$ERF_01 0.43 0.0269

V$ERF_02 0.14 0.0084

V$ETV3_01 0.17 0.0083

Rora V$RORA_Q4 0.0035 0.34 ↑ Enhance circadian rhythm [30, 31]

V$RORA2_01 0.00020 0.89

Dbp V$DBP_Q6_01 0.015 0.98 ↑

SP1 V$SP1_01 0.37 0.0099 ↓ –

Ahr V$AHR_01 0.058 0.0082 ↓ –

Arnt V$ARNT_01 0.23 0.013 ↓ Reduce hypoxia [29]

* ↑↓: The TF/motif was up/down-regulated in modified BASE.
** Tests with the up/down-regualted genes, 10,000 permutations.
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particular, we observe that several specific activities in-
volved in lipid metabolism such as “PPAR signaling path-
way”, “regulation of fatty acid oxidation” and “fatty acid
metabolism” et al, were significantly up-regulated in the
intervention group, which indicated that EPA&DHA in-
creased lipid catabolism by up-regulating genes involved in
long chain fatty acid beta-oxidation occurring in mitochon-
dria and peroxisomes. Furthermore, the down-regulation
of pathway “blood vessel development” verified our
conclusion that EPA&DHA inhibited angiogenesis.
And the up-regulation of several biological processes
such as “intestinal immune network for IgA produc-
tion” verified EPA&DHA induced inflammation. De-
tailed results Wilcoxon enrichment analysis were
showed in Additional file 2.

Discussion
One pillar of systems biology is the systematic omic data
from cell or tissues. It is a great challenge to develop
statistical and computional methods that effectively inte-
grate omic data and infer biological insights with signifi-
cance. The scenario of expression profiles from samples
of treatment and control plays the similar role as the
two-sample problem does in statistical inference. In this
situation, a typical analysis is the gene set enrichment
analysis that helps us understand the biological activities
between different experimental conditions. But how the
TFs regulate these differentially expressed genes in re-
sponse to environmental changes remain unclear. In this
article, we introduced a computation-based, experimen-
tal condition-free measurement of TF binding affinity to
boost the transcriptional inference method - BASE.
Of course, the complete inference of TF activities is

challenged by many complications. We name a few as fol-
lows: (1) one gene may be cooperatively regulated by mul-
tiple upstream genes; (2) one transcriptional regulator

may have positive or negative impacts on multiple down-
stream genes; (3) technical limitation of microarray and
RNA-seq [34] techniques restrict us from getting accurate
measurements of transcript quantities, particularly those
of low abundance; (4) the existence of alternative splicing
and other mechanisms increase the difficulty of TF activity
inference. We did clone the BASE method to infer the
regulations of microRNAs, see [6]. But definitely more ef-
forts are needed to develop integrative frameworks of stat-
istical inferences in the future.
In terms of TF binding affinities, so far we focus on

the motifs in the nearby region of TSS, leaving out the
distal enhancers regions, which play important regula-
tory roles as well. We did so because first the promoter
regions are more straightforward than enhancers and
second the TF bindings on promoter regions are more
direct regulatory events for the transcription initiation.
Of course, an elaborate computational model, which in-
cludes not only promoters but also enhancers et al, is
worthy of being investigated.
In recent years, the new technology such as DNase-seq

and ATAC-seq allow us to obtain the genome-wide open-
ness status of DNA chromatins. It has been demonstrated
that integration of chromatin accessibility data and motif
occurrence data is much better than motif occurrence
data themselves in terms of predicting gene expressions
[4]. It is of great interests to develop accurate quantitative
models of transcriptional regulations, taking into account
of motif occurrence and other DNA information such as
chromatin accessibility data in the future.

Conclusions
In this article, we demonstrate that the cis-trans regulations
underlying an expression differentiation profile can be
effectively inferred statistically by the method BASE2.0 with

Table 2 Partial conclusions from the inference of TFs regulation were verified by gene functional enrichment analysis

Conclusions Pathways P-values, upside* P-values, downside* Regulation

Enhance insulin sensitivity
Promote adipogenesis
Attenuate hyperlipidemia

PPAR signaling pathway (KEGG) 3.98e-8 ≈1 ↑

Peroxisome (KEGG) 4.62e-11 ≈1

peroxisome organization 2.99e-4 ≈1

Promote fatty acid metabolism fatty acid metabolism (KEGG) 1.86e-9 ≈1 ↑

cellular lipid metabolic process (GO) 3.49e-7 ≈1

long-chain fatty acid metabolic process (GO) 9.54e-6 ≈1

very long-chain fatty acid metabolic process (GO) 6.73e-5 ≈1

regulation of fatty acid oxidation (GO) 5.30e-4 ≈1

fatty acid beta-oxidation (GO) 1.17e-5 ≈1

Inhibit angiogenesis blood vessel development (GO) 0.996 3.72e-3 ↓

Reduce inflammation intestinal immune network for IgA production (KEGG) 0.995 5.32e-3 ↓

* Gene functional enrichemnt in the up/down-side with Wilcox rank sum test, see Method.
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an appropriate definition of TF-DNA binding strengths.
Unlike the ChIP-seq data, we proposed a condition-free
TF-DNA binding strength motivated by a probability
model. It turns out that the binding strength of a
cis-element by its interacting protein is approximately pro-
portional to the corresponding motif frequency in the regu-
latory DNA regions. In an examplary study of DHA&EPA
diet, we used a publicly available microarray data set to il-
lustrate the effectiveness of the computational method. The
inferred cis-trans regulations of of DHA&EPA diet are con-
sistent with those reported in the literature, including
PPARα and NFκB, respectively corresponding to enhanced
adipogenesis and reduced inflammation. Moreover, we dis-
covered enhanced RORA regulation of circadian rhythm,
and reduced regulation by the ETS family.

Additional files

Additional file 1: The completed BASE 2.0 results of each motif,
defining the TF binding affinities as motif frequencies. (CSV 33 kb)

Additional file 2: Gene functional enrichment analysis with Wilcoxon
rank test of KEGG and GO pathways. (XLSX 283 kb)
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