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Abstract

Background: Lung adenocarcinoma is the most common type of lung cancer, with high mortality worldwide. Its
occurrence and development were thoroughly studied by high-throughput expression microarray, which produced
abundant data on gene expression, DNA methylation, and miRNA quantification. However, the hub genes, which can
be served as bio-markers for discriminating cancer and healthy individuals, are not well screened.
Result: Here we present a new method for extracting gene predictors, aiming to obtain the least predictors without
losing the efficiency. We firstly analyzed three different expression microarrays and constructed multi-interaction
network, since the individual expression dataset is not enough for describing biological behaviors dynamically and
systematically. Then, we transformed the undirected interaction network to directed network by employing Granger
causality test, followed by the predictors screened with the use of the stepwise character selection algorithm. Six
predictors, including TOP2A, GRK5, SIRT7, MCM7, EGFR, and COL1A2, were ultimately identified. All the predictors are the
cancer-related, and the number is very small fascinating diagnosis. Finally, the validation of this approach was verified
by robustness analyses applied to six independent datasets; the precision is up to 95.3% ∼ 100%.
Conclusion: Although there are complicated differences between cancer and normal cells in gene functions, cancer
cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new,
robust, and effective method for extracting gene predictors. We identified as low as 6 genes which can be taken as
predictors for diagnosing lung adenocarcinoma.
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Background
Lung adenocarcinoma is the major cause of cancer-related
deaths worldwide [1–4]. Its occurrence and development
follow the changes in complex interactions among genes
and their productions [5, 6]. This complexity, presumably,
is the main obstacle hindering scientific research and clin-
ical diagnose. The high-throughput technologies provided
abundant data on the biological processes [7, 8]. From
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those data, some key genes were inferred as predictors
for classifying tumors and normal samples, substantially
fascinating research and diagnose [9].

Most datasets by high-throughput technologies have
two shortages in uncovering or describing cellular pro-
cesses. Firstly, most expression datasets supplied by
database such as the Cancer Genome Atlas database
(TCGA) [10] do not relate how the functions of genes
changes over time, likely with some key information
lost. This can be somehow compensated by the time
series analysis [11, 12]. Secondly, the expression datasets
do not reveal the interactions among genes and their
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products. This can also be compensated by integrating
multiple interaction information at a systematic level such
as network analysis [13, 14]. Such systematic integration
concentrates more on the molecular interactions rather
than the statistical expression differences between can-
cers and normal samples. So far, network analyses have
been widely used in describing bio-molecular interac-
tions, where nodes with higher degree are believed to take
more important roles [15].

In the network, gene interactions are complex. For two
interacted genes, if one’s expression promotes or represses
the other’s expression, it would be termed as “intrinsic
causal interaction”. For example, Huang et al. [16] found
that EGFR mutation enhances expression of CDH5 in lung
cancer cells. That is, gene EGFR is the “cause” in their rela-
tionship; in other words, EGFR is an “independent gene”
relates to CDH5, while the CDH5 is a “dependent gene”
of EGFR. Such causal relation can be obtained by statis-
tical method such as Granger causality test, according to
the time series expression datasets. Causality relationship
in statistics was initially applied in econometrics, and it is
now widely used in determining the regulation directions
in biological researches [17, 18]. The directed network
obtained by Granger causality test can be further simpli-
fied via removing those “dependent genes” while reserving
the globally “independent genes”. This represents a way for
extracting fewer genes that play dominant roles.

For one disease, genes that express differently compared
with the healthy samples are called diff-genes. Of the
diff-genes, those that play more significant roles than the
others are termed as feature genes. The predictors, which
are a subset of the feature genes, are taken as bio-markers
for identifying patients. Two important criteria are used
to conclude whether a predictor set is proper for fast clin-
ical diagnoses. One is higher prediction precision, and
the other is fewer predictor members. Previous studies
have made significant contributions for predictor extrac-
tion. Cava C et al. [19] conducted a pan cancer analysis
for 16 cancer types and found that a few genes could act

as predictors to identify tumors. Liu et al. [20] identified
15 hub genes by the weighted co-expression analysis, and
validated that the 15 hub genes could discriminate lung
cancer vs normal samples. Dai et al. [21] identified 119
mRNA diff-genes utilizing fuzzy granular space theory,
with F-value = 0. 7029 and Rand-index p = 0.7272. Li
el al. [22] identified mRNA feature genes for differen-
tiating the subtypes of breast cancer based on decision
tree algorithm. However, further effort should be made to
screen fewer predictors from the obtained feature genes
for differentiating cancer and healthy samples.

In this paper, we aimed to screen lung adenocarcinoma
predictors, with the use of a novel approach. The approach
includes three steps as follows. In the first step, differential
expression analysis (DEA) was employed to analysis the
gene, DNA methylation and miRNA expression microar-
rays to find diff-genes. Diff-gene interaction network was
then constructed, where genes with higher degree would
be retained as feature genes. Secondly, using Granger
causality test, the undirected feature gene interaction net-
work was transformed to directed network. A stepwise
character selection based on Random Forests (RF) model
[23] was further proposed to identify predictors from
feature gens. In the last step, we tested the prediction
capacity of the predictors, by applying to six independent
datasets; the results presented excellent accuracy.

Methods
Datasets
The gene, DNA methylation and miRNA quantification
data were downloaded from the Illumina HiSeq platform
on lung adenocarcinoma (TCGA ID: LUAD) in TCGA
[10]. The gene data includes 539 tumor and 59 normal
samples, the methylation data includes 448 tumor and 45
normal samples, and the miRNA data includes 473 tumor
and 32 normal samples. Six gene expression profiles
(GSE10072 [24], GSE83213 [25], GSE2088 [26], GSE32863
[27], GSE43458 [28], GSE27262 [29, 30]), which would be
used in validation test, were downloaded from the Gene

Table 1 Basic characteristics of 7 datasets

Characteristics Analysis Validation

TCGA GSE10072 GSE83213 GSE2088 GSE32863 GSE43458 GSE43458

Platform Illumina Affymetrix Illumina Illumina Illumina Affymetrix Affymetrix

Cancer/Normal (Total) 539/59 (598) 50/57 (107) 11/46 (57) 57/30 (87) 58/58 (116) 80/30 (110) 25/25 (50)

Male (%) 107 (18) 69 (64) 28 (50) Unknown 26 (22) Unknown Unknown

Race Asian 8 0 0 0 44 0 0

Black 59 0 0 0 0 0 0

White 446 0 0 0 72 0 0

Unreported 66 107 57 87 0 110 50

Mean age 65 56 Unknown Unknown 68 Unknown 58

Never-smoker (%) 34 (6) 36 (34) Unknown Unknown Unknown 70 (64) Unknown
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Fig. 1 Flow chart of Granger Causality Test. The Pearson correlation test adapts p-value < 0.01 as threshold, and the other three: the unit root test,
co-integration test and Granger causality test adapt p-value < 0.05 as threshold

Expression Omnibus (GEO) [31]. More detailed informa-
tion of the datasets is shown in Table 1. The dynamic gene
expression dataset (GSE79210 [32]) was downloaded from
the GEO database, which records the gene expression
level at 26 time points (0h, 0.5h, 1h, 2h, 3h, . . ., 22h,
23h, 24h).

Feature genes screening
In this study, the differentially expressed genes (DEGs),
differentially methylated DNA (Dmets) and differentially
expressed miRNAs (DEmiRNAs) were obtained by DEA
for each kind of microarrays. The process included a t-test
and a log2 fold change for tumors and healthy samples.
To reduce the type I error, the p-value of t-test must
be adjusted. In this paper, TCGAbiolinks [33] package

was applied to download data from TCGA and do DEA
(cutoff: logFC.cut =1 and FDR.cut = 0.01 for gene and
miRNA data; p.cut = 0.01and diffmean.cut = 0.35 for
methylation data). To gather diff-genes, we searched the
genes with Dmets (i.e., differentially methylated genes;
abbr., Dmet-genes), according to the annotation infor-
mation. Meanwhile, we also searched the target genes
of DEmiRNAs (abbr., DEmiRNA-target-genes). Consid-
ering that not all genes regulated by DmiRNAs are diff-
genes, a miRNA-target network was constructed and the
genes with higher degree were identified as DEmiRNA-
target-genes. Genes included in any one of the three
gene sets, namely the DEGs, Dmet-genes, and DEmiRNA-
target-genes, were identified as diff-genes. Supplemen-
tarily, the miRNA target information from GeneMANIA

Fig. 2 Illustration of how to select the globally independent gens. A is the independent gene of B and D; B is the independent gene of C, B is also
the dependent gene of E; F is a single node gene; H, I and G are in a feedback sub-network. In category 1, we identified A, E and F with indegree = 0
as the globally independent genes (marked in red). In category 2, H, I and G are all identified as the globally independent genes (marked in red). The
nodes in green indicate genes that are both dependent genes and independent genes of some other genes. The blank nodes indicate genes are
only dependent genes of some other genes
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Fig. 3 Flow chart of stepwise character selection based on RF

[34] database was obtained by SpidermiRNA [35] package,
and the network topological analysis was achieved by
Cytoscape [36] software.

An undirected multi-interaction network of diff-genes
was then constructed to obtain feature genes. Such net-
work integrated three kinds of gene-gene interactions: co-
location interaction, physical interaction, shared protein
domain interaction. Genes with higher degree were iden-
tified as feature genes. According to GeneMAINA (http://
pages.genemania.org), the definitions of the three kinds
of interactions are as follows. (i) Co-localization inter-
action: two genes are linked if they are both expressed
in the same tissue or if their gene products are both
identified in the same cellular location. (ii) Physical inter-
action: two gene products are linked if they are found
to interact in a protein-protein interaction study. (ii)
Shared protein domains: two gene products are linked

if they have the same protein domain. All the above
interaction information is available by SpidermiRNA
package.

Gene predictors extraction
We found the feature genes, whose number was 148, are
sufficient for differentiating tumors. However, the number
is too large in clinical diagnose. Hence, we developed a
two-step method to select some genes from the feature
genes, which would be served as predictors without losing
accuracy.

Setp1: Granger causality test
Granger causality test is a statistical test with the hypothe-
sis that the past of one’s performance is helpful in predict-
ing the future of the other’s performance. More precisely,
for variables A and B, if A is the granger causality of B, two

http://pages.genemania.org
http://pages.genemania.org
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Table 2 Process of stepwise character selection based on RF

Algorithm: Stepwise Character Selection

Input: Ranked independent gene list G, number of candidate genes n, gene expression microarray

D ∈ R(n∗d) ,threshold ε .

Output: Predictor set P, predict accuracy ACC, P_ACC.

Step1: Initialization: P = ∅, candidate gene set C = G.

Step 1.1:Calculate the accuracy ACCi , SNi , SPi , MCCi by Eqs. 1, 2, 3, 4 of each ci ∈ C

which acts as a single predictor in RF with 5-fold cross validation, respectively.

Step 1.2:P ← p,where p ← argmax
ci∈C

ACC , P_ACC ← max
i∈1···n ACC, C ← C/p.

Step2: Character selection.

While P_ACC − ACC_max > −ε and C �= ∅, do

Step2.1: ACC_max ← P_ACC.

Step2.2: Add members into P.

1.Padd_i ← P ∪ {ci ∈ C} calculate ACCadd_i using Padd_i ,as predictors in RF

with 5-folf cross validation,i = 1, · · · , n.

2.P ← Padd_Iadd ,where Iadd ← argmax
i=1,··· ,n

(ACCadd), P_ACC ← max(ACC), C ← C/P.

Step2.3: Try remove members form P.

If P_ACC − ACC_max > −ε ,do

1.Define nremove as the length of P.

2.Premove_i ← P/pi ∈ P,calculate ACCremove_i using Premove_ias predictors in

Random Forest with 5-fold cross validation,i = 1, · · · , nremove .

3.P ← {pi|ACCremove_i > P_ACC, i = 1, · · · , nremove}.

C ← {C ∪ {pi|ACCremove_i ≤ P_ACC, i = 1, · · · , nremove}
End if.

Step2.4: Calculate accuracy.

Calculate P_ACC using P as predictors in RF with 5-fold cross validation.

End while.

conditions must be met: (i) A is helpful in predicting B; (ii)
B is not useful apparently in predicting A.

Although Granger causality test is widely used, it is not
enough to assert causal relation in reality, and the verifi-
cation of such relation requires mass of validated biolog-
ical information. Inspired by the interaction network, we

Table 3 Top 5 target genes and their top 4 regulator miRNA

Target genes Degree DEmiRNA

VEGFA 12 hsa-mir-378a (120), hsa-mir-373 (62),
hsa-mir-34a (21), hsa-mir-17 (20)

CCND1 10 hsa-mir-34a (21), hsa-mir-17 (70),
hsa-mir-449a (14), hsa-mir-19a (12)

CDK6 10 hsa-mir-615 (121), hsa-mir-21 (70),
hsa-mir-203a (21), hsa-mir-34a (21)

BCL2 9 hsa-mir-375 (419), hsa-mir-429 (26),
hsa-mir-34a (21), hsa-mir-17 (20)

PTEN 7 hsa-mir-21 (48), hsa-mir-19a (12),
hsa-mir-217 (11), hsa-mir-144 (8)

made a restriction that only two interacted genes would
be used as input of the Granger causality test rather than
all couples of the feature genes. In addition, Pearson cor-
relation test was also performed to ensure the correlation
between genes in expression. Steps of Granger causality
test are presented in Fig. 1,

We began with distinguishing two genes with causal
interaction by defining a “dependent gene” and an “inde-
pendent gene”. For two genes G1 and G2, G1 is the “inde-
pendent gene” of G2 or G2 is the “dependent gene” of
G1, only if the two genes satisfy three criteria: (i) G1 and
G2 are interacted feature genes; (ii) G1 is the granger
cause of G2; (iii) G1 and G2 show significant Pearson’s
correlation in expression. In a view of simplification, a
couple of independent-dependent genes can be taken as
its independent gene.

There were 207 causal gene couples in the feature gene
network. The network could be simplified via screening
the globally independent genes which paly dominant roles
in the whole directed causal network. The screening was
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executed with the following scheme. We observed that
there were two categories of topologies in the network as
shown in Fig. 2. In the first category, genes either belong
to feedforward sub-networks or are isolated genes that
do not interact with the others. Both the isolated genes
and the source genes (whose in degree is 0) in feedfor-
ward sub-networks are taken as the globally independent
genes. In the second category, the genes are in feedback
sub-networks. All such genes were reserved as globally
independent genes.

Step2: Stepwise predictor selection based on Random Forest
Despite of the well performance in classification of the
globally independent genes, there were still 63 genes
which is too many for diagnose. We thus proposed a
stepwise character selection algorithm, aiming to exact
predictors from the globally independent genes without
reducing the classification precision. In the first step, we
performed a initialization by evaluating the performance
of classification for each candidate gene and ranked the
candidate genes by precision. In the second step, a new
candidate gene was added into the current predictor set.
If the accuracy of the predictor set was improved than the
last step, then we tried abandoning several old predictors
whose removal led to higher accuracy. If the accuracy was
still improved after the removal, then we turned to the sec-
ond step. Such procedure was repeated until there were
no new candidate genes or the precision was reduced.
The classification was completed by Random Forest (RF)
classification model, which is a famous ensemble learning

algorithm. Achievement of RF relied on randomForest
package and parameters were accepted as ntree (number
of tree) = 500 and mtry =sqrt (p), p is the number of
variables. Workflow illustrated above is shown in Fig. 3
and summarized in Table 2.

Four accuracy indexes were calculated to measure the
performance of a predictor set in the stepwise character
selection algorithm:

ACC = TP + TN
TP + FP + FN + TN

(1)

SN = TP
TP + FN

(2)

SP = TN
FP + TN

(3)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (FP + TN) × (TN + FN)

(4)

In silico validation
After Granger Causality test and stepwise character selec-
tion, a predictor set that contained the least genes
but performs well classification accuracy was extracted.
In order to verify the effectiveness of the results, we
downloaded 6 independent gene expression profiles
(GSE10072, GSE83213, GSE2088, GSE32863, GSE43458,
GSE27262) provided by GEO database (See Table 1).

Fig. 4 Distribution of the 6661 diff-genes. The lengths of horizontal bars represent the size of Dmet-located-gene, DEmiRNA-target-gene, and DEG.
The heights of the vertical bars represent the size of intersections among Dmet-located-gene, DEmiRNA-target-gene, and DEG group
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Precision was measured by Eqs. 1, 2, 3, 4. Receiver Oper-
ating Characteristic (ROC) curves and Area Under Curve
(AUC) facilitated the display of ultimate performance.

Result
Diff-genes detection
By applying DEA in gene, methylation, and miRNA
microarrays, a total of 6155 DEGs, 266 Dmets, and 325
DEmiRNAs were selected as diff-genes. Of the DEmiR-
NAs, 315 genes with degrees greater than 2 were identified
as DEmiRNA-target-genes. The top 5 DEmiRNA-target-
genes ordered by indegree are shown in Table 3. Numbers
in brackets represent the number of genes regulated by the
corresponding DEmiRNAs.

Distribution of the 6661 diff-genes is shown in Fig. 4.
Most of the diff-genes were from the DEG group,
and were not overlapping with those from Dmet-gene
or DEmiRNA-target-gene group. 229 diff-genes were

simultaneously from two groups. However, no genes were
simultaneously from all the three groups.

Feature genes screening
Considering that nodes with higher degree in the network
play more crucial roles than the others, we constructed a
multi-interaction network integrating gene-gene interac-
tion information. Totally 148 genes whose degree greater
than 120 were selected as the feature genes. The interac-
tion network of feature genes is shown in Fig. 5.

We screened the diff-genes using various expression
microarrays instead of a single microarray. This is because
any individual microarray is not sufficient. As revealed
in Fig. 6, although most feature genes are DEGs, some
important genes such as the well-known EGFR gene [37]
are only included in DEmiRNA-target-gene group. This
indicates the necessity of deriving predictors via analyzing
gene’s performance based on various expression datasets.

Fig. 5 Multi-interaction network of 148 feature genes. The red lines indicate the co-location interactions, the blue lines indicate the physical
interactions, the yellow lines indicate the shared protein domain interactions, and the size of node indicates the degree
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Fig. 6 Sources of 148 feature genes. The blocks in blue denote the feature genes are DEGs, DEmiRNA-target-genes, or Dmet-genes. The gene
highlighted by red square is EGFR, which is a well-known gene related to lung adenocarcinoma and it is also one of the predictors we identified.
EGFR is only from DEmiRNA-target-gene group. This indicates that it is not sufficient to analysis gene activities based on single dataset
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Gene predictors extraction
Granger causality test
In order to identify predictors from the feature genes
based on the regulation relationship, we performed the
Granger causality test (for flow chart see Fig. 1), and trans-
formed the undirected interaction network to the directed
causality network. Using the method for screening the
globally independent genes, a total of 63 globally inde-
pendent genes were selected. The causality network of
those globally independent genes is shown in Fig. 7. The
heatmaps (See Fig. 8b) show that the performance in clas-
sification achieved based on the independent genes (ACC:
98.7%) is better than that based on the 148 feature genes
(See Fig. 8a, ACC: 96.6%).

During granger causality test, some interaction edges
without granger causality relationship were removed. Of
note, it does not mean that those edges are useless; on the
contrary, they are important in biological processes. Most

interactions are not of causality relationship according to
our algorithm.

We further counted the number of edges that were
tested as causality interactions for the three kinds of
gene-gene interactions (i.e., co-location interaction, phys-
ical interaction, shared protein domain interaction). Such
statistic was applied to three networks, namely, the
globally independent gene interaction network, causal-
ity network and feature gene interaction network. The
results are shown in Table 4. Percentages in the last
column present the ratio of the edge quantity for one
type of interaction in causality network to that in fea-
ture genes interaction network. All the percentages are
lower than 50%, meaning that only a small part of
interactions were tested as ganger causal interaction.
Moreover, genes with shared protein domain interaction
(40.6%) were more likely to be tested as of causality rela-
tion, compared with the other two kinds of interactions

Fig. 7 Directed causality network of 63 independent genes derived via Granger causality test. The directed arrows present regulation directions. The
red lines indicate co-location interactions. The blue lines indicate physical interactions. The yellow lines indicate shared protein domain interactions.
The nodes in green present the 63 globally independent genes screened
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Fig. 8 Performance of RF as a classifier based on 148 diff-genes, 63 feature genes, 6 predictors. a: 148 diff-genes, b: 63 feature genes, c: 6 predictors.
“TP” and “NT” denote lung adenocarcinoma (marked in green) and normal samples (marked in brown), separately

(11.6% for co-location interaction and 8.9% for physical
interaction).

Except the directed causality interaction, there are also
some indirect relationship in the causality network. For
example, gene G1 regulates G2 and G2 regulates G3, while
G1 doesn’t directly regulate G3. To evaluate how such
indirect causal relationship affects our results, we per-
formed an experiment as follows. Let G denotes the resul-
tant 63 globally independent genes, D denotes the directly
dependent genes of the 63 independent genes (i.e., G), I

Table 4 Numbers of causality edges for each interaction type in
three networks

Interaction type Number of edges for each interaction type

Independent
genes
network

Causality
network

Feature genes
network

Co-location 37 142 1219 (11.6%)

Physical 2 52 581 (8.9%)

Shared protein domain 13 23 32 (40.6%)

denotes both the directly dependent genes of D and the
indirect dependent genes of G. We then measured the
classification performance of G, D, I, G∪D and G∪I. Their
accuracies and AUCs are shown in Table 5, where the bold
number represents the maximum value of the column.

From the table, both the ACC of G ∪ I and the ACC of
G ∪ D are less than ACC of G. That is, I and D contain
redundant information and\or interference information
relative to G. Furthermore, the largest ACC is achieved

Table 5 Classification performances of the 5 gene sets including
G, D, I, G ∪ D and G ∪ I

Gene set Number Precision AUC

ACC (%) SN (%) SP (%) MCC (%)

G 63 98.7 88.7 96.6 93.5 0.89

D 42 97.4 96.5 91.8 88.1 0.88

I 26 96.6 95.7 90.1 85.5 0.91

G ∪ D 105 97.2 95.9 92.3 87.7 0.86

G ∪ I 89 97.6 96.3 94.3 90.0 0.89
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Table 6 Classification performances of the 3 gene sets including
feature genes, globally independent genes and predictors

Gene set Number Precision AUC

ACC (%) SN (%) SP (%) MCC (%)

Feature gene 148 97.4 95.1 95.0 87.5 0.90

Independent gene 63 97.7 88.7 96.6 93.5 0.89

Predictor 6 97.6 98.2 94.7 90.8 0.83

by G. Considering the definition of granger causality, we
believed that G could define both their directed indepen-
dent genes and indirect independent genes. Thus, we only
reserved G in this step.

Stepwise predictor selection based on Random Forest
The 63 globally independent genes are still too many
in clinical diagnose. To further reduce the number and
screen predictors, we performed the stepwise predictor
selection method based on Random Forest classification
model (See Fig. 3). A total of 6 predictors were uncovered
in the end, namely, TOP2A, GRK5, SIRT7, MCM7, EGFR,
COL1A2, with ACC up to 97.6%.

We performed the RF with 5-fold cross validation as
classifier to measure the classification performance of the
6 predictors, the 63 globally independent genes, and the
148 feature genes separately. Considering the randomness
of RF, the process was repeated 2000 times and calculated
the average accuracy. The results are shown in Table 6.

Compared with the 148 feature genes of which the ACC
is 97.4%, the number of predictors is only 6 with the
ACC up to 97.6%. Meanwhile, the resultant 6 predictors
perform similar accuracy with the 63 globally indepen-
dent genes (See Table 6). These results indicate that our
method is efficient in character selection. Heatmaps (See

Fig. 8a) and ROC curves (See Fig. 9) also show the well
performance of the 6 predictors.

In silico validation
We applied the 6 predictors in six independent val-
idation datasets in GEO database, namely, GSE10072,
GSE83213, GSE2088, GSE32863, GSE43458, GSE27262
(for more details see Table 1). The classification accura-
cies are shown in Table 7. The minimum ACC is achieved
in GSE43458 (ACC: 95.3%) while the maximum is in
GSE27262 (100%). Heatmaps of six validation datasets are
shown in Fig. 10.

Discussion
Although the occurrence and development of lung ade-
nocarcinoma are complex, fast diagnose can be realized
via analyzing the expression of predictor genes. In clinical
diagnose, a proper predictor set should meet two criteria.
One is higher prediction precision, and the other is fewer
predictor members. In this paper, we proposed a two-step
approach for extracting predictors based on expression
microarrays, aiming to differentiate lung adenocarcinoma
cancer samples vs normal samples.

Firstly, we exacted feature genes based on expression
datasets. Considering that individual expression profiles
are not enough for uncovering gene activities dynamically
and systematically, we applied DEA to three microarrays
(including gene, methylation and miRNA microarrays)
for screening diff-genes. 148 feature genes were then
selected from these diff-genes via conducting and ana-
lyzing the multi-interaction network of diff-genes. The
predictors were then exacted by a two-step method. 63
globally independent genes that play dominant roles in
the whole network were firstly screened, with the use of
Granger causality test based on the undirected feature

Fig. 9 ROC curves of three gene sets
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Table 7 Classification accuracies of the resulting 6 predictors in 6
datasets

Dataset Tumor (%) Precision

ACC (%) SN (%) SP (%) MCC (%)

GSE10072 50 (47) 98.3 98.2 94.7 90.8

GSE83213 11 (19) 95.7 100 92.5 86.0

GSE2088 57 (66) 97.2 96.9 96.5 94.3

GSE32863 58 (50) 95.3 95.7 90.0 89.0

GSE43458 80 (110) 98.3 98.0 95.0 95.0

GSE27262 25 (50) 100 100 100 100

gene interaction network. To further reduce the num-
ber, we proposed a stepwise character extraction method
based on Random Forest classification model. Finally, only
6 genes were identified as predictors, which are TOP2A,
GRK5, SIRT7, MCM7, EGFR, COL1A2. The classification
accuracy of these predictors is up to 98.3%.

To verify the performance of the 6 predictors in classi-
fying cancer and normal samples, six datasets from dif-
ferent sources were applied. The accuracies were uncov-
ered to be in the range from 95.7 to 100% (GSE10072:
98.3%, GSE83213 95.7%, GSE2088: 97.2%, GSE32863:
95.3%, GSE43458: 98.3%, GSE27262: 100%, Table 7). This
approves the robustness of our approaches.

Of the 6 predictors, 5 genes including TOP2A, SIRT7,
MCM7, EGFR, COL1A2 are downregulated and 1 gene
GRK5 is upregulated, compared with normal samples. It
should be mentioned that, EGFR is from the DEmiRNA-
target-gene group only, TOP2A, SIRT7, MCM7, and
COL1A2 are from the DEG group only, and GRK5 is
from both the DEG and Dmet-gene group. This sug-
gests the necessity of screening diff-gens from multiple
datasets. Additionally, all the predictors are associated
with lung adenocarcinoma or cancer. TOP2A is an impor-
tant gene that controls and alters the topologic states of
DNA during transcription, and regulates cell cycle and
p53 signaling pathways in some cancers [38]. Derita et al.

Fig. 10 Validation in 6 datasets from different sources. a: GSE10072, b: GSE83213, c: GSE2088, d: GSE32863, e: GSE43458, f: GSE27262. “TP” and “NT”
denote lung adenocarcinoma (marked in yellow) and normal samples (marked in darkred), respectively
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[39] demonstrated that GRK5 regulates the Src and IGF-
IR signaling and have been implicated in cancer. Shi et al.
[40] found SIRT7 functions as an oncogene in non-small
cell lung cancer. EGFR is a well-known gene that associ-
ated with lung adenocarcinoma [41, 42]. Misawa et al. [43]
suggested the methylation of COL1A2 is related to some
cancers. Moreover, our method can be applied to other
diseases for screening the predictors.
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