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Abstract

Background: The mechanism of many complex diseases has not been detected accurately in terms of their stage
evolution. Previous studies mainly focus on the identification of associations between genes and individual diseases,
but less is known about their associations with specific disease stages. Exploring biological modules through different
disease stages could provide valuable knowledge to genomic and clinical research.

Results: In this study, we proposed a powerful and versatile framework to identify stage-specific cancer related
genes and their dynamic modules by integrating multiple datasets. The discovered modules and their
specific-signature genes were significantly enriched in many relevant known pathways. To further illustrate the
dynamic evolution of these clinical-stages, a pathway network was built by taking individual pathways as vertices and
the overlapping relationship between their annotated genes as edges.

Conclusions: The identified pathway network not only help us to understand the functional evolution of complex
diseases, but also useful for clinical management to select the optimum treatment regimens and the appropriate
drugs for patients.
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Introduction
Complex diseases, such as cancers, are kinds of evolution-
ary diseases [1, 2], which involve successive stages from
early initiation to advanced end-stages. Determining the
possible biological changes associated with these stages
is necessary for understanding the progression of many
diseases, thereby specifying their best treatment strategy.
Take the colorectal cancer for example, these stages can be
classified generally into four phases based on their level of
extension, lymphatic involvement and metastatic features.
Specifically, stage I refers to a tumor of small size confined
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to the organ of origin; stage II describes the disease that
has locally advanced beyond the site of origin; stage III
characterizes the disease that has spread to the neigh-
boring organs; and stage IV represents distant metastatic
disease. Here, cancers at early stages (stage I or II) are
usually considered curable and might only need an active
surveillance compared to advanced stages (stage III or IV)
which might require more radical and active treatment.
Therefore, the understanding of the biological mechanism
and molecular events of complex diseases through stages
require the identification of stage-specific disease genes,
unlike other irrelevant genes and genetic aberrations that
turned out to have no functional relevance to any disease
or specifically to cancer biology [3].

The availability of high dimensional datasets, and
the great advancement of high-throughput technologies
have enabled the identification of genes associated with
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specific diseases, providing potential methods for preci-
sion medicine [4] and drug design [5]. Take the Cancer
Genome Atlas (TCGA) project for example, it has gen-
erated multi-omics datasets over the genomic, epigenetic
and transcriptome levels together with clinical data for
more than 30 human tumors [6–9]. These multiple omics
datasets provided many high-resolution molecular pro-
files, such as gene expression (microarray, RNA-seq), copy
number variation (CNV or sCNA), DNA methylation,
mRNA expression, somatic mutation, protein expres-
sion, as well as clinical information describing specific
metrics, which including pathological stages, clinical
stages, grade and age at diagnosis. They are highly variable
in term of availability from disease to disease.

These datasets enabled integrative analysis focusing on
the identification of cancer-related genes [10–14], unlike
individual analysis with a single type of data, which rep-
resents an incomplete snapshot of a biological process
and does not provide a comprehensive view of differ-
ent disease states. In addition, clinical data also provided
valuable insights into the genetic aberration detections,
including cancer genes identification and their clinical
translation [15–17].

Despite many discoveries made by these integrated
genome datasets, there are only a limited number of
studies that consider the associations between genomic
profiles, clinical parameters, and their stage related can-
cer genes [18–24]. Moreover, these discoveries often
neglected the fact that those identified cancer genes and
functional modules are dynamically changed. Identifying
the evolution of these biological modules is very impor-
tant to understand the progression of many complex dis-
eases, the key regulators of many cancer-related genes and
their dysregulated pathways [25–31].

The main objective of this paper is to investigate a ver-
satile working flow that can address the staging evolution
processes of complex diseases, which including: (1) the
identification of stage-specific cancer related genes, (2)
the construction of their related dynamic modules, and
(3) the generation of the stage related pathway networks.
The rest of the paper is organized as follows. “Materials
and methods” section introduces the methods and related
materials. “Results and discussions” section addresses the
numerical experiments and results. “Conclusion” section
draws discussions and conclusions.

Materials and methods
Data sources and preprocessing
The Level 3 clinical information and genomic datasets
were obtained from the FIREHOSE Broad GDAC [32]. It
is one of the Genome Data Analysis Centers (GDACs) for
the TCGA project that are used for prognosis and disease
diagnosis. The datasets were downloaded in December
2016, which including the clinical information, gene
expression and DNA methylation profiles for the same

Table 1 The datasets informations for the same set of samples
from Broad Firehose TCGA project

Data type Platform Samples

Gene expression UNC-AgilentG4502A 219

DNA methylation JHU-USC-HumanMethylation27 219

Clinical data - 219

group of patients. The summarized information can be
found in Table 1.

The clinical information for each patient are highly
variable. Therefore, we focus on the “pathology_t_stage”,
which mainly describes the diagnosis stage of individ-
ual samples (t1, t2, t3 and t4). These pathological variables
were converted into binary values for our following reg-
ularized regression analysis. For the sample selection, we
only take those patients when the “pathology_t_stage”
parameter was available. Finally, 219 samples were used to
conduct our subsequent analysis.

The gene expression and DNA methylation profiles
were measured for majority genes, which contain 17505
gene expressions and 26224 DNA methylations. However,
we only consider the intersection of the two gene sets,
which contain both gene expression and DNA methyla-
tion information in datasets. Moreover, genes with miss-
ing values, such as NA or NULL, were filtered out, and
methylation CpG loci which related to multiple genes
were shared equally for those genes. Eventually, a set of
12586 genes were obtained in this study.

Additionally, the HPRD PPI network (release 9) [33]
were used to detect gene interactions and functional mod-
ules, which contained 9465 proteins and 37039 interac-
tions. The workflow of the whole process is shown in
Fig. 1.

Stage-specific related gene identification
The first important step to investigate the evolution
progress of complex diseases is to identify signature genes
for individual stages. Elastic net [34] is one of the clas-
sical feature selection algorithms, and has been widely
used in biological and clinical research areas [35–42]. It
employs a generalized linear regression model to handle
the high-dimensional data regression issue without using
any prior information. The elastic net method is based on
a compromise between the Least Absolute Shrinkage and
Selection Operator (LASSO) penalty (L1 norm) and the
ridge penalty (L2 norm), where the LASSO penalty per-
forms the feature selection and the coefficient estimation,
while the ridge penalty shrinks those coefficients toward
to zero [35].

Suppose there is a set of m samples (patients) and n
features (gene expression or methylation profiles), the fea-
ture matrix can be denoted as a m × n dimension matrix
X. Given a m dimension label vector Y (pathology stage
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Fig. 1 The workflow for identifying stage-specific cancer related genes and their evolution processes through pathological_staging

labels), the problem stage-specific related gene identifica-
tion is to detect a set of genes that minimize the following
objective function

B = ‖Y − Xβ‖2 (1)

where β = (β1, β2, . . . , βn)T is the coefficient vector for
all features.

After adding a LASSO penalty and a ridge penalty, the
elastic net method have a form like

̂B = ‖Y − Xβ‖2 + λ1|β| + λ2‖β‖2, (2)

or
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to be more specific, where λ1, λ2 are the penalty parame-
ters related to LASSO and ridge penalty, respectively.

In this study, the gene expression profiles and the DNA
methylation information were integrated to form the fea-
ture matrix X, and four binary stage-specific label vectors
Yt , t = 1, 2, 3, 4 were employed to identify disease related
genes for individual stages, respectively (where an element
in Yt represents if that sample was recognized as the tth
pathology stage in the clinical dataset).

The objective function (3) was implemented in Matlab
R2015a with the tuning parameter λ1 = λ2 = 0.5. The
fitted least-squares regression coefficients were used for
gene selection. Giving a pair of X and Yt , the Matlab pro-
gram calculated the fitted coefficients at around 50 times
(automatically determined by Matlab). At each time, a set
of signature genes could be selected if their coefficients
were larger than a threshold. The finally stage-specific
genes were determined based on the times of those genes
were selected during the calculation. Table 2 summarizes
the times of running, the number of selected genes across
the 4 pathology stages, and the number of genes that were
selected at least 20 times.

Table 2 The number of genes detected by cut off=20

Stages Models # Detected
# of
genes

# of genes at
cut off=20

# of genes in
the giant
components

Pathology_t1 51 279 167 17

Pathology_t2 48 257 195 40

Pathology_t3 45 272 206 227

Pathology_t4 50 278 178 64

[20 implies the number of genes selected by at least 20 models]. This table illustrated
the number of the models resulted at each pathology_stage, the maximum number
of non-zero coefficients (genes) obtained at a specific model, the number of genes
predicted by a cutoff metric and the number of genes in the giant components
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Stage-specific module detection
Stage-specific modules at each pathology stage were con-
structed based on the giant component strategy and the
human PPI network.

The selected signature genes at each stage were often
isolated with each in many cellular networks, and the
enrichment analyses of those genes may not get any mean-
ingful result. To overcome this problem, we propose to use
the giant component strategy to select the most functional
related gene modules based on the identified genes.

To be more specific, a biological network could be
employed as the basic background network, where the
identified genes and their directed neighbors in the net-
work were selected to form a subnetwork. The edges of
the subnetwork were also generated based on the back-
ground network. By doing this, the obtained subnetwork
often robustly linked with each other, and the initial iden-
tified genes served as seed nodes to generate the related
functional modules. To further filtering out those disre-
lated genes, only the genes belong to the giant connected
component of the subnetwork were selected as the sig-
nature genes for that stage. The rest of other genes will
not consider in this study. The flowchart of this part was
illustrated in Fig. 2.

Fig. 2 The flow chart of the stage-specific gene identification

The HPRD PPI dataset deemed the most important
interaction in this study compared to other human
datasets like the human cofunction network in [43] and
the InWeb_IM PPI network in [44], since it linked effi-
ciently the genes identified at each stage.

Dynamic module analysis and pathway network
generation
Once the signature genes were identified for each stage,
the Cytoscape was used to draw the explicit graphical rep-
resentations for different biological modules and subnet-
works. In this study, 4 groups of dynamic giant connected
functional modules were constructed, where the vertices
represented the list of interested genes at each stage, and
edges represented the functional relations between them
obtained from the PPI network.

To further determine whether the list of signature
genes identified at individual pathology stages are sta-
tistically enriched in certain biological processes or
functions, functional enrichment analysis were per-
formed using the DAVID tool [45]. A list of signifi-
cant Reactome pathways has been obtained from these
enrichment analysis. We then pooled these Reactome
pathways altogether and get their official annotated path-
way descriptions from the database. Next, a pathway
evolution network was generated by pooling all those
stage-specific pathways together, where the vertices in
this network represent individual pathways, and connec-
tions were obtained if the two pathways have overlapped
genes.

The pathway network could clearly show the dynamic
evolution processes of the interested disease, since we can
use the color of individual vertices to indicate their pathol-
ogy stage, and the width of edges can show the overlapped
score between two pathways. Here, the overlap score was
calculated as follows:

W = k2

p ∗ q
. (4)

where k is the number of the overlapped genes between
a pair of pathway Pi and pathway Pj, p and q are the total
numbers of genes in Pi and Pj, respectively.

Results and discussions
The number of stage-specific related genes
In this study, we have selected those genes that were
detected by at least 20 models as the seed of stage spe-
cific related genes. By using this strategy, a list of signature
genes that robustly delineate early and advanced patho-
logical stages. Table 2 summarized the number of genes
selected at different stages. To be more specific, stage
t1 has obtained 167 genes from 51 models; stage t2 has
obtained 195 genes from 48 models; stage t3 has obtained
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Fig. 3 Pathology_t1 stage module. This module has 17 giant component nodes (genes) interacted with 23 edges. Node colors specify: stage1
identified genes, their neighbors and also the overlapped genes from other pathology stages, where 1 indicates stage1 detected genes, 1N
indicates stage1 directed neighbors and 1N-2N indicates the overlapping genes between stage1 neighbor genes and stage2 neighbor genes as
shown in the code colors

206 genes from 45 models; and stage t4 has obtained 178
genes from 50 models, respectively.

All of these genes were considered as indicators or
signatures to characterize the dynamics of the 4 patholog-
ical stages, due to their possible role in cancer progression.

Dynamic modules construction and visualization
The HPRD network was used to construct 4 groups of
pathology stage related modules based on their identified
giant components. Interactions among their identified
genes were extracted to form the corresponding modules,

Fig. 4 Pathology_t2 stage module. This module has 42 giant component nodes interacted with 51 edges. Node colors specify: stage2 identified
genes, their neighbor genes and also the overlapped genes from other pathology stages, where 2 indicates stage2 detected genes, 2N indicates
stage2 directed neighbors, 2-3N indicates the overlapping genes between stage2 detected genes and stage3 neighbor genes, 2N-3N indicates
overlap genes between stage2 neighbor genes and stage3 neighbor genes and 2N-4N denotes overlap genes between stage2 neighbor genes and
stage4 neighbor genes which shown clearly in the code colors
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which contained 17 nodes and 23 interactions for stage
t1; 42 nodes and 51 interactions for stage t2; 228 nodes
and 1004 interactions for stage t3; and 65 nodes and 87
interactions for stage t4.

In order to further know how the four pathology stages
involved and interacted to each other, the overlapping
cancer genes between them were identified from the com-
bined set, and the connections of these genes along with
their neighbors at individual stage compared to other
stages were shown in Figs. 3, 4, 5 and 6, respectively. These
figures show originally detected genes, neighbor genes
and their overlapped genes of individual pathology stages,
which are highlighted by different colors.

Annotated functions and pathway enrichment analysis
Pathway analysis has become the first choice for gain-
ing insight into the underlying biology of differentially
expressed and methylated genes, as it reduces com-
plexity and has increased explanatory power. Thus,
to validate our results, a DAVID functional anno-
tation tool with a Reactome pathway annotation
[46] was carried out for the identified pathological

significant genes to identify their potential pathways
and thereafter construct the corresponding pathway
network.

In this study, a considerable number of stage-specific
genes have been successfully identified across 4 patho-
logical stages. These identified genes robustly associated
with each other to produce meaningful biological mod-
ules, and significantly enriched in some key biological
pathways. Those pathways, in turn, also interacted at a
higher level based on the overlapping between their anno-
tated genes. The rich set of interactions between these
pathways results in a valuable pathway network, captur-
ing highly evolved pathways through the 4 pathological
stages.

The network provides novel insights into the cancer dis-
ease evolution. As can be seen in Fig. 7, the evolution
histories or communities could be clearly classified into 6
groups: (a), (b), (c), (d), (e) and (f ). Specifically, in group
(a), the cancer evolved from stage 1 (red nodes) to stage 2
(light blue nodes), and continued to evolve through stage 3
(dark blue nodes) to the end of stage 4 (green nodes). Sim-
ilar to group (b) which involved an evolution start from

Fig. 5 Pathology_t3 stage module. This module has 228 giant component nodes interacted with 1004 edges. Node colors specify: stage3 identified
genes, their neighbor genes and also the overlapped genes from other pathology stages, where 3 indicates stage3 detected genes, 3N indicates
stage3 directed neighbors, 3-4 indicates the overlapping genes between stage3 detected genes and stage4 detected genes, 3N-4 indicates overlap
genes between stage3 neighbor genes and stage4 detected genes and 3N-4N denotes overlap genes between stage3 neighbor genes and stage4
neighbor genes which shown clearly in the code colors
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Fig. 6 Pathology_t4 stage module. This module has 65 giant component nodes interacted with 87 edges. Node colors specify: stage4 identified
genes, their neighbor genes and also the overlapped genes from other pathology stages, where 4 indicates stage4 detected genes, 4N indicates
stage4 directed neighbors. In addition to the overlapped genes from stage 2 and 3 as shown in previous code colors

stage 2 (blue node) to stage 2 and 3 by their common path-
ways (light blue and dark blue). Then, from stage 3 (dark
blue) to stage 4 (which shown in green nodes). For group
(c), an evolution also happened from stage 2 to stage 3
pathways. In group (d) the evolution happened through
stage 1, stage 2 to stage 3, and in group (e) the evolution
involved in stage 2 and stage 3. The final group (f ), which
includes a large set of stage 3 pathways strongly related
to each other, suggesting the metastasis growth of cancer
disease.

Moreover, to illuminate the biological significance role
of the extracted pathway network and their evolved
pathways, we also defined their annotated functions,
which are shown in Fig. 8. For stage 1, the anno-
tated functions mainly belong to cellular responses to
external stimuli group. For stage 2, the annotated func-
tions carry (1) immune system, (2) signal transduc-
tion tumor and (3) programmed cell death. For stage
3, the annotated functions evolve to (1) neuronal sys-
tem, (2) immune system, (3) signal transduction and

(4) developmental biology. The last stage includes anno-
tated functions such as (1) metabolism of proteins,
(2) vesicle mediated transport, (3) disease and (4) cell
cycle.

To be more specific, for example, in the group (a),
the evolved pathways were highly related to functions
which starts from (1) cellular responses to (2) exter-
nal stimuli, then go through (3) neuronal system sig-
nal transduction, (4) developmental biology, and ends
up with (5) metabolism of proteins. In group (b), the
evolution starts from (1) hemostasis to (2) signal trans-
duction and ended with (3) cell cycle. Whereas in group
(c), a set of communities enriched in common func-
tions including (1) cancer, (2) disease and cancer, (3)
disease and tumor, (4) signal transduction and (5) immune
system. For group (f ), the most pathways successfully
enriched in programmed cell death function. However,
in the group (d), different functions have been defined
including (1) circadian clock and (2) gene expression
(transcription). Overall, the description details of these
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Fig. 7 The dynamic structure of the pathway interaction network. The nodes in this network referred to pathways and edges between nodes
indicated interaction of pathways determined through overlapped genes. In particular, nodes in red indicate stage1 pathways; nodes in blue
indicate stage2 pathways; nodes in dark blue indicate stage3 pathways ;nodes in green indicate stage4 pathways, whereas nodes in 2 colors refer to
the common pathways of 2 stages. The color of nodes represent the cancer stages

functions suggesting the important biological role of this
study.

Conclusion
In this paper, we introduced a working flow which
mainly adressed 3 important biological aspects such as
stage-specific cancer genes identification, multi-omics
data integration, biological modules and cellular pathway
network construction.

The main objective of the study was to gain biologi-
cal and clinical insights into the progression of cancer
diseases through pathological staging mechanism. Since

complex diseases, include but not limited to cancers, are
evolutionary diseases that don’t directly end up with a
mortal situation. They evolve cross multiple stages that
can be determined not only through the lens of biological
modules but more importantly through pathway net-
works, which contain rich biological information and
provide more detailed molecular mechanisms.

Therefore, we constructed individual pathological mod-
ules based on the overlap between identified giant specific
genes associated through a PPI network. We also per-
formed pathway analysis on these genes and built a valu-
able pathway network based on the enriched pathways
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Fig. 8 The annotated functions of the extracted pathway network. This figure illustrated the different pathways functions enriched at every
pathology stage and the highlighted (a), (b), (c), (d) and (f) cases determine the main histories functions detected in this pathway network. The
color of nodes represent the cancer stages

and the overlap between their annotated genes, which
captured highly evolved pathways that involved different
successive stages determining the real evolution of cancer
diseases.

This process has furthered this understanding by iden-
tifying significant differences between different diseases
stages and determining their evolution through pathways
perspective, which have important implications not only
for the classification of diseases/phenotypes, but also with
clinical management by helping to select the most appro-
priate treatment modality for patients, holding promise
for finding potential drugs.

Our understanding of cancer biology through the lens of
the pathway and network analyses is promising. Especially
when a disease reaches a metastasis status, which is the
pivotal cause of patient deaths. The metastatic status is an
advanced status that can be deeply defined by the TNM

(Primary tumor (T), Lymph nodes (N) and Distant metas-
tasis (M)) criteria, which are major parameters in the
staging technique. Thus, we see ample opportunities to
address this issue in future work. Furthermore, integrating
more datasets at various levels (e.g gene expression, DNA
methylation, and somatic CNV) might further facilitate
the discovery of more robust staging modules and path-
ways, that easily determine the evolutionary process of
many diseases revealing more comprehensive informa-
tion of disease states. However, substantial additional
experiments will be required to validate the predicted
findings.
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