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GO functional similarity clustering depends
on similarity measure, clustering method,
and annotation completeness
Meng Liu and Paul D. Thomas*

Abstract

Background: Biological knowledge, and therefore Gene Ontology annotation sets, for human genes is incomplete.
Recent studies have reported that biases in available GO annotations result in biased estimates of functional
similarities of genes, but it is still unclear what the effect of incompleteness itself may be, even in the absence of
bias. Pairwise gene similarities are used in a number of contexts, including gene “functional similarity” clustering
and the related problem of functional ontology structure inference, but it is not known how different similarity
measures or clustering methods perform on this task, and how the clusters are affected by annotation
completeness.

Results: We developed representations of both “complete” and “incomplete” GO annotation datasets based on
experimentally-supported annotations from the GO database—specifically designed to model the incompleteness
of human gene annotations—and computed semantic similarities for each set using a variety of different published
measures. We then assessed the clusters derived from these measures using two different clustering methods:
hierarchical clustering, and the CliXO algorithm. We find the CliXO algorithm, combined with appropriate measures,
performs better than hierarchical clustering in reconstructing GO both when the data are complete, and
incomplete. Some measures, particularly those that create a pairwise gene similarity by averaging over all pairwise
annotation similarities, had consistently poor performance, and a few measures, such as Lin best-matched average
and Relevance maximum, were generally among the best performers for a broad range in annotation
completeness and types of GO classes. Finally, we show that for semantic similarity-based clustering, the
multicellular organism process branch of the GO biological process ontology is more challenging to represent than
the cellular process branch.

Conclusions: We assessed the effects of annotation completeness on the distribution of pairwise gene semantic
similarity scores, and subsequent effects on the clusters derived from these scores. Our results suggest
combinations of semantic similarity measures, gene-level scoring methods and clustering method that perform best
for functional gene clustering using annotation sets of varying completeness. Overall, our results underscore the
importance of increasing the completeness of GO annotations to for supporting computational analyses of gene
function.

Keywords: Gene Ontology, semantic similarity, annotation completeness, Directed Acyclic Graphic clustering,
hierarchical clustering, least-diverged human orthologs, information content
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Background
The Gene Ontology (GO), a standardized vocabulary of
biological function and process terms, is one of the most
frequently used resources for gene function annotations
[1]. It consists of 3 domains: molecular function (how a
gene functions at the molecular level, e.g. a protein
kinase), cellular component (location relative to cell
compartments and structures where the gene product is
active, e.g. the plasma membrane) and biological process
(what larger processes a gene product helps to carry
out). Within each domain, the ontology is structured as
a directed acyclic graph (DAG) and consists of GO
terms that represent different biological properties.
Terms low in the DAG are more specific and can
have several types of defined relationships to one or
more “parent” terms. For the purposes of this paper
(grouping genes into biological process classes), we
consider two relationship types: “is-a” indicating a
child term is a sub-class of its parent term, and “par-
t-of” indicating it is a component of its parent term.
It is now common to use the GO in many applica-
tions, including gene set enrichment [2–5], gene net-
work [6, 7] and pathway analysis [8, 9].
A GO annotation associates a specific gene (more

precisely a gene product, a protein or noncoding RNA,
though we use the term “gene” for simplicity) with a
specific class (or “term”) in the Gene Ontology, identify-
ing some aspect of its function. Genes annotated to the
same molecular function term have a common molecu-
lar mechanism of action, e.g. protein kinase activity;
genes annotated to the same cellular component term
perform their activities in the same cellular compart-
ment or structure; and genes annotated to the same bio-
logical process class are involved in the given biological
process. All GO annotations also refer to the evidence
underlying them, which can be either from a published
experiment, or inferred using a computational method.
In this paper, we consider only GO annotations sup-
ported by experimental evidence.
GO annotations are commonly used in measures that

seek to quantify the functional similarity between genes.
As each gene is typically annotated with multiple GO
terms, functional similarity involves both a measure for
the “semantic” similarity between two GO terms, as well
as a method for combining multiple pairwise GO term
similarities into an overall gene function similarity score.
Several proposed GO semantic similarity measures have
been published in the literature, and applied in numer-
ous subsequent studies. Most of measures quantify pair-
wise GO term semantic similarity by the amount of
information shared between two terms, i.e. information
content (IC) of the most informative (usually also the
nearest) common ancestor of two terms. The most
highly-cited measures for computing IC-based GO term

similarity are Lin’s [10], Jiang and Conrath’s [11],
Resnik’s [12] and Schicker’s scores [12]. Overall pairwise
gene level similarities are computed from the pairwise
semantic similarity scores in three distinct ways: 1) using
the maximal GO term semantic similarity (MAX), 2)
averaging over those best-matched pairwise term seman-
tic similarities (best-match average, or BMA), or 3) aver-
aging over all pairwise term semantic similarities (AVG)
[13–15]. In addition to IC-based measures, other mea-
sures include graph-based approaches [16] and vector
based approaches, e.g. Cosine/vector dot product [17],
and Jaccard index [18]. An additional file introduces
each similarity measure in more detail [see
Additional file 1].
Different studies have evaluated and compared those

measures. For example, Resnik’s method has been
reported to have the highest correlation with sequence
similarity [13, 18], as well as performing best in stratify-
ing protein-protein interactions [19], and the best-match
average method of combining GO term semantic simi-
larities was found to perform best overall [18]. More
recently, Mazandu and Mulder assessed the perform-
ance of different measures in different applications,
and found that while BMA approaches (except using
Resnik’s measure) correlate best with sequence simi-
larity and functional similarity measures, AVG-based
approaches correlate best with protein-protein inter-
action networks [20].
Pairwise gene semantic similarities are used in a num-

ber of contexts, such as for summarizing and visualizing
lists of GO terms obtained in enrichment analysis [21],
for constructing functional gene modules [22], and
perhaps most commonly, for gene ‘functional similarity’
clustering [12, 18]. For functional similarity clustering,
most of the published methods create hierarchical clus-
ters. Two types of strategies are generally considered for
hierarchical clustering: the agglomerative approach
(“bottom up”), and the divisive approach (“top down”).
In addition, different linkage criteria are used to deter-
mine the distance between objects to be clustered [23,
24]. The major limitation for hierarchical clustering is
that it only allows each gene to belong to one cluster.
To overcome this limitation, Kramer, et al. developed
Clique Extracted Oncology (CliXO) algorithm for
Directed Acyclic Graphic (DAG) clustering [25], which
allows each gene to belong to different clusters, and for
each cluster to have multiple parent clusters. Kramer et
al. showed that for at least one similarity measure,
CliXO can reconstruct the Gene Ontology (cellular com-
ponent aspect) to a high degree of accuracy, using the
annotations for yeast genes. However, we note that cellu-
lar component annotations for yeast genes are relatively
complete. It remains unclear how clustering approaches
perform in the more common scenario of incomplete
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annotations. Annotation incompleteness has been shown
to be an important confounder in recent efforts to evalu-
ate gene function prediction accuracy [26].
Here, we evaluate the accuracy and robustness of the

most highly used similarity measures to the incomplete-
ness of annotations, focusing on their performance on
gene clustering using relevant packages in R [27–29].
We focus on biological process annotations, as these are
used for most GO-based functional analyses. First, we
create approximations to “completely annotated” human
gene sets using data from well-studied model organisms,
separately for cellular-level, and multicellular organism
-level processes. We then roughly quantify the current
incompleteness of annotations of human genes. We then
use the estimated incompleteness to simulate a large
number of incomplete annotation sets. Finally, we evalu-
ate the performance of different similarity measures, and
different clustering methods, for both “complete” and
“incomplete” annotation sets. The overall study design is
shown in Fig. 1. We analyze a total of 14 different
gene-level similarity measures (4 different semantic simi-
larity measures × 3 different gene-level scoring me
thods) + (2 different gene-level measures, cosine and Jac-
card), together with two different clustering methods,
for a total of 28 unique combinations.

Results
Quantifying the incompleteness of knowledge of human
gene function
We attempted to quantify the incompleteness of current
human experimental GO annotations, in order to make
our study as relevant as possible to functional analysis of
human genes. As this has not been done before, we opted
for a straightforward approach: simply counting the num-
ber of annotations actually present in the GO knowledge-
base for a human gene, and comparing it to the number
of annotations expected if it were “completely” annotated.
The difference between the number of actual annotations,
and the number of expected (complete) annotations, gives
a measure of incompleteness of the current experimental
knowledge. Of course, we cannot know the number of ex-
pected annotations, so we estimated this number using a

process described in detail in Methods. Briefly, we identify
genes that have been well studied in a model system (yeast
or mouse), and have a human ortholog, and consider
them to be “completely” annotated. We then compare the
number of annotations for each completely annotated
gene to that of their human ortholog. We focus on GO
biological process annotations; however, we recognize that
GO biological processes span multiple levels of biological
organization, so we consider separately GO cellular pro-
cesses (using yeast as the best-studied model system) and
GO multicellular organism-level processes (using mouse
as the best-studied model system). Figure 2 shows the dis-
tribution of annotations for human genes, compared to
their orthologs in yeast (for cellular processes, Fig. 2a) and
mouse (for multicellular organism processes, Fig. 2b). It is
evident from this plot that human experimental GO anno-
tations are quite incomplete, with annotations for multi-
cellular organism level processes being substantially more
incomplete than for cellular level processes. We recognize
that this method of estimating incompleteness of human
annotations is a very rough approximation, as it assumes
equivalence between annotations of different sub-
branches and depths in the ontology. We mitigated this
issue by first removing “redundant” GO annotations: if a
gene is annotated to two GO terms where one term is an
ancestor (using either is-a or part-of relations) of another,
the less specific annotation is removed, as the more spe-
cific annotation also implies the less specific one. We note
that our method is likely to underestimate of the actual
incompleteness, since of course even well-studied genes
are not completely studied or annotated. Nevertheless, it
provides a rough estimate of the incompleteness of
experimentally-supported human gene annotations, which
we use to guide simulations of incomplete annotation sets
(see Methods for details), in order to assess how incom-
pleteness of human gene annotations can affect down-
stream analyses.

The change of pairwise gene semantic similarities due to
incomplete annotations
Figure 3 shows how incompleteness affects the calcu-
lated pairwise gene similarities, for Lin’s similarity

Fig. 1 Overall study design. Four different semantic similarity measures were each used to generate gene-level similarities using three different
methods, yielding 12 different gene-level measures. Two other measures that are inherently gene level (cosine, Jaccard) were also used, for a
total of 14 gene-level measures. Each of these 14 measures were used in two different clustering methods
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measure (other measures show similar effects, as dis-
played in Additional file 2: Figures S1 and S2). Each
graph plots the similarity score of a pair of genes from
an incomplete set (the graphs combine the results from
all 100 simulated incomplete sets) vs. the score for that
same pair in the complete set. Values along the diagonal
indicate identical scores in the complete and incomplete
sets, with values in the upper triangle indicating in-
creases in similarity scores for incomplete annotations,
and values in the lower triangle indicating decreases.
Perhaps counter-intuitively, the pairwise gene similarity
can either increase or decrease when annotations be-
come incomplete, depending on the similarity measure

and the gene pair. The effect can be very different for
different measures, particularly depending on how a
measure combines pairwise annotation similarities into a
pairwise gene similarity. For example, scores obtained by
averaging over all pairs of cellular process annotation
similarities (Fig. 3, Lin AVG) can be either decreased or
increased when annotations become incomplete, and
tend to increase on average. This is simply because, even
for two genes with identical GO annotations, the average
similarity will decrease as the number of annotations
increases. The average includes both matching (high
similarity score) pairs, and non-matching (low-similarity
score) pairs, and as the number of annotations increases

Fig. 2 Distributions of the number of annotations for “incomplete” (actual human gene annotations) and “complete” (orthologs in yeast or
mouse) annotation sets. a comparison between experimentally-supported GO annotations (cellular-level processes only) for human genes,
compared to their orthologs in yeast, for well-studied yeast genes. b comparison between experimentally-supported GO annotations
(multicellular organism-level processes only) for human genes, compared to their orthologs in mouse, for well-studied mouse genes

Fig. 3 Pairwise gene semantic similarities for complete vs. incomplete cellular process annotations using Lin’s semantic similarity measure. Each
point represents a unique gene pair with the value on X axis as their similarity for the complete annotations and the value on Y axis as their
similarity for a random simulated incomplete set of annotations. Therefore, each gene pair is repeated 100 times in each plot, with each pair
having the same similarity for complete annotations but a different similarity under a different simulated incomplete annotation set
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the number of matching pairs grows much more slowly
than the number of non-matching pairs: for N annota-
tions there are N exactly matching pairs, but N(N-1)/2
mismatching pairs. Thus, the average score method de-
pends on the number of annotations, which will severely
limit its applicability. In contrast, scores obtained by
averaging only those best-matched pairs of annotation
similarities (Fig. 3, Lin BMA) are not affected by this
dependency, and were much more likely to be decreased
than increased by annotation incompleteness. Not sur-
prisingly, scores using the maximum annotation pairwise
similarity were always equal or decreased by annotation
incompleteness (Fig. 3, Lin MAX). A similar pattern of
change was observed for other similarity measures [Add-
itional file 2: Figures S1 and S2]. Interestingly, for most
similarity measures (except for JiangConrath, Cosine and
WeightedJaccard measures), we observed a horizontal
line of high density at a similarity value (given incom-
plete cellular annotation data) around 0.15–0.2 in most
of these plots. This is due to the fact that for the incom-
plete annotation sets, roughly 25% of the pairwise
distances (roughly between the 25th percentile and the
50th percentile of the distribution) fall in a narrow inter-
val of roughly 0.15–0.2 (see Additional file 2: Figure S3),
reflecting what is effectively a lower bound on the simi-
larity score.

Accuracy of gene clustering methods for “complete”
annotation sets
We first assessed the accuracy of different combinations
of semantic similarity measure, and gene clustering
method, in terms of recovering the known structure of
the GO biological process classes (see section 2.5). We
calculated the AUC for different clustering thresholds to
compare the gene clusters obtained from the complete
annotation sets, to the actual clusters from the relation-
ships between GO terms (Fig. 4); an AUC of 1 indicates
perfect clustering for that class. This may seem like a
circular exercise, but it sets a base level for how well the
results from each clustering method can capture the
groupings that were present in the original input data. It
will then allow us to see how accuracy is affected by in-
completeness, as described in the next section below.
For the “complete” cellular process annotation set (Fig.
4a), the performance of most measures is quite good,
with more than 20 combinations having a median
greater than 0.8.
Overall, for cellular processes, the performance

tends to be better when two conditions hold: 1) the
semantic similarity measure uses either maximal func-
tional similarity between genes or the average-best--
matched functional similarities between genes, and 2)
the DAG clustering (CliXO) was applied. According
to a one-directional paired t test, the combinations of

Relevance MAX, JiangConrath BMA and Lin BMA
utilizing DAG clustering, and combination of Jiang-
Conrath MAX utilizing HAC clustering, have signifi-
cantly higher AUC than other combinations. The
poor overall performance of similarity measures that
average all pairwise annotation scores is not surpris-
ing given its dependence on the number of annota-
tions, which varies across different genes as described
above. The better overall performance of DAG clus-
tering results from allowing genes to be grouped into
multiple clusters, which is a key element of the Gene
Ontology structure.
By contrast, the overall performance of gene clus-

tering based on multicellular organism-level processes
is quite poor (the overall median AUC value across
all measures is below 0.7). This may be due to the
fact that this annotation set has, on average, a much
larger number of distinct annotations per gene than
does the cellular process set (Fig. 2). If two genes
work together in one or a few processes but not in
others, their overall similarities will be low and they
will not tend to be clustered together. In other words,
information about conditional similarity in functions
can be lost in the overall score, and therefore in the
gene clusters constructed from these scores. Accord-
ing to one-directional paired t test, Lin BMA utilizing
DAG clustering, and Resnik MAX, Weighted Jaccard
and Weighted Cosine utilizing HAC clustering have
significantly higher AUC than other combinations. In
addition, the performance of DAG clustering de-
creases substantially for clustering using multicellular
process annotations: three out of the top four combi-
nations with significantly higher AUC for reconstruct-
ing cellular GO classes utilized DAG clustering (Fig.
4a); only one out of the top four combinations with
significantly higher AUC for reconstructing multicel-
lular GO classes utilized DAG clustering (Fig. 4b).
This result is consistent with our interpretation that
conditional similarities can be effectively lost in the
overall pairwise score, so that the DAG clustering
property of allowing multiple clusters for each gene is
no longer an advantage when the diverse annotations
are summarized by a single similarity score.

Accuracy of gene clustering with incomplete annotations
Not surprisingly, the clustering accuracy for “incom-
plete” annotation sets was lower than for “complete”
annotation sets. For “incomplete” cellular process an-
notations, the median AUC value across all combina-
tions decreases from 0.82 (Fig. 4a) to 0.78 (Fig. 5a).
For “incomplete” multicellular organism process an-

notation sets, while the median AUC value across all
combinations is the same as for the complete set, the
best combinations perform substantially worse on
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incomplete data, e.g. the Lin-BMA-DAG combination
has an average AUC of 0.76 on complete data (Fig.
4b) with a maximum of 1 (perfect performance),

while on incomplete data the average AUC is 0.72
with a maximum of 0.8 (Fig. 5b). The average per-
formance of different combinations on multicellular

Fig. 4 Distribution of AUC of gene-clustering using “complete” annotations. Panel (a) plots AUC of clustering using cellular process annotation set,
and panel (b) plots AUC of clustering using multicellular organism process annotation set. HAG and DAG represent hierarchical clustering and Directed
Acyclic Graph (CliXO) clustering, respectively. MAX, BMA and AVG represent the maximal functional similarity, the average of best-matched functional
similarities, and the average of all functional similarities among genes, respectively. Combinations were ordered by the median AUC value. The red line
represents the median AUC value across all combinations. An asterisk above a boxplot indicates that the AUC of the corresponding combination is
significantly lower than the best (the combination with highest median AUC). The significance is determined by one-directional paired t test, P < 0.05
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processes is much worse than on cellular processes.
Given the poor clustering results on even the
complete multicellular process annotations as de-
scribed above, this is not surprising.

In general, the best performing combinations under
one set of conditions (cellular vs multicellular, complete
vs incomplete) are not among the best performing com-
binations under another set of conditions. We identified

Fig. 5 Distribution of AUC of gene-clustering using “incomplete” annotations. Panel (a) plots AUC of clustering using cellular process annotation
set, and panel (b) plots AUC of clustering using multicellular organism process annotation set. HAG and DAG represent hierarchical clustering and
Directed Acyclic Graph (CliXO) clustering, respectively. MAX, BMA and AVG represent the maximal functional similarity, the average of best-
matched functional similarities, and the average of all functional similarities among genes, respectively. Combinations were ordered by the
median AUC value. The red line represents the median AUC value across all combinations. An asterisk above a boxplot indicates that the AUC of
the corresponding combination is significantly lower than the best (the combination with highest median AUC). The significance is determined
by one-directional paired t test, P < 0.05
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the best performing combinations for complete and in-
complete annotation sets, and both cellular and multi-
cellular processes (Table 1).
Only one combination, Lin BMA utilizing DAG clus-

tering (CliXO), is among the top performing combina-
tions in all cases, and JiangConrath MAX tends to
perform best when utilizing hierarchical clustering. The
top performing combinations never use the AVG
method for combining similarity scores. Overall, a larger
number of top performing combinations utilize DAG
clustering.
To assess whether the accuracy calculations for our in-

complete data sets were consistent between different sim-
ulated sets, we calculated the coefficient of variation (CV)
of all AUC values (each simulated set has a corresponding
AUC value) for each GO class. The distribution of AUC
values for each measure/algorithm combination was then
plotted as shown in Addtional file 2: Figure S4. Overall,
there is a high degree of consistency: the grand median of
CV is around 10%, i.e. on average there is an around 10%
deviation of AUC value from the mean AUC value for
each simulated set. Specifically, for simulated cellular
process sets, for most combinations of measure and
algorithm, CV values are narrowly distributed around 10%
(except for Resnik-BMA-DAG, Resnik-AVG-DAG and
Relevance-AVG-DAG). For simulated multicellular pro
cess sets, quite a few combinations gave more dispersed
distribution of CV values with the 75th percentile close to
20%. This indicates a smaller degree of consistency for
simulated multicellular process sets than the cellular
process sets, though still showing overall consistency. This
result is expected given the much higher degree of incom-
pleteness of the multicellular process annotation sets com-
pared to cellular processes (Fig. 2).

Measure the change of clusters due to incomplete
annotations
The preceding sections compared the clusters obtained for
either complete or incomplete annotation sets, to the actual
GO classes. We used this as a proxy for clustering accuracy.
In this section, we compare the clusters obtained for a

given method (combination of similarity measure and
clustering algorithm) on the incomplete annotation sets, to
those obtained on the complete annotation sets. Thus we
are assessing the robustness of each method to incom
pleteness.
Figures 6 and 7 show the robustness of different simi-

larity measures, gene-level scoring, and clustering
method to incomplete data: specifically, the proportion
of genes either remaining in the same (best-matching,
see Methods above for details) cluster, or as singletons,
using the “complete” and “incomplete” annotation sets.
We determined clusters at various thresholds, values
near 0 generate multiple, small clusters by cutting near
the tips of the tree generated by clustering, while larger
values create larger clusters by cutting nearer to the
root. Overall, robustness to incompleteness was surpris-
ingly high for most combinations, meaning that incom-
pleteness did not result in extreme differences in the
clusters. Nevertheless, the differences were substantial.
For cellular processes, most combinations result in over
half of the genes being clustered similarly in both the
complete and incomplete sets (red lines in Figures 6 and
7). For multicellular organism processes, robustness was
substantially smaller. The robustness estimates for each
combination are very similar for different simulated in-
complete sets (error bars in Figures 6 and 7). In general,
combinations using the gene-level averaging method
(AVG) were the most robust to incompleteness. This is
perhaps not surprising, for the same reason (described
above) that they result in low clustering accuracy: the
pairwise gene similarities are averaged over a large
number of pairwise annotation similarity scores, and
removing some of these pairs has a smaller effect on the
overall average than on the best-match average or max-
imal score. Best-match-average (BMA) combinations
were somewhat less robust, with the exception of the
Resnik measure, that was substantially less robust at
lower clustering thresholds. The maximum (MAX)
methods were generally the least robust to incomplete-
ness, with the Resnik measure again having the smallest
robustness at lower thresholds. For singletons (unclus

Table 1 Best combinations of similarity and clustering methods for recovering the known structure of GO classes

Annotation
completeness

Type of GO
classes

Best combinations

Clustering methods Semantic similarity measure

complete cellular HAC JiangConrath MAX

DAG Relevance MAX, JiangConrath BMA, Lin BMA

multicellular HAC Resnik MAX, Weighted Jaccard, Weighted Cosine

DAG Lin BMA

incomplete cellular HAC JiangConrath MAX, Weighted Cosine

DAG Lin BMA, Lin MAX, Relevance MAX, Resnik MAX

multicellular DAG Lin BMA, Relevance MAX
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tered genes, blue lines in Figures 6 and 7), on the other
hand, maximum score approaches tended to be the most
robust, as genes with low maximum scores to all other
genes in the complete annotation set will remain this
way when annotations are removed.

Discussion
We assessed the effects of annotation completeness on
the distribution of pairwise gene semantic similarity
scores, and subsequent effects on the clusters derived
from these scores. We performed our assessments on all
combinations of similarity measure and clustering
method for recovering the known GO classes, using
both “complete” and “incomplete” annotations. Specific-
ally we considered 14 previously published similarity
measures, and two types of clustering, hierarchical and
CliXO. For both complete and incomplete annotation
sets, measures which create a pairwise gene similarity by
using the maximum or best matched average over all
pairwise annotation similarities tend to perform best. In
addition, the CliXO clustering method, combined with
appropriate similarity measures, tends to perform better
than hierarchical clustering. A few particular methods,
such as Lin BMA and Relevance MAX utilizing CliXO,
are generally among the most accurate for both
complete and incomplete annotation sets, and both

cellular and multicellular organism processes (Table 1).
The best-match-average method of deriving gene-level
scores, however, generally shows greater robustness to
incompleteness than maximum method, meaning that
the cluster identities are more similar to those obtained
for “complete” annotations. Therefore this method might
be preferable for many clustering applications. The aver-
aging method at the gene-level, while the most robust,
has much lower clustering accuracy than any other
method. This is at least in part because the signal of
similar annotations (shared between two genes) is
diluted to varying degrees by the noise of dissimilar
annotations, an effect that depends on the number of
annotations.
We find that hierarchical agglomerative clustering ap-

proaches (which yield only strict hierarchies, i.e. a cluster
can have only one parent cluster) have higher accuracy
with similarity measures that utilize the maximum pair-
wise annotation score, or with the WeightedJaccard or
WeightedCosine measures; the WeightedJaccard or
WeightedCosine measures are more robust to incom-
pleteness. The CliXO clustering method, because it can
allow multiple parent clusters, is able to utilize informa-
tion from multiple different annotations captured in the
best-match average scores (which average over the best
match between each annotation of one gene, and an

Fig. 6 Plots of the robustness to annotation incompleteness for semantic similarity methods, for different similarity measures using hierarchical
clustering. Points with filled circles show robustness of multicellular process annotation sets; lines without points show robustness of cellular
process annotation sets. In red is the fraction of genes originally clustered together using complete annotations, that remained in the best-
matched cluster using incomplete annotations. In blue is the fraction of singletons (unclustered genes) originally derived using complete
annotations, that remained as singletons using incomplete annotations. A total of 10 different clustering thresholds increase from the left to the
right evenly, based on the height of corresponding hierarchical tree from the leaves (0) to the root (1)
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annotation of the other gene). This is consistent with the
testing of CliXO with best-match-average scores by Kra-
mer et al. [25] (though they utilized the Resnik measure,
which we find to be less accurate, and less robust to
incompleteness than some other measures). However,
when the number of distinct annotations for each gene
is too large, such as our multicellular process annotation
sets, this advantage disappears.
We find that while several combinations of similarity

measure and clustering algorithm perform well for
representing GO cellular processes, all combinations
perform much worse for representing multicellular
organism-level processes. This likely reflects the greater
complexity of this branch of the GO biological process
ontology, and the larger number of annotations in both
the complete and incomplete sets (and therefore the
greater loss of information when reducing into one
dimension of a similarity score).

Conclusions
Our study has attempted to estimate a lower bound
on the incompleteness of experimental GO annota-
tions of human genes, by comparing with experimen-
tal annotations of orthologous genes in highly studied
model organisms (yeast and mouse). We find that hu-
man annotations are highly incomplete, and much

more incomplete for multicellular organism level pro-
cesses than for cellular level processes. We also find,
not surprisingly, that genes tend to be more highly
pleiotropic (fewer distinct annotations per gene) at
the multicellular level, than at the cellular level. We
used this estimate to simulate incomplete annotation
sets, and assess how this incompleteness can affect
downstream GO-based analyses, specifically pairwise
semantic similarity scores and gene similarity clusters
derived from them. To make this comparison, we also
needed to assess the clusters derived from “complete”
annotation sets. We find that for cellular-level process
annotations, which are moderately incomplete and
show less functional pleiotropy, the DAG-based
CliXO clustering method performs well with several
different GO term semantic similarity measures. How-
ever, because genes are generally annotated to mul-
tiple, distinct terms, it is critical that the overall gene
pairwise similarity is derived from a method that
attempts to first match up each GO annotation for
one gene with its cognate for the other gene (either
using the maximum method, or best-match-average
method), rather than taking a simple average over all
possible matches (the average method). For multicel-
lular processes, for which genes display much greater
pleiotropy, nearly all combinations of similarity

Fig. 7 Plots of the robustness to annotation incompleteness for semantic similarity methods, for different similarity measures using DAG
clustering. Points with filled circles show robustness of multicellular process annotation sets; lines without points show robustness of cellular
process annotation sets. In red is the fraction of genes originally clustered together using complete annotations, that remained in the best-
matched cluster using incomplete annotations. In blue is the fraction of singletons (unclustered genes) originally derived using complete
annotations, that remained as singletons using incomplete annotations. A total of 10 different clustering thresholds increase from the left to the
right evenly, based on the height of corresponding hierarchical tree from the leaves (0) to the root (1)
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measures and clustering methods perform relatively
poorly, on both complete and incomplete annotation
sets, at least in part due to the difficulty in reducing
a comparison over a large number of distinct func-
tional annotations to a single gene-gene similarity
score. However, in all cases, we find a substantial
decrease in both clustering accuracy and robustness
when annotations are incomplete, underscoring the
importance of increasing the completeness of GO
annotations for supporting computational analyses of
gene function.

Methods
Creating a representation of a set of “completely
annotated” human genes
We first created an approximation to a set of human
genes that are “completely annotated” with respect to
GO biological process terms. Recognizing that yeast is
the best-studied eukaryotic cellular system, and mouse
the best-studied vertebrate animal, we determined two
sets separately: cellular processes, and multicellular
organism-level processes. For cellular processes, we
considered all yeast genes that are associated with at
least 75 distinct publications in PubMed to be “well
studied” experimentally. Similarly, for multicellular
processes, we considered all mouse genes that are as-
sociated with at least 75 distinct publications. Associ-
ations between PubMed IDs and yeast genes and
mouse genes were obtained from Saccharomyces Gen-
ome Database (SGD) [30] and the Mouse Genome In-
formatics (MGI) Data and Statistical Reports [31],
respectively. This resulted in a set of 866 “well-anno-
tated” yeast genes, and a set of 850 “well-annotated”
mouse genes. All GO annotations having experimental

evidence codes (EXP, IDA, IPI, IGI, IEP, IMP) were
extracted for each yeast/mouse gene in the final sets,
from the GO database (AmiGO 2.0, Mar 12, 2014).
We used the Bioconductor package GO.db 2.8.0 to
remove “redundant” annotations; this included anno-
tations to the same term using a different piece of
evidence, and annotations to less specific terms that
were already covered by a more specific annotation.
To convert these model organism annotations to an

approximation of “complete” human gene annotations,
each yeast (cellular processes) or mouse (multicellular
organism processes) gene was mapped to the corre-
sponding least-diverged human ortholog, as defined
from PANTHER [3]. Of the 866 well-annotated yeast
genes, and 850 well-annotated mouse genes, 434 and
813, respectively, could be mapped to least-diverged
orthologs in humans. We took these sets as our approxi-
mated “completely annotated” human gene sets for cel-
lular processes (434 human genes) and multicellular
organism processes (813 human genes).

Quantify incompleteness of experimental biological
process annotations among human genes
For these two sets of approximated “completely anno-
tated” human genes, we compared the number of GO
annotations to the actual number of experimental an-
notations available for each of these genes. The differ-
ence between these numbers gives an approximation
to the incompleteness of experimental human gene
annotations. We opted for a simple count difference
of annotations rather than a more detailed compari-
son, as even the well-studied yeast and mouse genes
are incompletely annotated. Thus, a simple count
difference provides a conservative estimate of incom

Fig. 8 Frequency distribution of missing annotations among human genes. The x-axis represents the number of missing annotations of each
human gene compared with its “well-annotated” ortholog in yeast (cellular processes) or mouse (multicellular organism processes). The degree of
incompleteness of human gene annotation is much greater for multicellular processes than cellular processes
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pleteness, which is appropriate for our analysis. The
distributions of annotation count differences between
the “complete” and actual annotation sets are shown
in Fig. 8 (again for simplicity, all differences less than
0, i.e. where the human ortholog has more GO anno-
tations than its corresponding ortholog in either yeast
or mouse, are set to 0).

Simulating “incompletely annotated” genes
We implemented a random sampling procedure to
generate a large number of random, incomplete anno-
tation sets. This procedure randomly removes annota-
tions from the “complete” cellular process annotation
set and the “complete” multicellular organism process
annotation set (section 4.1), according to the distribu-
tions in Fig. 8. The procedure for incomplete annota-
tion set simulation was as follows. Let N represent
the discrete set of numbers of missing annotations for
each orthologous human gene, and let n represent a
specific value from that set (i.e. 0<n<70). N is ordered
from largest to smallest number of missing annota-
tions. For each member n in the set N, let gn be the

number of genes that have n missing annotations. Let
S be the set of genes.

Step 1: Select the number of annotations to remove
from a completely annotated gene; begin with the
largest remaining number of missing annotations, i.e.
choose n = max (N).
Step 2: from all remaining genes (i.e. with
unmodified annotations) in S, randomly select gn of
them, denoted by s (genes in s must have at least n
annotations)
Step 3: randomly remove n annotations from each
gene in s
Step 4: exclude s from S and exclude n from N
Step 5: repeat Steps 1-4 until complete.

The simulation was repeated 100 times to generate 100
different incomplete sets each of cellular and multicellular
annotations. Gene-cluster analysis using “complete” and
“incomplete” annotation sets were compared with each
other to evaluate the impact of incompleteness of
annotations.

Fig. 9 ROC of clustering of Macro-autophagy genes using Lin MAX measure and hierarchical clustering. The x-axis represents false positive rate,
i.e. the proportion of other genes clustered into macro-autophagy gene set. The y-axis represents true positive rate, i.e. the proportion of macro-
autophagy genes in macro-autophagy gene cluster. Each point corresponds to a different clustering threshold. The ROC is plotted for complete
annotations and incomplete annotations (average and standard deviation shown for 100 randomly generated sets), respectively
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Calculation of GO-based similarities and clustering of
genes using complete and incomplete annotation sets
For both complete and incomplete annotation sets,
only those genes with at least one annotation were in-
cluded in analysis. GO-based gene-gene similarity
scores were first calculated. Information content (IC)
based semantic similarity measures included Resnik's,
Lin's, Jiang and Conrath's and Schlicker’s measures,
and non-IC based measures included weighted Cosine
and weighted Jaccard measures. For each IC based se-
mantic similarity measure, three different methods
were used to calculate pairwise annotation similarity
scores to pairwise gene similarity scores: average of
pairwise annotation similarities, maximum of annota-
tion similarities and best-matched annotation similar-
ities. Several R-based tools have been developed
recently for computing both IC based and non-IC
based semantic similarities. Specifically in this study,
we used an R-based tool called csbl.go to calculate all
similarities listed above. With csbl.go, a similarity
score between genes can be automatically computed.
For IC-based similarities, the probability of each GO
term occurring in the set of annotations for all genes
for different species is calculated by this tool. This in-
formation can be directly transformed to an IC value
for each GO term. Thus, the only parameters need to
be specified for calculating similarities are the name of
the species, ontology domain and the name of similar-
ity measure used for the calculation [27]. For each
similarity measure, both hierarchical agglomerative
clustering (HAC) and Directed Acyclic Graph (DAG)
clustering were performed to cluster genes, separately

for each annotation set (2 complete sets and 200 in-
complete sets). The agglomerative nesting algorithm
implemented in the R package ‘agne’ was used for
hierarchical clustering; the Clique Extracted Oncology
(CliXO) algorithm developed by Kramer et al. [25] was
used for DAG clustering.

Measuring the accuracy of clustering
We assessed the accuracy of clustering results by ask-
ing how well genes in the same GO class were clus-
tered together. For each GO class with a meaningful
size (containing between 5 and 50 genes in the given
“complete annotation” set), we calculated a Receiver
Operating Characteristic (ROC) curve that describes
the true positive rate (TP, the proportion of genes
from that class that are successfully clustered to-
gether) as a function of false positive rate (FP, the
proportion of genes from other classes that are mis-
classified into that same cluster) for different cluster-
ing thresholds. TP and FP were calculated under 10
equally spaced thresholds of clustering. For each ROC
curve, the area under the curve (AUC) was calculated.
A perfect clustering would have an AUC of 1 for all
GO classes, i.e. that all members of the class are clus-
tered together before non-members are added to the
cluster. An example ROC curve is shown in Fig. 9.

Measuring the consistency of clustering from different
simulated “incomplete” gene sets
We assessed the consistency of analysis from different
simulated sets by calculating the CV(%) of AUC for
clustering genes from the same GO class using

Fig. 10 An example of determining matches between clusters of “completely annotated” genes and “incompletely annotated” genes. 10 different
genes g1-g10 were clustered into C1 and C2 given complete annotations, and C1’, C2’ and C3’ given incomplete annotations. According to the
number of overlapped genes, both C1’ and C2’ match to C1, and C3’ match to C2. Because C1 has more overlapping genes with C1’, C1 is the
best match to C1’
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different simulated sets: For each GO class with a
meaningful size (containing between 5 and 50 genes
in the given “complete annotation” set), we calculated
the AUC as described above for each of simulated
data sets. We then calculated the CV(%) of AUC (i.e.
standard deviation of AUC values across all simulated
set divided by the mean of AUC values) for each GO
class, given each similarity measure and clustering al-
gorithm. The distribution of CV(%) across all GO
classes were calculated. A small CV(%) indicates a
small data deviation from the mean AUC, which
means a high degree of consistency of results between
different simulated data sets.

Measuring the robustness of clustering to incompleteness
We assessed the robustness of clustering to incomplete-
ness by comparing how the clusters changed for incom-
plete relative to complete annotation sets. For each of
the 10 clustering thresholds, gene clusters were obtained
for all complete and incomplete annotation sets. For
each threshold, and each incomplete annotation set,
clusters were compared to the clusters obtained for the
corresponding complete annotation set. This requires
finding the best match between each cluster obtained
from the complete annotation set, and a cluster obtained
from the incomplete annotation set. The reciprocal best
match clusters were determined as follows (Fig. 10):

1. Each cluster of “incompletely annotated” genes was
matched to the cluster(s) of “completely annotated”
genes with the largest number of overlapping genes.

2. Following step 1, if a cluster of “completely
annotated” genes has multiple matched clusters of
“incompletely annotated” genes, the one with the
largest number of overlapping genes was considered
as the best match.

For each cluster from the completely annotated set, we
calculated the proportion of genes that were found in the
best-matched cluster from an incompletely annotated set.
For unclustered singletons from the completely annotated
set, we calculated the proportion of genes that remained
as singletons in the clustered incompletely annotated set.

Additional files

Additional file 1: Introduction to gene-gene similarity measures (DOCX
89 kb)

Additional file 2: Figure S1 Plots of pairwise gene similarity for
complete vs. incomplete GO cellular process annotations. Figure S2
Pairwise gene semantic similarities for complete vs. incomplete GO
multicellular organism level process annotations. Figure S3 Distribution
of pairwise gene similarity scores for simulated incomplete annotation
sets. For most measures, a large fraction (~ 25%) of these values lie in a
very narrow range. Figure S4 Distribution of the coefficient of variation

for accuracy over 100 simulated incomplete annotation sets (see Fig. 5)
(DOCX 778 kb)

Abbreviations
AUC: Area under the curve; AVG: Gene-gene similarity score derived by
averaging over all annotation similarities; BMA: Gene-gene similarity score
derived by best-match-average; CliXO: Clique extracted ontology;
DAG: Directed acyclic graph; FP: False positive; GO: Gene ontology;
HAC: Hierarchical agglomerative clustering; IC: Information content;
MAX: Gene-gene similarity score derived by maximum score match;
ROC: Receiver operating characteristic; TP: True positive

Acknowledgements
We thank Dr. Huaiyu Mi for helpful comments on the manuscript.

Funding
Research reported in this publication was supported by the National Human
Genome Research Institute of the National Institutes of Health under award
number U41HG002273. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health.

Availability of data and materials
The datasets used and analyzed during the current study is available on
reasonable request.

Authors’ contributions
ML developed the methods under the supervision of PDT. ML and PDT
evaluated and interpreted the results. Both authors contributed to the final
version of the paper. Both authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 25 August 2018 Accepted: 19 March 2019

References
1. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, et al. Gene

ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.

2. Gene Ontology C. Ontology Consortium: going forward. Nucleic Acids Res.
2015;43(Database issue):D1049–56. https://doi.org/10.1093/nar/gku1179.

3. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER
version 11: expanded annotation data from Gene Ontology and Reactome
pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;
45(D1):D183–9.

4. Nota B. Gogadget: an R Package for Interpretation and Visualization of GO
Enrichment Results. Mol Inform. 2016;36(5–6). https://doi.org/10.1002/minf.
201600132.

5. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):
15545–50. https://doi.org/10.1073/pnas.0506580102.

6. Chang B, Kustra R, Tian W. Functional-network-based gene set analysis
using gene-ontology. PLoS One. 2013;8(2):e55635. https://doi.org/10.1371/
journal.pone.0055635.

7. Oliveira G, Santos A. Using the Gene Ontology tool to produce de novo
protein-protein interaction networks with IS_A relationship. Genet Mol Res.
2016;15(4). https://doi.org/10.4238/gmr15049273.

Liu and Thomas BMC Bioinformatics          (2019) 20:155 Page 14 of 15

https://doi.org/10.1186/s12859-019-2752-2
https://doi.org/10.1186/s12859-019-2752-2
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1002/minf.201600132
https://doi.org/10.1002/minf.201600132
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1371/journal.pone.0055635
https://doi.org/10.1371/journal.pone.0055635
https://doi.org/10.4238/gmr15049273


8. Feng Z, Davis D, S’asik R, Patel H, Drummond J, Patel P. Pathway and gene
ontology based analysis of gene expression in a rat model of cerebral
ischemic tolerance. Brain Res. 2007;1177:103–23. https://doi.org/10.1016/j.
brainres.2007.07.047.

9. Hill D, D’Eustachio P, Berardini T, Mungall C, Renedo N, Blake J. Modeling
biochemical pathways in the gene ontology. Database (Oxford). 2016.
https://doi.org/10.1093/database/baw126.

10. Lin D. An information-theoretic definition of similarity. In: In Proceedings of
the 15th International Conference on Machine Learning. San Francisco, CA:
Morgan Kaufmann; 1998. p. 296–304.

11. Jiang J, Conrath DW. Semantic Similarity Based on Corpus Statistics and
Lexical Taxonomy. In: Proc of 10th International Conference on Research in
Computational Linguistics, ROCLING’97. Taiwan; 1997. 12. Resnik P. Using
information content to evaluate semantic similarity in a taxonomy. In: In
Proceedings of the 14th International Joint Conference on Artificial
Intelligence; 1995. p. 448–453.

12. Schlicker A, Albrecht M. FunSimMat: a comprehensive functional similarity
database. Nucleic Acids Res. 2008;36(Database issue):D434–9. https://doi.
org/10.1093/nar/gkm806.

13. Lord PW, Stevens R, Brass A, Goble C. Investigating semantic similarity
measures across the Gene Ontology: the relationship between sequence
and annotation. Bioinformatics. 2003;19(10):1275–83.

14. Schlicker A, Domingues F, Rahnenfu¨hrer J, Lengauer T. A new measure for
functional similarity of gene products based on Gene Ontology. BMC Bioinf.
2006;7:302. https://doi.org/10.1186/1471-2105-7-302.

15. Sheehan B, Quigley A, Gaudin B, Dobson S. A relation based measure of
semantic similarity for Gene Ontology annotations. BMC Bioinf. 2008;9:468.
https://doi.org/10.1186/1471-2105-9-468.

16. Alvarez M, Qi X, Yan C. A shortest-path graph kernel for estimating gene
product semantic similarity. J Biomed Semant. 2011;2:3. https://doi.org/10.
1186/2041-1480-2-3.

17. Bodenreider O, Aubry M, Burgun A. Non-lexical approaches to identifying
associative relations in the gene ontology. Pac Symp Biocomput. 2005;10:
91–102. https://psb.stanford.edu/psb-online/proceedings/psb05/
bodenreider.pdf.

18. Pesquita C, Faria D, Falc˜ao A, Lord P, Couto F. Semantic similarity in
biomedical ontologies. PLoS Comput Biol. 2009;5(7):e1000443. https://doi.
org/10.1371/journal.pcbi.1000443.

19. Guo X, Liu R, Shriver C, Hu H, Liebman M. Assessing semantic similarity
measures for the characterization of human regulatory pathways.
Bioinformatics. 2006;22(8):967–73. https://doi.org/10.1093/bioinformatics/
btl042.

20. Mazandu G, Mulder N. Information content-based Gene Ontology functional
similarity measures: which one to use for a given biological data type? PLoS
One. 2014;9(12):e113859. https://doi.org/10.1371/journal.pone.0113859.
eCollection2014.

21. Supek F, Boˇsnjak M, Sˇkunca N, Sˇmuc T. REVIGO summarizes and visualizes
long lists of gene ontology terms. PLoS One. 2011;6(7):e21800. https://doi.
org/10.1371/journal.pone.0021800.

22. Cho J, Wang K, Galas D. An integrative approach to inferring biologically
meaningful gene modules. BMC Syst Biol. 2011;5:117. https://doi.org/10.
1186/1752-0509-5-117.

23. Ward JHJ. Hierarchical Grouping to Optimize an Objective Function. J Am
Stat Assoc. 1963;58(301):236–44. https://doi.org/10.1080/01621459.1963.
10500845.

24. Szekely GJ, Rizzo ML. Hierarchical Clustering via Joint Between-Within
Distances: Extending Ward’s Minimum Variance Method. J Classif. 2005;22(2):
151–83.

25. Kramer M, Dutkowski J, Yu M, Bafna V, Ideker T. Inferring gene ontologies
from pairwise similarity data. Bioinformatics. 2014;30(12):i34–42. https://doi.
org/10.1093/bioinformatics/btu282.

26. Dessimoz C, Sˇkunca N, Thomas P. CAFA and the open world of protein
function predictions. Trends Genet. 2013;29(11):609–10. https://doi.org/10.
1016/j.tig.2013.09.005.

27. Frohlich H, Speer N, Poustka A, Beissbarth T. GOSim–an R-package for
computation of information theoretic GO similarities between terms
and gene products. BMC Bioinf. 2007;8:166. https://doi.org/10.1186/1471-
2105-8-166.

28. Ovaska K, Laakso M, Hautaniemi S. Fast gene ontology based clustering for
microarray experiments. BioData Min. 2008;1(1):11. https://doi.org/10.1186/
1756-0381-1-11.

29. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for
measuring semantic similarity among GO terms and gene products.
Bioinformatics. 2010;26(7):976–8. https://doi.org/10.1093/bioinformatics/
btq064.

30. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD:
Saccharomyces Genome Database. Nucleic Acids Res. 1998;26(1):73–9.
https://doi.org/10.1093/nar/26.1.73.

31. Bult C, Blake J, Richardson J, Kadin J, Eppig J, Baldarelli R, et al. The Mouse
Genome Database (MGD): integrating biology with the genome. Nucleic
Acids Res. 2004;32(Database issue):D476–81. https://doi.org/10.1093/nar/
gkh125.

Liu and Thomas BMC Bioinformatics          (2019) 20:155 Page 15 of 15

https://doi.org/10.1016/j.brainres.2007.07.047
https://doi.org/10.1016/j.brainres.2007.07.047
https://doi.org/10.1093/database/baw126
https://doi.org/10.1093/nar/gkm806
https://doi.org/10.1093/nar/gkm806
https://doi.org/10.1186/1471-2105-7-302
https://doi.org/10.1186/1471-2105-9-468
https://doi.org/10.1186/2041-1480-2-3
https://doi.org/10.1186/2041-1480-2-3
https://psb.stanford.edu/psb-online/proceedings/psb05/bodenreider.pdf
https://psb.stanford.edu/psb-online/proceedings/psb05/bodenreider.pdf
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1093/bioinformatics/btl042
https://doi.org/10.1093/bioinformatics/btl042
https://doi.org/10.1371/journal.pone.0113859.eCollection2014
https://doi.org/10.1371/journal.pone.0113859.eCollection2014
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1186/1752-0509-5-117
https://doi.org/10.1186/1752-0509-5-117
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1093/bioinformatics/btu282
https://doi.org/10.1093/bioinformatics/btu282
https://doi.org/10.1016/j.tig.2013.09.005
https://doi.org/10.1016/j.tig.2013.09.005
https://doi.org/10.1186/1471-2105-8-166
https://doi.org/10.1186/1471-2105-8-166
https://doi.org/10.1186/1756-0381-1-11
https://doi.org/10.1186/1756-0381-1-11
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/nar/26.1.73
https://doi.org/10.1093/nar/gkh125
https://doi.org/10.1093/nar/gkh125

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Quantifying the incompleteness of knowledge of human gene function
	The change of pairwise gene semantic similarities due to incomplete annotations
	Accuracy of gene clustering methods for “complete” annotation sets
	Accuracy of gene clustering with incomplete annotations
	Measure the change of clusters due to incomplete annotations

	Discussion
	Conclusions
	Methods
	Creating a representation of a set of “completely annotated” human genes
	Quantify incompleteness of experimental biological process annotations among human genes
	Simulating “incompletely annotated” genes
	Calculation of GO-based similarities and clustering of genes using complete and incomplete annotation sets
	Measuring the accuracy of clustering
	Measuring the consistency of clustering from different simulated “incomplete” gene sets
	Measuring the robustness of clustering to incompleteness

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

